首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
湘潭锰矿废弃地不同林龄栾树人工林碳储量变化趋势   总被引:1,自引:1,他引:0  
对湘潭锰矿区废弃地植被恢复区的3年生、5年生和9年生栾树林,进行了不同时间序列栾树林生物量和碳储量的时空变化研究。结果表明:随着林龄的增长,林木和各器官生物量增加,树干生物量所占比例逐渐增大,林下植被层生物量随林龄增长而增加,且以草本植被为主;不同林龄栾树人工林乔木层碳含量在0.51—0.53gC/g之间,并高于林下植被层碳含量;不同林龄林地土壤层碳含量变化范围为0.01—0.03gC/g,同一林龄不同深度土层碳含量没有显著差异,相同深度不同林龄土层碳含量存在差异;3年生、5年生和9年生栾树碳储量分别为:1.66、18.32和49.87t/hm2,随林龄增长而增加,其中树干碳储量贡献率最大,所占比例由3年生的27.71%增长到9年生的43.43%;不同林龄栾树林生态系统总碳储量分别为77.76、101.63和149.86t/hm2,其中土壤层碳储量变化范围为76.09—99.93t/hm2,占总储量的66.68%—97.85%,死地被物层碳储量为0.01—0.04t/hm2,占总储量0.001%—0.02%,植被层碳储量为1.67—49.89t/hm2,占总碳储量的2.15%—33.29%,植被层中乔木层为1.66—49.87t/hm2,占植被层碳储量的99%以上。各林龄栾树林生态系统碳储量空间分布序列为土壤层植被层死地被物层。研究结果可为我国矿区植被恢复地的森林资源和碳汇管理提供科学依据。  相似文献   

2.
黄土丘陵区退耕还林地刺槐人工林碳储量及分配规律   总被引:4,自引:0,他引:4  
申家朋  张文辉 《生态学报》2014,34(10):2746-2754
采用样地调查与生物量实测方法,研究了甘肃黄土丘陵区不同坡向(阳坡、阴坡)和退耕年限(退耕5a、8a和11a)刺槐人工林乔木不同器官、灌草层、枯落物层和土壤层的碳含量,以及刺槐人工林乔木层、灌草层、枯落物层和土壤层碳储量及其分配特征。结果表明:刺槐不同器官碳含量均值变化范围为43.02%—50.89%%,从高到低排列顺序为树干细枝中枝粗枝叶根桩大根粗根小根中根树皮细根;灌木层碳含量为35.76%—42.74%;草本层碳含量为35.83%—43.64%;枯落物层碳含量为39.55%—41.77%;土壤层(0—100 cm)碳含量均值变化范围0.22%—0.99%,随退耕年限增加而增大,土壤深度的增加而逐渐下降。刺槐人工林生态系统碳库空间分布序列为土壤层(0—100 cm)植被层枯落物层。阳坡和阴坡退耕5a、8a、11a刺槐林生态系统碳储量分别为52.52、58.93、73.72 t/hm2和49.95、61.83、79.03 t/hm2。退耕年限和坡向是影响刺槐人工林碳储量增加的主要因素。刺槐人工林具有良好的固碳效益,是黄土丘陵区的理想树种。  相似文献   

3.
不同林龄长白落叶松人工林碳储量   总被引:13,自引:3,他引:10  
马炜  孙玉军  郭孝玉  巨文珍  穆景森 《生态学报》2010,30(17):4659-4667
基于7—41 a长白落叶松人工林样地生物量调查,探讨了不同发育阶段长白落叶松人工林碳储量的时空变化规律。结果表明:随林龄的增大,长白落叶松人工林林木和各器官生物量增加,树干所占比例增加,生物量转换因子(BEF)、根茎比(R)等参数分布正常。林下植被层、倒落木质物层生物量随林龄增大呈增加趋势。群落总碳储量的空间分布序列是:乔木层倒落木质物层林下植被层。未成林期、幼龄林、中龄林、近熟林和成熟林群落的碳储分别为6.585、66.934、90.019、125.103、162.683t.hm-2,乔木层碳储量分别为3.254、58.521、78.086、108.02、138.096 t.hm-2,倒落木质物层和林下植被层碳储量平均值分别为10.859、1.988 t.hm-2。乔木层、倒落木质物层和林下植被层碳储量占总量的平均比率分别为85.99%、2.17%和11.85%。在不同发育阶段群落和乔木层碳储量的年生产力呈先降后升的变化趋势,中龄林的碳储量累积速率高于幼龄林及成熟林,碳素年固定量分别为0.940、3.889、3.615、3.628、3.968 t.hm-2,乔木层年生产力分别为0.465、3.39、3.137、3.133、3.368 t.hm-2。林下植被层年生产力呈"U"形变化,平均值为0.079 t.hm-2。倒落木质物层的年生产力呈线性增长,平均值为0.423 t.hm-2。研究认为长白落叶松人工林群落碳储量随林龄增加的变化规律明显,碳汇潜力巨大。  相似文献   

4.
中国寒温带不同林龄白桦林碳储量及分配特征   总被引:1,自引:0,他引:1       下载免费PDF全文
魏红  满秀玲 《植物生态学报》2019,43(10):843-852
为了解中国寒温带地区不同林龄白桦林生态系统碳储量及固碳能力, 在样地调查基础上, 以大兴安岭地区25、40与61年白桦(Betula platyphylla)林生态系统为研究对象, 对其乔木层、林下地被物层(灌木层、草本层、凋落物层)、土壤层(0-100 cm)碳储量与分配特征进行调查研究。结果表明白桦林乔木层各器官碳含量在440.7-506.7 g·kg -1之间, 各器官碳含量随着林龄的增长而降低; 灌木层、草本层碳含量随林龄的增加呈先降后升的变化趋势; 凋落物层碳含量随林龄增加而降低; 土壤层(0-100 cm)碳含量随林龄增加而显著升高, 随着土层深度的增加而降低。白桦林生态系统各层次碳储量均随林龄的增加而明显升高。25、40与61年白桦林乔木层碳储量分别为11.9、19.1和34.2 t·hm -2, 各器官碳储量大小顺序表现为树干>树根>树枝>树叶, 树干碳储量分配比例随林龄增加而升高。25、40与61年白桦林生态系统碳储量分别为77.4、180.9和271.4 t·hm -2, 其中土壤层占生态系统总碳储量的81.6%、87.7%和85.9%, 是白桦林生态系统的主要碳库。随林龄增加, 白桦林年净生产力(2.0-4.4 t·hm -2·a -1)、年净固碳量(1.0-2.1 t·hm -2·a -1)均出现增长, 老龄白桦林仍具有较强的碳汇作用。  相似文献   

5.
秦岭中段南坡油松林生态系统碳密度   总被引:5,自引:3,他引:2  
沈彪  党坤良  武朋辉  朱成功 《生态学报》2015,35(6):1798-1806
在秦岭中段南坡油松林分布较为广泛的不同区域,采用典型取样的方法设置油松林标准地50块。通过样地调查和室内分析,对本区油松林生态系统植被层、枯落物层及土壤层有机碳密度进行了研究与估算,分析了油松林生态系统各层次的有机碳密度在不同立地因子下的分布规律。结果表明:秦岭中段南坡油松林生态系统总有机碳密度为150.12 t/hm2,其中土壤碳分库的碳密度占油松林生态系统总碳密度的56.74%,是构成油松林生态系统碳的主体组成部分。植被层碳密度为62.29 t/hm2,占油松林生态系统总碳密度的41.49%,高于我国森林生态系统植被碳密度平均值,且仍有较大的固碳潜力。枯落物层碳密度为2.66 t/hm2,占油松林生态系统总碳密度的1.77%。在植被碳分库中,乔木层碳密度是其主体构成部分,为61.22 t/hm2,占植被层碳密度的98.30%;灌木层、草本层碳密度及其所占植被层碳密度的比例分别为:0.65 t/hm2(1.04%)、0.41 t/hm2(0.66%)。碳在乔木不同器官中的分配大小顺序为:树干(55.82%)、树枝(21.25%)、树根(10.28%)、树叶(7.35%)、树皮(5.30%)。灌木层碳密度和草本层碳密度受地形因子影响不显著。随海拔的升高,乔木层碳密度呈先增后减的变化趋势,在海拔1500—1700 m处达到最大值,枯落物层碳密度、土壤层碳密度及总碳密度变化不显著;随着坡度的增大,油松林生态系统枯落物层碳密度、土壤层碳密度及总碳密度显著减小,乔木层碳密度呈先增后减的变化趋势,在坡度为26—35°范围达到最大值;下坡位土壤层碳密度高于中坡位和上坡位,而中坡位乔木层碳密度和生态系统总碳密度高于下坡位和上坡位,枯落物层碳密度受坡位影响不明显;阳坡乔木层碳密度大于阴坡,枯落物层碳密度、土壤层碳密度及总碳密度受坡向影响不明显。  相似文献   

6.
基于盐城市东台林场杨树人工林的生物量调查和土壤碳测定, 探讨了不同发育阶段杨树人工林碳储量的时空变化规律。结果表明, 随林龄的增加, 杨树人工林生态系统碳储量增加, 群落总碳储量的空间分布序列是: 土壤层(130.87 t⋅hm− 2)>乔木层(56.32 t⋅hm− 2)>枯落物层(1.2 t⋅hm− 2)>林下植被层(0.37 t⋅hm− 2); 乔木层碳储量和林木各器官碳储量均随林龄的增加而总体呈上升趋势; 林下植被层和枯枝落叶层碳储量呈先上升后下降的趋势; 土壤层碳储量先增加后下降, 但其占杨树人工林总碳储量的比例逐渐降低。研究认为杨树人工林固碳潜力巨大, 且不同发育阶段的杨树人工林碳储量差异主要是由乔木层碳储量差异引起的。  相似文献   

7.
甘肃小陇山森林植被碳库及其分配特征   总被引:11,自引:0,他引:11  
为准确估计甘肃小陇山林区森林植被的碳库大小,应用干烧法对该地区主要林分类型的13种乔木、14种灌木、10种草本植物的不同器官和7类林分的枯落物有机含碳率进行了测定,同时利用生物量标准地资料对8类林分的乔木层平均含碳率及森林植被的储碳密度和碳储量进行了估算,并分析了林分各组分的碳储量分配特征.结果表明:锐齿栎、油松、栓皮栎、白桦、红桦、日本落叶松、华山松、云杉、秦岭冷杉、水曲柳、大叶椋子木、五角枫、辽东栎13种乔木树种的器官平均含碳率范围为0.4501~0.5049,14种灌木和10种草本的器官平均含碳率分别为0.4446和0.3270,7类林分枯落物平均含碳率为0.4221.该地区8类林分的乔木层平均含碳率范围为0.4676~0.4976;小陇山林区森林植被层平均储碳密度为39.4254 t hm-2,总碳储量为13.3579 Tg.8类林分总碳储量分配中,乔木层占98.07%±0.73%,灌木层占1.38%4±0.43%,草本层占0.17%4±0.08%,枯落物层占0.37%±0.37%.甘肃小陇山8类林分乔木层的平均储碳密度值与我国及世界各地森林平均储碳密度的一些估计值基本接近.  相似文献   

8.
提高林分碳储量估测精度,对于研究区域尺度上森林固碳功能具有重要的意义。本文以上海外环林带女贞(Ligustrum lucidum)人工林为研究对象,构建了女贞立木及各器官(根、干、皮、枝、叶)生物量方程,并对9年生女贞人工林乔木层、地表枯落物层和土壤层(0~100 cm)碳储量进行了估测。结果表明,女贞立木及各器官生物量方程拟合效果较好(R20.9,P0.01)。女贞人工林生态系统总碳储量为169.89 t·hm-2,其中林分乔木层碳储量为10.48 t·hm-2,地表枯落物层碳储量为1.54 t·hm-2,林分土壤(0~100 cm)碳储量所占比例最大,为157.7 t·hm-2。在女贞人工林乔木层生物量中,树干占林木生物量的比例最大(40%),其次分别为枝(20%)、根(15%)、叶(11%)和皮(4%)。  相似文献   

9.
基于8~56 a长白落叶松人工林样地生物量调查数据,建立了长白落叶松林各器官生物量模型,探讨了不同林龄长白落叶松人工林干材、树皮、树枝、树叶、树根的生物量分布与变化规律及单木与林分乔木层的固碳能力。结果表明:随着林龄的增大,长白落叶松人工林林木及各器官生物量均呈现不同程度的增加趋势,单株木生物量由8 a时的0.174 kg增加至56 a时的328.196 kg,林分乔木层生物量由8 a时的0.519 t·hm-2增加至56 a时的251.39 t·hm-2,其中树干所占比例最大,且增幅最大。长白落叶松人工林单木平均碳储量为74.822 kg,56 a林分乔木层碳密度为130.455 t·hm-2,平均碳密度达63.113 t·hm-2,各器官碳储量变化规律明显。长白落叶松人工林幼龄林、中龄林、近熟林、成熟林林分乔木层的年平均固碳量分别为0.087、1.193、1.703、2.124 t·hm-2,固碳量年平均增长率排序为中龄林幼龄林成熟林近熟林。研究认为,长白落叶松人工林单株木及林分各器官生物量随林龄增加具有明显的变化规律,成熟林分固碳水平最高,中龄林分后期固碳潜力最大。  相似文献   

10.
长沙市区马尾松人工林生态系统碳储量及其空间分布   总被引:3,自引:0,他引:3  
巫涛  彭重华  田大伦  闫文德 《生态学报》2012,32(13):4034-4042
采用样方法和取样法,研究了长沙市区13年生马尾松林生态系统碳含量、碳储量及其空间分布特征。结果表明:马尾松林木各器官平均碳含量为511.17 g/kg,从高到低排列顺序为叶>干>根>皮>枝;林下灌木层、草本层、枯落物层的平均碳含量分别为531.66、465.53、393.92g/kg。林地土壤层有机碳含量为9.40—24.73 g/kg,各层次碳素含量分布不均,表层(0—15cm)土壤碳素含量较高,并随土壤深度的增加而逐渐下降。生态系统碳库的空间分布序列为土壤层>植被层>枯落物层。植被层的碳储量为34.50t/hm2,占整个生态系统碳总储量的21.57%;乔木层碳储量占整个生态系统的20.27%,占植被层碳储量的93.97%。乔木层碳储量中,树干的碳储量最高,占乔木层碳储量的65.52%,其次为根,占乔木层碳储量的19.15%,树皮最少,仅占2.10%;枯落物层碳储量为3.81 t/hm2,仅占整个生态系统碳储量的2.38%;林地土壤层(0—60cm)碳储量相当可观,为121.62 t/hm2,占系统碳储量的76.05%。马尾松林年净生产力为4.88 t.hm-.2a-1,有机碳年净固定量为2.50 t.hm-.2a-1,折合成CO2的量为9.16 t.hm-.2a-1。  相似文献   

11.
辽河源不同龄组油松天然次生林生物量及空间分配特征   总被引:1,自引:0,他引:1  
油松是中国暖温带区域主要的森林植被,精确计算油松天然林生物量及准确表征空间分布特征对其在固碳释氧、林木积累营养物质等方面的生态服务功能评估具有重要意义。目前,国内基本上没有进行油松天然次生林生物量及空间分配在一个年龄序列上的研究。研究的主要目的是准确估算河北省平泉县辽河源自然保护区4个龄组油松天然次生林林分各组分的生物量,并揭示生物量在空间的分配特征。在每种林分内,林下植被层(灌木和草本)和凋落物层生物量通过样地调查和全挖取样的方法计算。基于胸径(DBH)和树高(H)的异速生长方程则用于计算乔木层生物量。结果表明:(1)林分生物量大小排序为:成熟林(397.793 t/hm2)近熟林(242.188 t/hm2)中龄林(203.801 t/hm2)幼龄林(132.894 t/hm2);(2)乔木层生物量成熟林(373.128 t/hm2)近熟林(224.991 t/hm2)中龄林(187.750 t/hm2)幼龄林(119.169 t/hm2)。地上部分各组分生物量大小关系略有差异,幼龄林和近熟林为:干根枝叶干皮球果,而中龄林和成熟林则是干根枝干皮叶球果。干生物量对于各龄组乔木层生物量来说是最大的贡献者,所占比例表现为:中龄林(66.25%)近熟林(64.38%)成熟林(62.09%)幼龄林(38.41%),而贡献较小的球果则是成熟林(1.02%)幼龄林(0.88%)近熟林(0.72%)中龄林(0.53%)。根系总生物量在18.315 t/hm2(中龄林)—44.849 t/hm2(成熟林)之间,其组分生物量大小整体上表现为:根桩粗根大根细根小细根;(3)灌木层生物量成熟林(0.861 t/hm2)近熟林(0.790 t/hm2)中龄林(0.559 t/hm2)幼龄林(0.401 t/hm2),各组分生物量大小为根茎叶;(4)草本层生物量幼龄林(3.058 t/hm2)近熟林(2.017 t/hm2)中龄林(1.220 t/hm2)成熟林(1.181 t/hm2),地下部分生物量均大于地上部分;(5)凋落物层生物量成熟林(22.623 t/hm2)近熟林(14.390 t/hm2)中龄林(14.272 t/hm2)幼龄林(10.265 t/hm2),各层生物量大小为:未分解层半分解层全分解层。(6)在各层次生物量的比较中,4个龄组均表现为乔木层凋落物层草本层灌木层。其中,幼龄林乔木层生物量占89.67%、中龄林占92.13%、近熟林占92.90%,成熟林占93.80%。  相似文献   

12.
吊丝单竹林生态系统碳储量及其垂直空间分配特征   总被引:1,自引:0,他引:1  
利用标准样方法研究了吊丝单竹(Dendrocalamopsis vario-striata)林的碳储量及其空间分布特征。结果表明,吊丝单竹不同器官的碳密度为0.4684~0.5092 g g-1,依次为竹秆>竹蔸>竹根>竹枝>竹叶;碳储量在吊丝单竹不同器官中的分配以竹秆最大(达50.46%),其次为竹蔸(20.71%),竹叶的最小(仅5.01%)。整个吊丝单竹林生态系统碳库主要由乔木层、灌草层、枯落物层和土壤层4部分组成,总碳贮量为104.9321 t hm-2,其空间分布为土壤层>乔木层>枯落物层>灌草层,其中土壤层占总碳储量的比例最大(59.74%);整个吊丝单竹林乔木层年固碳量为6.4460 t hm-2a-1,相当于每年同化CO2的量为23.6353 t hm-2a-1,这略低于我国森林植被的平均年固碳量,表明吊丝单竹林还有较大的发展空间。  相似文献   

13.
为阐明黄土高原中西部刺槐人工林碳密度区域分布特征及其主要影响因子,基于野外样地调查和室内样品分析估算了黄土高原中西部4个栽培区域的刺槐人工林生态系统碳密度及其分布特征,并利用相关性分析和主成分分析分析了影响生态系统碳密度的主要因子(林分、地形、土壤和气候等)。结果表明:调查区5个林龄的刺槐人工林生态系统生物量为34.13—133.08t/hm~2,不同区域之间各组分生物量存在显著性差异。植被层平均碳含量为221.93—454.67 g/kg,总体上表现为乔木层平均碳含量高于灌、草层,枯落物层平均碳含量最低,不同区域乔木、灌木、草本平均碳含量均存在显著性差异。刺槐人工林生态系统碳密度均值为106.86 t/hm~2,其中土壤层碳密度占刺槐人工林生态系统总碳密度的64.09%,是刺槐人工林生态系统碳密度的主要组成部分。植被层碳密度为38.68 t/hm~2,其中乔木层碳密度(33.88 t/hm~2)占植被层碳密度的87.58%,灌木、草本、枯落物所占比例依次为1.98%(0.77 t/hm~2)、2.00%(0.77 t/hm~2)、8.43%(3.26 t/hm~2)。不同区域土壤、生态系统碳密度均存在显著性差异。相关性分析和主成分分析表明,刺槐人工林生态系统碳密度与林龄、降水量呈显著正相关关系,与林分密度、平均气温、海拔和坡度的相关关系不显著,上述林分因子、地形因子和环境因子转化的主成分方差累积贡献率为91.07%,其中林龄和降水量是影响刺槐人工林生态系统碳密度的主要因子,方差贡献率为37.22%。  相似文献   

14.
以祁连山西水林区青海云杉典型林分为研究对象,按照青海云杉分布界限海拔2500—3300 m,采用梯度格局法,研究祁连山青海云杉林乔木层和土壤层碳密度沿海拔梯度的空间分布特征,以期为准确估算祁连山青海云杉林碳储量变化影响因素提供科学依据。结果表明:(1)青海云杉林生物量平均值为115.83 t/hm~2,碳密度平均值为60.23 t/hm~2。生物量整体随海拔梯度增加表现为先增加后波动降低的趋势,在海拔2800 m处达到最高值(197.10 t/hm~2),海拔3300 m处达到最低值(7.66t/hm~2),且不同海拔梯度间差异显著。林分各器官生物量分配格局在各海拔处均表现为干根枝叶。(2)土壤有机碳含量平均值为54.80 g/kg,变化范围为31.49—76.96 g/kg。随着土壤层次的增加,除海拔3200 m和3300 m的土壤有机碳含量未表现出规律变化外,其他海拔梯度则均呈现出逐渐降低趋势。土壤有机碳密度在海拔2900 m最高,为245.40 t/hm~2,在海拔2700 m处最低,为130.24 t/hm~2;海拔2500—2700 m表现为平缓降低趋势,在2800 m处急剧上升,且海拔2800—3200 m呈现无显著性轻度波动变化,在海拔3300 m又急剧降低。(3)青海云杉林生态系统平均总碳密度为255.15 t/hm~2,乔木层和土壤层占总碳密度的比例分别为23.61%和76.39%,且不同海拔梯度间存在极显著差异。土壤有机碳密度与海拔、年均降水量、土壤有机碳含量、土壤全氮呈显著正相关,与年夏季平均气温呈显著负相关;乔木层碳密度与年夏季气温、林分密度、胸高断面积呈显著正相关,与海拔和土壤全氮呈显著负相关。(4)祁连山青海云杉林乔木层和土壤层碳密度均随海拔梯度变化受水热条件组合的改变而呈现规律变化,以中部海拔区段2800—3200 m碳密度较高。  相似文献   

15.
以黄土高原丘陵区主要退耕还林树种油松为研究对象,对甘肃省庆阳市合水县采用样地调查与生物量实测方法,分析不同坡向(阳坡、阴坡)及退耕年限(退耕6年、9年和12年)油松人工林的乔木不同器官、灌草层、枯落物层和土壤层的碳含量,以及油松人工林乔木层、灌草层、枯落物层和土壤层碳储量及其分配特征,探讨甘肃黄土高原丘陵区生态林的固碳作用。结果表明:(1)油松不同器官碳含量为48.15%~53.90%,各器官碳含量大小为树干>叶>细枝>粗枝>根桩>粗根>树皮>大根>中根>小根>细根>球果;灌木层碳含量为茎>叶>根;草本层碳含量为地上部分>地下部分。(2)油松人工林的枯落物层碳含量为未分解层大于半分解层。(3)0~100 cm土壤层的碳含量随退耕年限增加而增大,随土壤深度的增加而下降;0~10 cm、10~20 cm土壤层不同坡向间碳含量差异显著。(4)阳坡和阴坡退耕6年、9年和12年油松林总碳储量分别为42.90、50.50、59.22 t·hm-2和45.08、53.77、65.70 t·hm-2。研究认为,黄土高原丘陵区阳坡和阴坡均适宜油松林发挥固碳效益,且阴坡要优于阳坡,是甘肃黄土高原丘陵区的理想树种。  相似文献   

16.
刘领  王艳芳  悦飞雪  李冬  赵威 《生态学报》2019,39(3):864-873
利用1994—1998年、1999—2003年、2004—2008年、2009—2013年河南省4期森林资源清查数据,运用生物量转换因子连续函数法和平均生物量法,估算了1998—2013年河南省森林植被的碳储量和碳密度变化。研究结果表明,河南省森林植被碳储量由1998年的45.57 Tg增加到2013年的107.98 Tg,年均碳汇量为4.16 Tg/a。乔木林碳储量和碳密度分别由1998年的33.54 Tg和22.39 Mg/hm~2增加到2013年的97.11 Tg和31.80 Mg/hm~2。乔木林碳储量在所有植被类型中占主体,4个森林清查时期乔木林碳储量占森林植被总碳储量的比例分别为73.60%、79.22%、85.63%和89.93%。2013年森林清查时,乔木林中杨树和栎类碳储量最大,分别占总碳储量的37.61%和25.22%,各龄组乔木林碳密度大小顺序依次为成熟林近熟林中龄林过熟林幼龄林。阔叶林面积、碳储量、碳密度均高于针叶林,阔叶林是河南省森林碳汇的主要贡献者。人工林面积、碳储量、碳密度增加幅度都要高于天然林,人工林碳储量由1998年的9.62 Tg增加到2013年的55.67 Tg,占乔木林碳储量总增量的77.15%,人工林碳密度由1998年的17.86 Mg/hm~2提高到2013年的32.01 Mg/hm~2,人工林在河南省森林碳汇中逐步发挥重要的作用,逐渐成为河南省森林碳汇的主体,随着人工林生长为具有较高碳密度的成熟林,河南省乔木林将具有较大的碳汇潜力。  相似文献   

17.
不同林龄麻栎林地下部分生物量与碳储量研究   总被引:1,自引:0,他引:1  
王霞  胡海波  张世豪  卢洪霖 《生态学报》2019,39(22):8556-8564
探讨不同林龄麻栎林地下部分根系的生物量与碳储量,为麻栎林的经营管理及碳汇管理等提供科学依据。以江苏省句容市不同林龄(幼龄林、中龄林、近熟林、成熟林)的麻栎林为研究对象,采用全根挖掘法获取麻栎各级根系及灌草层根系,并测定其生物量、碳含量,构建麻栎根系生物量模型,估算麻栎林地下部分根系碳储量及麻栎林群落碳储量。通过11种数学回归模型的比较,构建麻栎各级根系生物量幂回归模型,计算得到幼龄林、中龄林、近熟林、成熟林麻栎根系生物量分别为14.81t/hm~2、41.15t/hm~2、50.36t/hm~2、53.75t/hm~2,各级根系生物量大小顺序是:根桩粗根大根细根;灌木与草本植物根系生物量分别为0.48—1.71t/hm~2、0.13—0.60t/hm~2;不同林龄麻栎林群落根系生物量为15.42—56.06t/hm~2,且随林龄的增大而增大。麻栎根系碳含量大小顺序为:根桩粗根大根细根,且碳含量差异显著;灌木与草本植物根系碳含量分别为41.84%—43.79%、34.03%—38.48%,随林龄变化均无明显变化规律。麻栎林乔木根系碳储量随林龄增大而增大,幼龄林、中龄林、近熟林、成熟林根系碳储量分别为6.01t/hm~2、17.41t/hm~2、21.79t/hm~2、21.99t/hm~2;灌木与草本植物根系碳储量均随林龄增大而增大;幼龄林、中龄林、近熟林、成熟林群落根系碳储量分别为6.26t/hm~2、17.74t/hm~2、22.37t/hm~2、22.94t/hm~2,且乔木层灌木层草本层。麻栎林地下部分根系生物量与碳储量随林龄的增大而增大,幼龄林到近熟林生长过程中生物量与碳储量增加快速,近熟林后生物量与碳素积累缓慢,且与成熟林接近。  相似文献   

18.
该文利用野外实际调查数据对四川西北部亚高山云杉(Picea asperata)天然林碳密度、净生产量、碳贮量及其分布进行了分析,结果表明,在调查区域,云杉天然林分平均生物量为230.37×103 kg·hm-2,其中乔木层为212.77×103 kg·hm-2,占林分生物量的92.30%。云杉天然林生态系统各组分的平均碳密度为树干57.85%,树皮47.12%,树枝51.22%,树叶48.27%和树根52.39%,灌木层平均碳密度49.91%,草本层平均碳密度46.34%,地被层平均碳密度43.21%,枯落物层平均碳密度39.44%,土壤碳密度平均值为1.41%,随土层深度增加各层次土壤碳密度逐渐减少。云杉林平均生态系统总碳贮量为273.79×103 kg·hm-2,其中乔木层109.30×103 kg·hm-2,占云杉林生态系统总碳贮量的39.92%,灌木层5.69×103 kg·hm-2,占2.08%,草本层1.26×103 kg·hm-2,占0.46%,地被物层0.60×103 kg·hm-2,占0.22%,枯落物层0.83×103 kg·hm-2,占0.30%,林内土壤(0~100 cm)碳贮量为156.11×103 kg·hm-2,占57.01%。云杉林的碳库分布序列为土壤(0~100 cm)>乔木层>灌木层>草本层>枯落物层>地被物层。云杉天然林分平均净生产总量为6 838.5 kg·hm-2·a-1,碳素年总净固量平均为3 584.98 kg·hm-2·a-1,其中乔木层净生产量为4 676 kg·hm-2·a-1,占林分总量的68.38%,碳素年平均固定量2 552.99 kg·hm-2·a-1,占林分总量的71.21%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号