首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leukotriene C4 is produced during hypoxic pulmonary vasoconstriction and leukotriene inhibitors preferentially inhibit the hypoxic pressor response in rats. If lipoxygenase products are important in hypoxic vasoconstriction, then an animal deficient in arachidonic acid should have a blunted hypoxic pressor response. We investigated if vascular responsiveness was decreased in vascular rings and isolated perfused lungs from rats raised on an essential fatty acid deficient diet (EFAD) compared to rats raised on a normal diet. Rats raised on the EFAD diet had decreased esterified plasma arachidonic acid and increased 5-, 8-, 11-eicosatrienoic acid compared to rats raised on the normal diet (control). Compared to the time matched responses in control isolated perfused lungs the pressor responses to angiotensin II and alveolar hypoxia were blunted in lungs from the arachidonate deficient rats. This decreased pulmonary vascular responsiveness was not affected by the addition of indomethacin or arachidonic acid to the lung perfusate. Similarly, the pulmonary artery rings from arachidonate deficient rats demonstrated decreased reactivity to norepinephrine compared to rings from control rats. In contrast, the tension increases to norepinephrine were greater in aortic rings from the arachidonate deficient rats compared to control. Stimulated lung tissue from the arachidonate deficient animals produced less slow reacting substance and platelet activating factor like material but the same amount of 6-keto-PGF1 alpha and TXB2 compared to control lungs. Thus there is an association between altered vascular responsiveness and impairment of stimulated production of slow reacting substance and platelet activating factor like material in rats raised on an EFAD diet.  相似文献   

2.
Leukotriene C4 is produced during hypoxic pulmonary vasoconstriction and leukotriene inhibitors preferentially inhibit the hypoxic pressor response in rats. If lipoxygenase products are important in hypoxic vasoconstriction, then an animal deficient in arachidonic acid should have a blunted hypoxic pressor response. We investigated if vascular responsiveness was decreased in vascular rings and isolated perfused lungs from rats raised on an essential fatty acid deficient diet (EFAD) compared to rats raised on a normal diet. Rats raised on the EFAD diet had decreased esterified plasma arachidonic acid and increased 5-, 8-, 11- eicosatrieonic acid compared to rats raised on the normal diet (control). Compared to the time matched responses in control isolated perfused lungs the pressor responses to angiotensin II and alveolar hypoxia were blunted in lungs from the arachidonate deficient rats. This decreased pulmonary vascular responsiveness was not affected by the addition of indomethacin or arachidonic acid to the lung perfusate. Similarly, the pulmonary artery rings from arichidonate deficient rats demonstrated decreased reactivity to norepinephrine compared to rings from control rats. In contrast, the tension increases to norepinephrine were greater in aortic rings from the arachidonate deficient rats compared to control. Stimulated lung tissue from the arachidonate deficient animals produced less slow reacting substance and platelet activating factor like material but the same amount of 6-keto-PGF and TXB2 compared to control lungs. Thus there is an associated between altered vascular responsiveness and impairment of stimulated production of slow reacting substance and platelet activating factor like materiali rat raised on an EFAD diet.  相似文献   

3.
The role of endogenous radicals in the regulation of pulmonary vascular tone was evaluated by simultaneous measurement of pulmonary artery pressure and lung radical levels during exposure of isolated rat lungs to varying inspired O2 concentrations (0-95%) and angiotensin II. Lung radical levels, measured "on-line" using luminol and lucigenin-enhanced chemiluminescence, decreased in proportion to the degree of alveolar hypoxia. Radical levels fell during hypoxia before the onset of pulmonary vasoconstriction and promptly returned to basal levels with restoration of normoxic ventilation. Mild alveolar hypoxia (10% O2), which failed to decrease chemiluminescence, did not trigger pulmonary vasoconstriction. Although chemiluminescence tended to decrease more as the hypoxic response strengthened, there was not a simple correlation between the magnitude of the change in chemiluminescence induced by hypoxia and the strength of the hypoxic pressor response. Normoxic chemiluminescence was largely inhibited by superoxide dismutase but not catalase. Superoxide dismutase also increased normoxic pulmonary vascular tone and the strength of the pressor response to hypoxia and angiotensin II. Thus the predominant activated O2 species in the lung, during normoxia, was the superoxide anion or a closely related substance. Alteration of endogenous radical levels can result in changes in vascular tone. It remains uncertain whether the decrease in lung radical production during hypoxia caused pulmonary vasoconstriction or was merely associated with hypoxic ventilation.  相似文献   

4.
It has been postulated that changes in the availability of partially reduced O2 species, such as O2 radicals, could serve as a link between PO2 in the alveolus and pulmonary vascular tone (Herz 11: 127-141, 1986). To assess this hypothesis, the hemodynamic effects of acute changes in the balance between the production of O2 radicals and availability of antioxidant enzymes were studied in the isolated perfused rat lung. Intravascular generation of O2 radicals, by administration of xanthine-xanthine oxidase, decreased the pulmonary vascular pressor response to alveolar hypoxia (-55 +/- 5%) and angiotensin II (-58 +/- 10%, P less than 0.01 for each) in isolated perfused rat lungs without increasing the lung wet-to-dry weight ratio. Decreases in pulmonary vascular reactivity were inhibited by pretreatment of the lung with desferrioxamine or a mixture of catalase and superoxide dismutase. Catalase and superoxide dismutase preserved the hypoxic pressor response whether given in liposomes or in dissolved form. Superoxide dismutase administered free in solution, or combined with catalase in liposomes, increased the normoxic pulmonary arterial pressure and enhanced vascular reactivity to angiotensin II and hypoxia. Lungs treated with antioxidant enzymes in liposomes had 50% higher lung catalase levels than control lungs (P less than 0.05). These findings demonstrate that exogenous partially reduced O2 species can decrease pulmonary vascular reactivity and suggest that endogenous radicals, superoxide radical in particular, might be important in modulating pulmonary vascular tone.  相似文献   

5.
Systemic and pulmonary vascular reactivity to graded doses of angiotensin I (ANG I), angiotensin II (ANG II), and, as a control, phenylephrine were examined in 14- or 28-day hypoxia-exposed and air control rats. Hypoxic rats exhibited pulmonary hypertension that was reversible on return to room air, but systemic arterial pressure was not altered by hypoxia. Systemic pressor responses to ANG I and ANG II were significantly less in the hypoxic rats than in the control rats at 14 and 28 days but returned to control levels in hypoxic animals that were then returned to room air, demonstrating reversibility of the hypoxia-induced changes in vascular reactivity. Pulmonary pressor responses to ANG I were significantly less at 14 days, whereas responses to ANG II were significantly greater at 28 days, in hypoxic rats than in controls. There were no significant differences in systemic and pulmonary pressor responses to phenylephrine between the hypoxic and air control animals. The altered systemic and pulmonary pressor responsiveness to ANG I and ANG II in hypoxic rats is probably related to mechanisms specific to the renin-angiotensin system, such as inhibition of intrapulmonary angiotensin-converting enzyme activity and down regulation of ANG II receptors in the systemic circulation. Further study is needed to elucidate these mechanisms.  相似文献   

6.
It has been reported that angiotensin II is specifically required for hypoxic vasoconstriction in rat lungs perfused with physiological salt solution. However, studies with other preparations indicate that angiotensin II does not play a necessary role in the mechanism of hypoxic vasoconstriction. In an attempt to resolve this disagreement I investigated in salt solution-perfused rat lungs whether vasoactive agents other than angiotensin II would induce hypoxic vasoconstriction, and, if so, whether the effect was due to selective action on the hypoxic mechanism or to a nonspecific increase in vascular reactivity. The results showed the development of hypoxic pressor responses after addition to perfusate of plasma, angiotensin II, KCl, vanadate, 4-aminopyridine, or norepinephrine plus propranolol. In contrast, addition of saline (control), ouabain, or tetraethylammonium chloride did not induce hypoxic vasoconstriction. Saralasin inhibited the effect of angiotensin II, but not that of plasma. Induction of responsiveness to hypoxia was associated with an increase in normoxic perfusion pressure and with potentiation of pressor responses to KCl. These results suggest that angiotensin II does not play a unique, integral role in the hypoxic mechanism, but instead is only one of many substances that will induce hypoxic pressor reactivity by reversing the vascular hyporeactivity of salt solution-perfused rat lungs.  相似文献   

7.
To determine the effects of high oxygen (O2) tension on pulmonary vascular reactivity, we exposed rats either to 100% O2 for 48 hrs or 40% O2 for 3 to 5 weeks. Lungs from all rats were isolated, blood perfused and ventilated, and pressor responses to airway hypoxia and to infused angiotensin II were measured. We found that chronic subtoxic hyperoxia did not augment subsequent hypoxic vasoconstriction, and that 48 hrs of 100% O2 markedly blunted hypoxic vasoconstriction. Meclofenamate restored hypoxic vasoconstriction to control levels in the lungs with blunted responses. Evidence for O2 toxicity in the lungs exposed to 100% O2 included interstitial swelling with alveolar exudates seen by light microscopy, and lung edema by water content calculations. We conclude that 1) chronic subtoxic hyperoxia does not influence subsequent hypoxic vasoconstriction, and 2) a dilator prostaglandin produced in the lung is a potent inhibitor of hypoxic vasoconstriction in O2 toxic lungs.  相似文献   

8.
Changes in pulmonary hemodynamics and vascular reactivity in emphysematous hamsters were studied in an isolated lung preparation perfused at constant flow with blood and 3% dextran. Hamsters were treated with intratracheal porcine pancreatic elastase at 70 days of age, and experimental studies were conducted at 1, 3, and 8 mo after treatment. Baseline pulmonary arterial pressure in elastase-treated lungs was increased compared with saline-treated control lungs 1 mo after treatment, but this increase did not progress at 3 and 8 mo. Increases in pulmonary arterial pressure in elastase-treated lungs were temporally correlated with the morphological development of emphysema and right ventricular hypertrophy; both of these were evident at 1 mo after treatment and showed little change thereafter. Pressor responses to hypoxia and angiotensin II were not different between elastase-treated and control lungs at 1 and 3 mo. At 8 mo, however, pressor responses in emphysematous lungs to 0% O2 (but not to angiotensin II) were significantly increased. This was the result of a lack of the normal age-related fall in the hypoxic pressor response. Our results suggest that the right ventricular hypertrophy found in these emphysematous animals results from a chronically increased pulmonary vascular resistance. Furthermore, increases in pulmonary vascular resistance in the early development of emphysema are likely a result of the loss of vascular beds and supporting connective tissue.  相似文献   

9.
The most dramatic changes in pulmonary circulation occur at the time of birth. We hypothesized that some of the effects of perinatal hypoxia on pulmonary vessels are permanent. We studied the consequences of perinatal exposure to hypoxia (12 % O2 one week before and one week after birth) in isolated lungs of adult male rats (approximately 12 weeks old) perfused with homologous blood. Perfusion pressure-flow relationship was tilted towards lower pressures in the perinatally hypoxic as compared to the control, perinatally normoxic rats. A non-linear, distensible vessel model analysis revealed that this was due to increased vascular distensibility in perinatally hypoxic rats (4.1 +/- 0.6 %/mm Hg vs. 2.3 +/- 0.4 %/mm Hg in controls, P = 0.03). Vascular occlusion techniques showed that lungs of the perinatally hypoxic rats had lower pressures at both the pre-capillary and post-capillary level. To assess its role, basal vascular tone was eliminated by a high dose of sodium nitroprusside (20 microM). This reduced perfusion pressures only in the lungs of rats born in hypoxia, indicating that perinatal hypoxia leads to a permanent increase in the basal tone of the pulmonary vessels. Pulmonary vasoconstrictor reactivity to angiotensin II (0.1-0.5 microg) was reduced in rats with the history of perinatal-hypoxia. These data show that perinatal hypoxia has permanent effects on the pulmonary circulation that may be beneficial and perhaps serve to offset the previously described adverse consequences.  相似文献   

10.
We previously reported that Fischer (F) rat lungs developed more extensive injury when challenged with oxidants than age-matched Sprague-Dawley (SD) rat lungs. We now describe a reduced pulmonary vascular response to alveolar hypoxia and angiotensin II (ANG II) in F compared with SD rats. The comparative studies were performed with isolated lungs perfused with salt solution or blood, catheter-implanted awake rats, and isolated main pulmonary arterial rings. Isolated lungs from F rats perfused with either blood or salt solution had reduced vasoconstriction in comparison with lungs from SD rats when exposed to alveolar hypoxia or challenged with ANG II. Instrumented awake F rats had a smaller mean increase in total pulmonary vascular resistance (PVR) than SD rats (35 vs. 94 mmHg.min.l-1, P less than 0.05) when challenged with 8% oxygen. The contractile response of isolated pulmonary artery but not thoracic aortic rings to KCl and ANG II was reduced in F compared with SD rats. In addition, F rats exposed to 4 wk of hypobaric hypoxia developed less pulmonary hypertension and right ventricular hypertrophy (when corrected for the hematocrit) than SD rats. We conclude that the oxidant stress-sensitive inbred F rat strain is characterized by a lung vascular bed that is relatively unresponsive to vasoconstricting stimuli. The mechanism underlying this genetic difference in lung vascular control remains to be defined.  相似文献   

11.
We studied the effects of synthetic atrial natriuretic factor (ANF, 28-amino acid peptide) on base-line perfusion pressures and pressor responses to hypoxia and angiotensin II (ANG II) in isolated rat lungs and on the following hemodynamic and renal parameters in awake, chronically instrumented rats: cardiac output (CO), systemic (Rsa) and pulmonary (Rpa) vascular resistances, ANG II- and hypoxia (10.5% O2)-induced changes in Rsa and Rpa, and urine output. Intra-arterial ANF injections lowered base-line perfusion pressures and blunted hypoxia- and ANG II-induced pressor responses in the isolated lungs. Bolus intravenous injection of ANF (10 micrograms/kg) into intact rats decreased CO and arterial blood pressures of both systemic and pulmonary circulations and increased Rsa. ANG II (0.4 micrograms/kg) increased both Rsa and Rpa, and hypoxia increased Rpa alone in the intact rats. ANF (10 micrograms/kg) inhibited both ANG II- and hypoxia-induced increases in Rpa but did not significantly affect the ANG II-induced increase in Rsa. The antagonistic effect of ANF on pulmonary vasoconstriction was reversible and dose-dependent. The threshold doses of ANF required to inhibit pulmonary vasoconstriction were in the same range as those required to elicit diuresis and natriuresis. The data demonstrate that ANF has a preferential relaxant effect on pulmonary vessels constricted by hypoxia or ANG II. Both the renal and the pulmonary vascular effects of ANF may represent fundamental physiological actions of ANF. These actions may serve as a negative feedback control system that protects the right ventricle from excessive mechanical loads.  相似文献   

12.
Chronic hypoxia causes pulmonary hypertension and pulmonary vascular remodeling in rats. Because platelet-activating factor (PAF) levels increase in lung lavage fluid and in plasma from chronically hypoxic rats, we examined the effect of two specific, structurally unrelated PAF antagonists, WEB 2170 and BN 50739, on hypoxia-induced pulmonary vascular remodeling. Treatment with either agent reduced hypoxia-induced pulmonary hypertension and right ventricular hypertrophy at 3 wk of hypoxic exposure (simulated altitude 5,100 m) but did not affect cobalt (CoCl2)-induced pulmonary hypertension. The PAF antagonists had no effect on the hematocrit of normoxic or chronically hypoxic rats or CoCl2-treated rats. Hypoxia-induced pulmonary hypertension was associated with an increase in the vessel wall thickness of the muscular arteries and reduction in the number of peripheral arterioles. In WEB 2170-treated rats, these changes were significantly less severe than those observed in untreated chronically hypoxic rats. PAF receptor blockade had no acute hemodynamic effects; i.e., it did not affect pulmonary arterial pressure or cardiac output nor did it affect the magnitude of acute hypoxic pulmonary vasoconstriction in awake normoxic or chronically hypoxic rats. Isolated lungs from chronically hypoxic rats showed a pressor response to the chemotactic tripeptide N-formyl-Met-Leu-Phe (fMLP) and an increase in the number of leukocytes lavaged from the pulmonary circulation. In vivo treatment with WEB 2170 significantly reduced the fMLP-induced pressor response compared with that observed in isolated lungs from untreated chronically hypoxic rats. These results suggest that PAF contributes to the development of chronic pulmonary hypertension induced by chronic hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We investigated the effects of lung injury due to alpha-naphthylthiourea (ANTU) on pulmonary vascular reactivity. Rats were treated with ANTU (10 mg/kg ip) or the vehicle Tween 80. Four hours later, lungs from ANTU-treated rats had increased wet-to-dry weight ratios, bronchial lavage protein concentrations, and perivascular edema. To test vascular reactivity, lungs were isolated and perfused with blood at constant flow rate, while mean pulmonary arterial pressure was monitored. ANTU-treated lungs vasoconstricted earlier than Tween-treated lungs in response to severe airway hypoxia (fractional inspired O2 0%). ANTU-treated lungs vasoconstricted in response to 10% O2, while Tween-treated lungs failed to respond to 10% O2, indicating that the threshold for hypoxic vasoconstriction was decreased by ANTU. ANTU also decreased the threshold for and increased the magnitude of angiotensin II pressor responses, indicating that the increased vasoreactivity was not specific for hypoxia. Addition of meclofenamate to perfusates increased the rate and magnitude of responses to 0% O2 in Tween-treated lungs, but did not change the responses of ANTU-treated lungs. Light microscopy of ANTU-treated lungs showed no pulmonary arterial obstruction, and electron microscopy revealed mild capillary endothelial cell injury. We conclude that enhanced pulmonary vascular reactivity accompanies the increased-permeability pulmonary edema caused by ANTU. A similar increase in vasoreactivity might contribute to pulmonary hypertension observed in patients with the adult respiratory distress syndrome.  相似文献   

14.
Methylene blue potentiates vascular reactivity in isolated rat lungs   总被引:3,自引:0,他引:3  
A bolus injection of methylene blue (1 mg), a guanylate cyclase inhibitor, or aspirin (3 mg) in the isolated rat lung preparation had little or no effect on resting perfusion pressure under normoxic condition. In contrast, methylene blue markedly potentiated hypoxic vasopressor response (4-fold) when injected before or during the alveolar hypoxic stimulation. Hemoglobin also potentiated the hypoxic pressor response. Similarly, methylene blue or aspirin augmented the pressor responses to angiotensin II (0.1-1 microgram). The increased hypoxic response induced by methylene blue was immediate and sustained. Methylene blue, when added during hypoxia in the presence of aspirin, further augmented the response to hypoxia compared with the enhanced hypoxic response observed with aspirin alone. Our results suggest that, in addition to the role of cyclooxygenase products, the pulmonary vascular bed may be regulated by endothelium-dependent factors that can be antagonized directly or indirectly by methylene blue.  相似文献   

15.
Chronic beta-receptor blockade has been reported to inhibit right ventricular hypertrophy in rats at high altitude. If so, we wanted to determine whether beta-receptor blockade or some other drug action were involved and whether the heart, the lung vessels, or blood alterations were affected. In rats, chronic treatment with DL-propranolol (2 mg/kg ip once daily) reduced right ventricular hypertrophy and polycythemia of chronic high altitude. D-Propranolol and metoprolol did not reduce hypoxia-induced right ventricular hypertrophy or polycythemia. In isolated lungs from low-altitude rats treated chronically with DL-propranolol or with D-propranolol the pressor response to acute hypoxia was blunted. Chronic DL-propranolol blunted the acute hypoxic pressor response and angiotensin II induced vasoconstriction in lungs from high-altitude rats. Two effects of DL-propranolol treatment were seen: 1) blockade of beta 2-adrenergic receptors, which reduced the right ventricular hypertrophy of high altitude through reduction of hematocrit; and 2) a non-beta-effect, which reduced vascular responsiveness to acute hypoxia in the isolated lung preparation.  相似文献   

16.
Newborn rats were exposed to hypoxia (10% O2 + N2) from 24 h to day 6 of neonatal life and then returned to room air until 45 days of age (experimental). The rats were anaesthetized, heparinized, and exsanguinated. The chest was opened and the lungs were perfused with diluted autologous blood at a constant flow rate (Q). The pulmonary arterial pressure (Pa) and venous pressure (Pv) were monitored. The properties of the pulmonary vasculature were assessed by measuring baseline vascular resistance, PVR = (Pa-Pv)/Q, segmental pressure gradients (double occlusion technique), pressure-flow relationship, hypoxic pressor response (HPR, 3% O2), and the response to 0.5 microgram bolus of angiotensin II (AII). These were compared with similar measurements on age-matched control animals never exposed to hypoxia. The perfusate hematocrit and gases were not significantly different between the two groups. The PVR normalized to body weight was 30% higher in the experimental groups (p less than 0.005). The double occlusion results (obtained at a flow rate of 13 mL/min) revealed that this increase in resistance was primarily due to the increase in the postcapillary resistance. HPR was primarily in the upstream segment in both groups but was larger in the experimental group. In contrast, the response to AII occurred in both the upstream as well as in the downstream vascular segments and did not differ between the two groups. We conclude that adult rats exposed to hypoxia in the neonatal period have elevated pulmonary vascular resistance and increased vascular reactivity to hypoxia.  相似文献   

17.
RhoA GTPase mediates a variety of cellular responses, including activation of the contractile apparatus, growth, and gene expression. Acute hypoxia activates RhoA and, in turn, its downstream effector, Rho-kinase, and previous studies in rats have suggested a role for Rho/Rho-kinase signaling in both acute and chronically hypoxic pulmonary vasoconstriction. We therefore hypothesized that activation of Rho/Rho-kinase in the pulmonary circulation of mice contributes to acute hypoxic pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension and vascular remodeling. In isolated, salt solution-perfused mouse lungs, acute administration of the Rho-kinase inhibitor Y-27632 (1 x 10(-5) M) attenuated hypoxic vasoconstriction as well as that due to angiotensin II and KCl. Chronic treatment with Y-27632 (30 mg x kg(-1) x day(-1)) via subcutaneous osmotic pump decreased right ventricular systolic pressure, right ventricular hypertrophy, and neomuscularization of the distal pulmonary vasculature in mice exposed to hypobaric hypoxia for 14 days. Analysis of a small number of proximal pulmonary arteries suggested that Y-27632 treatment reduced the level of phospho-CPI-17, a Rho-kinase target, in hypoxic lungs. We also found that endothelial nitric oxide synthase protein in hypoxic lungs was augmented by Y-27632, suggesting that enhanced nitric oxide production might have played a role in the Y-27632-induced attenuation of chronically hypoxic pulmonary hypertension. In conclusion, Rho/Rho-kinase activation is important in the effects of both acute and chronic hypoxia on the pulmonary circulation of mice, possibly by contributing to both vasoconstriction and vascular remodeling.  相似文献   

18.
Leukotriene inhibitors preferentially inhibit hypoxic pulmonary vasoconstriction in isolated rat lungs. If lipoxygenase products are involved in the hypoxic pressor response they might be produced during acute alveolar hypoxia and a leukotriene inhibitor should block both the vasoconstriction and leukotriene production that occurs in response to hypoxia. We investigated in isolated blood perfused rat lungs whether leukotriene C4 (LTC4) could be recovered from whole lung lavage fluid during ongoing hypoxic vasoconstriction. Lung lavage from individual rats had slow reacting substance (SRS)-like myotropic activity by guinea pig ileum bioassay. Pooled lavage (10 lungs) as analyzed by reverse phase high performance liquid chromatography had an ultraviolet absorbing component at the retention time for LTC4. At radioimmunoassay, and SRS myotropic activity by bioassay. LTC4 was not found during normoxic ventilation, during normoxic ventilation after a hypoxic pressor response, or during vasoconstriction elicited by KCl. Diethylcarbamazine citrate, a leukotriene synthesis blocker, concomitantly inhibited the hypoxic vasoconstriction and LTC4 production. Thus 5-lipoxygenase products may play a role in the sequence of events leading to hypoxic pulmonary vasoconstriction.  相似文献   

19.
Effects of age on the pulmonary vascular responses to histamine (HIST), norepinephrine (NE), 5-hydroxytryptamine (5-HT), and KCl were studied in isolated, perfused lungs from juvenile (7-wk-old), adult (14-wk-old), and mature adult (28-wk-old) normoxic rats and compared with age-matched rats exposed to chronic hypoxia for either 14 or 28 days. Chronic hypoxia changed vasoconstriction to HIST and NE to vasodilation in lungs from juvenile and adult rats. Mature adult lungs only vasoconstricted to these amines in both control and hypoxic animals. Pressor responses to 5-HT were not affected by chronic hypoxia regardless of age group. Pressor responses to KCl were also not altered by hypoxia, but lungs from older rats showed greater control responsiveness to KCl compared with lungs from juveniles. Only lungs from juvenile animals developed significant elevations of base-line resistance as a result of hypoxic exposure. To investigate the contribution of H1-, H2-, and beta-receptors in these changes, we employed chlorpheniramine, metiamide, and propranolol, respectively, as blocking agents in another series of experiments. Chlorpheniramine either reduced vasoconstriction or increased vasodilation to HIST in lungs from both control and hypoxic animals, whereas metiamide was without effect. Propranolol either increased vasoconstriction or reversed vasodilation to HIST and NE in all lungs studied. The present data demonstrate the important interaction between chronic hypoxia and age that can alter pulmonary vascular tone and reactivity. The inverse relationship between age and elevation of pulmonary vascular resistance after chronic hypoxic exposure may be the key element that changes pulmonary vascular reactivity observed during hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Hypoxic pulmonary vasoconstriction (HPV) matches lung perfusion with ventilation but may also result in chronic pulmonary hypertension. It has not been clarified whether acute HPV and the response to prolonged alveolar hypoxia are triggered by identical mechanisms. We characterized the vascular response to sustained hypoxic ventilation (3% O(2) for 120-180 min) in isolated rabbit lungs. Hypoxia provoked a biphasic increase in pulmonary arterial pressure (PAP). Persistent PAP elevation was observed after termination of hypoxia. Total blockage of lung nitric oxide (NO) formation by N(G)-monomethyl-L-arginine caused a two- to threefold amplification of acute HPV, the sustained pressor response, and the loss of posthypoxic relaxation. This amplification was only moderate when NO formation was partially blocked by the inducible NO synthase inhibitor S-methylisothiourea. The superoxide scavenger nitro blue tetrazolium and the superoxide dismutase inhibitor triethylenetetramine reduced the initial vasoconstrictor response, the prolonged PAP increase, and the loss of posthypoxic vasorelaxation to a similar extent. The NAD(P)H oxidase inhibitor diphenyleneiodonium nearly fully blocked the late vascular responses to hypoxia in a dose that effected a decrease to half of the acute HPV. In conclusion, as similarly suggested for acute HPV, lung NO synthesis and the superoxide-hydrogen peroxide axis appear to be implicated in the prolonged pressor response and the posthypoxic loss of vasorelaxation in perfused rabbit lungs undergoing 2-3 h of hypoxic ventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号