首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
不同林龄长白落叶松人工林碳储量   总被引:13,自引:3,他引:10  
马炜  孙玉军  郭孝玉  巨文珍  穆景森 《生态学报》2010,30(17):4659-4667
基于7—41 a长白落叶松人工林样地生物量调查,探讨了不同发育阶段长白落叶松人工林碳储量的时空变化规律。结果表明:随林龄的增大,长白落叶松人工林林木和各器官生物量增加,树干所占比例增加,生物量转换因子(BEF)、根茎比(R)等参数分布正常。林下植被层、倒落木质物层生物量随林龄增大呈增加趋势。群落总碳储量的空间分布序列是:乔木层倒落木质物层林下植被层。未成林期、幼龄林、中龄林、近熟林和成熟林群落的碳储分别为6.585、66.934、90.019、125.103、162.683t.hm-2,乔木层碳储量分别为3.254、58.521、78.086、108.02、138.096 t.hm-2,倒落木质物层和林下植被层碳储量平均值分别为10.859、1.988 t.hm-2。乔木层、倒落木质物层和林下植被层碳储量占总量的平均比率分别为85.99%、2.17%和11.85%。在不同发育阶段群落和乔木层碳储量的年生产力呈先降后升的变化趋势,中龄林的碳储量累积速率高于幼龄林及成熟林,碳素年固定量分别为0.940、3.889、3.615、3.628、3.968 t.hm-2,乔木层年生产力分别为0.465、3.39、3.137、3.133、3.368 t.hm-2。林下植被层年生产力呈"U"形变化,平均值为0.079 t.hm-2。倒落木质物层的年生产力呈线性增长,平均值为0.423 t.hm-2。研究认为长白落叶松人工林群落碳储量随林龄增加的变化规律明显,碳汇潜力巨大。  相似文献   

2.
森林生态系统是最重要的陆地生态系统碳库,人工林生态系统碳储量在森林碳储量中所占比重越来越大。本研究选取天津平原地区不同林龄杨树人工林,通过野外调查和室内分析,估算了杨树人工林乔木、草本、凋落物和土壤碳储量。结果表明:人工杨树幼龄林、中龄林和成熟林的乔木生物量分别为43.65、56.18和121.59 t·hm-2,乔木各组分生物量所占比例在幼龄林和中龄林中表现为干根枝叶,在成熟林中表现为干枝根叶。3个林龄段杨树人工林的草本层生物量分别为4.60、2.92和1.58 t·hm-2,凋落物生物量分别为0.46、0.35和0.66 t·hm-2。人工杨树幼龄林、中龄林和成熟林生态系统碳储量分别为84.34、121.03和121.72 t C·hm-2,其中群落碳储量分别占25.85%、22.25%和46.58%,土壤碳储量分别占74.15%、77.75%和53.42%。群落碳储量中乔木碳储量分别为20.04、25.78和55.95 t C·hm-2;草本碳储量分别为1.63、1.05和0.57 t C·hm-2;凋落物碳储量分别为0.14、0.10和0.19 t C·hm-2。3个林龄段杨树人工林土壤有机碳储量(0~100 cm)依次为62.53、94.10和65.03 t C·hm-2,其中0~30 cm土壤有机碳储量所占比例分别为33.91%、37.64%和44.16%,随林龄的增加而增加。结果表明,杨树人工林生态系统碳储量随林龄的增加显著增加,而目前天津杨树人工林以幼龄林为主,未来天津杨树人工林存在巨大的碳储存空间。  相似文献   

3.
陈东升  孙晓梅  张守攻 《生态学杂志》2016,27(12):3759-3768
以7、17、30和40年生4个发育阶段(幼龄、中龄、近熟和成熟阶段)的日本落叶松人工林为对象,研究了林龄对生物量、碳储量和养分特征的影响.结果表明: 在单木水平上,不同发育阶段干、枝、皮、叶、根生物量和养分浓度差异显著.随年龄增加,各器官生物量呈增大趋势,N、P、K浓度呈下降趋势,Mg浓度先降后升,Ca浓度持续升高.优势木、平均木和劣势木的各器官生物量之间差异显著,但养分浓度差异不显著,表明竞争对各器官养分浓度影响不大.在林分水平上,总生物量、碳储量和养分储量随林龄增加呈增大趋势,与幼龄林相比,成熟林分别增加217.9%、218.4%和56.4%,表明日本落叶松林生长后期能以较少的养分生产较多的干物质,养分利用效率较高.5种元素的积累量除P和K在近熟林(30年生)略有降低外,其他元素都随林龄增加而增加.N集中在叶中,Ca集中在树干,K和Mg主要集中在根,P在不同器官中的分配较均匀.日本落叶松林分年均生物量积累率、固碳率和养分积累率均随林龄的增加而降低,从幼龄林每年7.16 t·hm-2、3.40 t·hm-2、104.64 kg·hm-2降低到成熟林的3.99 t·hm-2、1.89 t·hm-2、28.64 kg·hm-2,表明日本落叶松林幼、中龄阶段固碳潜力大,但养分消耗也高.  相似文献   

4.
人工林生态系统碳储量的空间分配格局对全球陆地碳循环有重要的影响,但湖南省杉木人工林生态系统碳储量的分配格局并不清楚。本研究在湖南省样地野外调查的基础上,结合第八次全国森林资源清查的结果,计算出湖南省杉木人工林生态系统的碳储量空间分布格局。结果表明:杉木人工林生态系统碳密度随着林龄增加而增加,幼龄林、中龄林和成熟林分别为125.70、138.57、193.72 Mg·hm~(-2);其中,幼龄林、中龄林和成熟林的植被生物量碳密度分别为18.72、38.86、62.48 Mg·hm~(-2);土壤碳密度随着林分发育先降低后增加,幼龄林为105.49 Mg·hm~(-2)、中龄林为97.23 Mg·hm~(-2)、成熟林126.7 Mg·hm~(-2);湖南省杉木人工林生态系统碳储量为307.48 Tg,其中幼龄林为90.57 Tg,中龄林为91.87 Tg,成熟林为125.31 Tg;湖南省杉木人工林生态系统的固碳潜力为85.56 Tg,其中,植被固碳潜力为47.19 Tg,土壤的固碳潜力为34.82 Tg。确定杉木人工林固碳潜力有助于量化人工林对碳汇的贡献及其制定实现潜力的森林经营管理措施。  相似文献   

5.
提高林分碳储量估测精度,对于研究区域尺度上森林固碳功能具有重要的意义。本文以上海外环林带女贞(Ligustrum lucidum)人工林为研究对象,构建了女贞立木及各器官(根、干、皮、枝、叶)生物量方程,并对9年生女贞人工林乔木层、地表枯落物层和土壤层(0~100 cm)碳储量进行了估测。结果表明,女贞立木及各器官生物量方程拟合效果较好(R20.9,P0.01)。女贞人工林生态系统总碳储量为169.89 t·hm-2,其中林分乔木层碳储量为10.48 t·hm-2,地表枯落物层碳储量为1.54 t·hm-2,林分土壤(0~100 cm)碳储量所占比例最大,为157.7 t·hm-2。在女贞人工林乔木层生物量中,树干占林木生物量的比例最大(40%),其次分别为枝(20%)、根(15%)、叶(11%)和皮(4%)。  相似文献   

6.
森林生物碳储量作为森林生态系统碳库的重要组成部分,在全球碳循环中发挥着重要作用。以小兴安岭7种典型林型为研究对象,通过外业样地调查与室内实验分析相结合的方法,从林分尺度对林分生物量与碳密度进行计量,分析了林分生物碳储量的空间分配格局,并对林分年固碳能力与碳汇潜力进行了探讨。结果表明:小兴安岭不同林型从幼龄林到成熟林的乔木层碳密度增长速率为:蒙古栎(Quercus mongolica)林>兴安落叶松(Larix gmelinii)林>云冷杉(Picea-Abies)林>樟子松(Pinus sylvestris var.mongolica)林>山杨(Populus davidiana)林>红松(Pinus koraiensis)林>白桦(Betula platyphylla)林。7种典型林型不同龄组(幼龄林、中龄林、近熟林和成熟林)林分生物量碳密度分别为:红松林31.4、74.7、118.4和130.2 t·hm–2;兴安落叶松林28.9、44.3、74.2和113.3 t·hm–2;樟子松林22.8、52.0、71.1和92.6 t·hm–2;云冷杉林23.1、44.1、77.6和130.3 t·hm–2;白桦林18.8、35.3、66.6和88.5 t·hm–2;蒙古栎林25.0、20.0、47.5和68.9 t·hm–2;山杨林19.8、28.7、43.7和76.6 t·hm–2。红松林、兴安落叶松林、樟子松林和蒙古栎林在幼龄林时林分年固碳量较高,其他林型在成熟林时林分年固碳量较高。7种典型林型不同龄组的林分生物量碳密度均随林龄增长而增加,但不同林型的碳汇功能存在差异,同一林型不同林龄的生物量碳密度增幅差异也较大。林分年固碳量在0.4–2.8 t·hm–2之间,碳汇能力较强、碳汇潜力较大。尤其是小兴安岭目前林分质量较差,幼龄林和中龄林所占的比重较大,具有较大的碳汇潜力。研究结果可为森林经营管理及碳汇功能评价提供参考。  相似文献   

7.
杨阳  冉飞  王根绪  朱万泽  杨燕  周鹏 《生态学杂志》2013,32(7):1674-1682
云南松林是西藏高原亮针叶林生态系统的重要组成部分,准确估算其生态系统碳储量不但有助于弄清西藏森林生态系统固碳现状,而且可为准确估算青藏高原乃至全国森林生态系统的固碳潜力和固碳速率提供基础数据.本研究以云南松为研究对象,采用实地调查与建模相结合的方法,建立了各器官(叶、枝、干、根)与株高、胸径的生物量回归方程,并以此为基础计算了云南松幼龄林、中龄林、近熟林和成熟林生态系统的生物量和碳储量.结果表明:(1)用胸径和树高估测单株林木器官生物量的较优模型为指数模型,所建立的生物量回归方程相关性较好(R2>0.90),估计精度较高.(2)在云南松幼龄林、中龄林、近熟林和成熟林生态系统中植被总生物量分别为(63.80±9.21)、(134.76+12.69)、(142.91±13.02)、(316.72+42.57)t·hm-2,其中乔木层生物量分别为(49.48±10.32)、(120.57±9.37)、(124.70±12.92)、(304.76±32.47)t·hm-2,灌草层生物量为(13.09±3.02)、(12.81±2.54)、(11.88±3.12)、(3.47±0.98)t·hm-2,凋落物生物量为(1.23±0.24)、(1.38±0.31)、(0.72±0.11)、(1.13±0.39)t·hm-2.(3)各龄级云南松林生态系统植被碳储量分别为(30.67±7.13)、(67.63±19.06)、(71.00±4.15)、(159.32±39.95)t·hm-2,碳储量随林龄增加的变化规律明显,碳汇潜力巨大.  相似文献   

8.
基于野外调查与室内实测数据,结合第八次全国森林资源清查资料,分析了甘肃省5种典型人工林生态系统(刺槐、杨树、油松/华山松、落叶松及云杉林)森林生态系统碳密度、碳储量,并估算了乔木层固碳潜力.结果表明: 5种典型人工林生态系统平均碳密度和总碳储量分别为139.65 t·hm-2和85.78 Tg,不同人工林类型之间差异较大.不同龄组间碳密度表现为近熟林(250.70 t·hm-2)最大,其次是成熟林(175.97 t·hm-2)和中龄林(156.92 t·hm-2),幼龄林(117.56 t·hm-2)最低.碳储量表现为幼龄林(45.47 Tg)>中龄林(19.54 Tg)>成熟林(11.84 Tg)>近熟林(8.93 Tg),幼中龄林碳储量占总碳储量的75.9%.5种典型人工林乔木层现实固碳潜力合计为7.27 Tg,刺槐林(2.49 Tg)和杨树林(2.10 Tg)最大;各龄组中,幼龄林现实固碳潜力最大(3.78 Tg),其次是中龄林(2.04 Tg),近熟林最小(0.45 Tg).5种典型人工林乔木层最大固碳潜力达27.55 Tg,表现为刺槐林(9.42 Tg)>落叶松林(6.22 Tg)≈云杉林(6.36 Tg)>杨树林(3.18 Tg)>油松/华山松林(2.37 Tg);其中,幼、中龄林最大固碳潜力分别为18.48和6.89 Tg,占总最大固碳潜力的92%.  相似文献   

9.
利用第八次森林资源连续清查数据和不同树种的树干密度、含碳率等参数,运用生物量清单法,估算了西藏自治区森林乔木层植被碳储量和碳密度。结果表明:西藏森林生态系统乔木层植被总碳储量为1.067×109 t,平均碳密度为72.49 t·hm-2。不同林分乔木层碳储量依次为:乔木林散生木疏林四旁树。不同林种乔木层碳储量大小依次为:防护林特殊用途林用材林薪炭林,其中前两者所占比例为88.5%;不同林种乔木层平均碳密度为88.09 t·hm-2。不同林组乔木层碳储量与其分布面积排序一致,依次为:成熟林过熟林近熟林中龄林幼龄林。其中,成熟林乔木层碳储量占不同林组乔木层总碳储量的50%,并且不同林组乔木层碳储量随着林龄的增加呈先上升后下降的趋势。  相似文献   

10.
不同林龄麻栎林地下部分生物量与碳储量研究   总被引:1,自引:0,他引:1  
王霞  胡海波  张世豪  卢洪霖 《生态学报》2019,39(22):8556-8564
探讨不同林龄麻栎林地下部分根系的生物量与碳储量,为麻栎林的经营管理及碳汇管理等提供科学依据。以江苏省句容市不同林龄(幼龄林、中龄林、近熟林、成熟林)的麻栎林为研究对象,采用全根挖掘法获取麻栎各级根系及灌草层根系,并测定其生物量、碳含量,构建麻栎根系生物量模型,估算麻栎林地下部分根系碳储量及麻栎林群落碳储量。通过11种数学回归模型的比较,构建麻栎各级根系生物量幂回归模型,计算得到幼龄林、中龄林、近熟林、成熟林麻栎根系生物量分别为14.81t/hm~2、41.15t/hm~2、50.36t/hm~2、53.75t/hm~2,各级根系生物量大小顺序是:根桩粗根大根细根;灌木与草本植物根系生物量分别为0.48—1.71t/hm~2、0.13—0.60t/hm~2;不同林龄麻栎林群落根系生物量为15.42—56.06t/hm~2,且随林龄的增大而增大。麻栎根系碳含量大小顺序为:根桩粗根大根细根,且碳含量差异显著;灌木与草本植物根系碳含量分别为41.84%—43.79%、34.03%—38.48%,随林龄变化均无明显变化规律。麻栎林乔木根系碳储量随林龄增大而增大,幼龄林、中龄林、近熟林、成熟林根系碳储量分别为6.01t/hm~2、17.41t/hm~2、21.79t/hm~2、21.99t/hm~2;灌木与草本植物根系碳储量均随林龄增大而增大;幼龄林、中龄林、近熟林、成熟林群落根系碳储量分别为6.26t/hm~2、17.74t/hm~2、22.37t/hm~2、22.94t/hm~2,且乔木层灌木层草本层。麻栎林地下部分根系生物量与碳储量随林龄的增大而增大,幼龄林到近熟林生长过程中生物量与碳储量增加快速,近熟林后生物量与碳素积累缓慢,且与成熟林接近。  相似文献   

11.
不同林龄落叶松人工林土壤微生物生物量碳氮的季节变化   总被引:20,自引:1,他引:19  
杨凯  朱教君  张金鑫  闫巧玲 《生态学报》2009,29(10):5500-5507
为从土壤微生物生物量角度分析不同林龄落叶松人工林的土壤肥力状况,对辽宁东部山区两种林龄(9年生,幼龄林;43年生,成熟林)落叶松人工林不同土层(腐殖质层和矿化层)微生物生物量碳、氮季节变化进行了监测,并分析了微生物生物量碳氮的季节变化与土壤养分及水分的关系.结果表明:两种林龄落叶松腐殖质层微生物生物量碳、氮含量均高于矿化层;在腐殖质层,幼龄林微生物生物量碳、氮含量高于成熟林.方差分析表明,在春、秋季节,同一土层两林龄土壤微生物生物量碳、氮含量之间差异达到显著水平(P<0.01).在观测的3个季节内,幼龄林腐殖质层的微生物生物量碳基本无变化,而成熟林的微生物生物量碳在秋季达到最高;两种林龄落叶松微生物生物量氮均在夏季达到最高.在矿化层,两种林龄落叶松微生物生物量碳、氮均在秋季达到最大.相关分析发现,微生物生物量碳、氮之间以及土壤微生物生物量碳、氮与土壤有机碳、全氮呈显著正相关,而与土壤水分无相关性;另外,落叶松人工林内的灌木种类和数量以及季节性温度变化对土壤微生物生物量碳氮也有影响.上述结果表明,研究区域土壤微生物生物量碳、氮的季节波动与土壤养分状况密切相关,幼龄林土壤养分状况优于成熟林.  相似文献   

12.
利用桂东南桉树(Eucalyptus spp.)主产区5个不同林龄(1a、2a、3a、5a和8a)15个样点45个样地调查数据,分析桂东南尾巨桉(Eucalyptus urophylla×E.grandis)人工林的碳格局及其动态变化特征。结果表明:(1)尾巨桉人工林生态系统总碳储量表现为3a林龄(195.25t·hm-2)5a林龄(169.57t·hm-2)8a林龄(166.70t·hm-2)2a林龄(165.00t·hm-2)1a林龄(111.84t·hm-2);不同林龄碳储量分布格局均为土壤层植被层凋落物层,地下部分地上部分;其中植被层为4.87~80.54t·hm-2,占总碳储量的4.36%~48.31%,随林龄的增加而增加;凋落物层为0.92~3.25t·hm-2,占0.82%~1.91%,随林龄增加呈递减趋势;土壤层为3a林龄(162.53t·hm-2,83.24%)2a林龄(141.55t·hm-2,85.79%)5a林龄(112.26t·hm-2,60.22%)1a林龄(106.05t·hm-2,94.82%)8a林龄(84.50t·hm-2,50.69%)。(2)植被层碳储量以乔木层最大(3.10~78.97t·hm-2),占63.64%~99.25%,其中乔木层各器官碳储量以树干最大(1.58~68.84t·hm-2),占乔木层碳储量的50.90%~87.18%,随林龄的增加而增加,枝、叶、根分别占4.97%~12.17%、1.97%~22.36%和5.87%~14.57%,均随林龄而下降。(3)桂东南尾巨桉人工林生态系统年净固碳量平均为11.73t·hm-2·a-1,2a林龄(16.03t·hm-2·a-1)最大,3a林龄的固碳能力也很高,8a林龄年净固碳量与5a林龄持平,高达11.96t·hm-2·a-1,是较好的碳汇林业树种。提高桉树林的生态服务功能、降低其负面效应将有利于桉树人工林生产的发展。  相似文献   

13.
大兴安岭5种典型林型森林生物碳储量   总被引:6,自引:0,他引:6  
森林生态系统是陆地生态系统的重要碳库,森林生态系统的生物碳储量作为森林生态系统碳库的重要组成部分,对全球碳循环与碳平衡产生重要作用。以大兴安岭5种典型林型为研究对象,结合森林资源清查资料,采用地理信息技术(GIS),将5种林型分龄组分别对乔木层、林下的灌木层、草本层和凋落物层各组分的单位面积生物量、含碳率和生物碳储量进行测定和计量估算,并从林分水平上,采用分龄组的方法,计量估算了生物碳储量。结果表明:大兴安岭5种典型林型不同龄组的生物碳储量分别为:兴安落叶松幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为15.20、50.96、95.80t/hm2和109.33t/hm2;白桦幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为15.36、30.67、41.62t/hm2和64.35t/hm2;樟子松幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为29.89、59.92、90.01t/hm2和117.08t/hm2;蒙古栎幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为11.17、11.90、34.94t/hm2和59.49t/hm2;山杨幼龄林、中龄林、近熟林和成熟林的生物碳储量分别为21.81、28.58、42.84t/hm2和64.39t/hm2。研究发现:5种典型林型不同龄组的森林生物碳储量均随着林龄(幼龄林、中龄林、近熟林和成熟林)的增长而增加,但不同林型的碳汇功能存在差异,同一种林型在不同林龄的生物碳储量增幅差异亦较大。尤其是大兴安岭目前林分质量比较差,幼龄林和中龄林所占的比重较大,若能对现有林分加以更好地抚育和管理,该区森林植被仍具有较大的碳汇潜力,碳汇功能将进一步增强,大兴安岭在国家的生态功能区建设中将发挥更重要的碳汇功能,对此提出了森林生态系统碳增汇管理策略与管理路径。研究结果为正确认识森林生物碳储量对区域碳平衡及生态环境的影响具有重要意义,以及在未来营林、造林活动中充分发挥人工林碳汇效应提供参考依据。  相似文献   

14.
韩畅  宋敏  杜虎  曾馥平  彭晚霞  王华  陈莉  苏樑 《生态学报》2017,37(7):2282-2289
为了解不同林龄杉木、马尾松人工林地地下根系生物量及碳储量特征,以广西杉木、马尾松主产区5个不同林龄阶段(幼龄林、中龄林、近熟林、成熟林、过熟林)的人工林为研究对象,采用全根挖掘法和土钻法获取标准木根系生物量、灌草根系生物量和林分细根生物量,并测定其碳含量,分析其不同林龄阶段地下根系生物量和碳储量分配特征。结果表明:杉木、马尾松林地下根系总生物量分别在9.06—31.40Mg/hm~2和7.91—53.40Mg/hm~2之间,各林龄阶段根系总生物量总体上呈现随林龄增加而增加的趋势,杉木林细根生物量随林龄的增加呈现出先减后增的趋势,马尾松呈现出逐渐减小的趋势;林分各层次根系碳含量表现为乔木灌木草本、细根;杉木、马尾松地下根系碳储量变化趋势与生物量变化趋势相同,杉木、马尾松林不同林龄阶段各层次根系和土壤细根总碳储量分别在7.56—21.97Mg/hm~2和8.86—29.95Mg/hm~2之间;地下根系碳储量总体上以乔木根系占优势,且随林龄的增大其比例呈增加的趋势。  相似文献   

15.
杉木林年龄序列地下碳分配变化   总被引:5,自引:0,他引:5       下载免费PDF全文
  森林地下碳分配在森林碳平衡和碳吸存中具有重要作用, 而揭示人工林生长过程中地下碳分配变化对于人工林碳汇估算和碳汇管理等有重要意义。通过采用年龄序列方法研究了杉木(Cunninghamia lanceolata)林生长过程中地下碳分配变化特点。年龄序列为福建省南平7 a生(幼龄林)、16 a生(中龄林)、21 a生(近熟林)、41 a生(成熟林)和88 a生(老龄林)的杉木林。细根净生产力测定采用连续土芯法, 根系呼吸测定采用壕沟法, 生物量增量测定采用异速生长方程, 地上年凋落物量采用凋落物收集框测定。结果表明: 杉木林细根净生产力在中龄林前没有显著差异, 维持在较高水平; 但此后则显著下降。细根净生产力/地上凋落物量比值随林龄增加而显著下降。老龄林的根系呼吸显著低于其它林龄林分, 根系呼吸与细根生物量间呈显著线性相关。中龄林和近成熟林的地下碳分配(Total belouground carbon allocation, TBCA)显著高于幼龄林和成熟林, 而老龄林的则最低。中龄林、近成熟林和成熟林的地上部分净生产力/TBCA比值显著高于幼龄林和老龄林, 而杉木林的根系碳利用效率(RCUE)则呈现出随林龄增加而降低的趋势。  相似文献   

16.
利用第八次森林资源连续清查数据和不同树种的树干密度、含碳率等参数,运用生物量清单法,估算了西藏自治区森林乔木层植被碳储量和碳密度.结果表明: 西藏森林生态系统乔木层植被总碳储量为1.067×109 t,平均碳密度为72.49 t·hm-2.不同林分乔木层碳储量依次为:乔木林>散生木>疏林>四旁树.不同林种乔木层碳储量大小依次为:防护林>特殊用途林>用材林>薪炭林,其中前两者所占比例为88.5%;不同林种乔木层平均碳密度为88.09 t·hm-2.不同林组乔木层碳储量与其分布面积排序一致,依次为:成熟林>过熟林>近熟林>中龄林>幼龄林.其中,成熟林乔木层碳储量占不同林组乔木层总碳储量的50%,并且不同林组乔木层碳储量随着林龄的增加呈先上升后下降的趋势.  相似文献   

17.
辽河源不同龄组油松天然次生林生物量及空间分配特征   总被引:1,自引:0,他引:1  
油松是中国暖温带区域主要的森林植被,精确计算油松天然林生物量及准确表征空间分布特征对其在固碳释氧、林木积累营养物质等方面的生态服务功能评估具有重要意义。目前,国内基本上没有进行油松天然次生林生物量及空间分配在一个年龄序列上的研究。研究的主要目的是准确估算河北省平泉县辽河源自然保护区4个龄组油松天然次生林林分各组分的生物量,并揭示生物量在空间的分配特征。在每种林分内,林下植被层(灌木和草本)和凋落物层生物量通过样地调查和全挖取样的方法计算。基于胸径(DBH)和树高(H)的异速生长方程则用于计算乔木层生物量。结果表明:(1)林分生物量大小排序为:成熟林(397.793 t/hm2)近熟林(242.188 t/hm2)中龄林(203.801 t/hm2)幼龄林(132.894 t/hm2);(2)乔木层生物量成熟林(373.128 t/hm2)近熟林(224.991 t/hm2)中龄林(187.750 t/hm2)幼龄林(119.169 t/hm2)。地上部分各组分生物量大小关系略有差异,幼龄林和近熟林为:干根枝叶干皮球果,而中龄林和成熟林则是干根枝干皮叶球果。干生物量对于各龄组乔木层生物量来说是最大的贡献者,所占比例表现为:中龄林(66.25%)近熟林(64.38%)成熟林(62.09%)幼龄林(38.41%),而贡献较小的球果则是成熟林(1.02%)幼龄林(0.88%)近熟林(0.72%)中龄林(0.53%)。根系总生物量在18.315 t/hm2(中龄林)—44.849 t/hm2(成熟林)之间,其组分生物量大小整体上表现为:根桩粗根大根细根小细根;(3)灌木层生物量成熟林(0.861 t/hm2)近熟林(0.790 t/hm2)中龄林(0.559 t/hm2)幼龄林(0.401 t/hm2),各组分生物量大小为根茎叶;(4)草本层生物量幼龄林(3.058 t/hm2)近熟林(2.017 t/hm2)中龄林(1.220 t/hm2)成熟林(1.181 t/hm2),地下部分生物量均大于地上部分;(5)凋落物层生物量成熟林(22.623 t/hm2)近熟林(14.390 t/hm2)中龄林(14.272 t/hm2)幼龄林(10.265 t/hm2),各层生物量大小为:未分解层半分解层全分解层。(6)在各层次生物量的比较中,4个龄组均表现为乔木层凋落物层草本层灌木层。其中,幼龄林乔木层生物量占89.67%、中龄林占92.13%、近熟林占92.90%,成熟林占93.80%。  相似文献   

18.
基于广西北部杉木主产区45块1000 m2样地的调查,研究幼龄林、中龄林、近熟林、成熟林、过熟林5种林龄杉木植被与土壤碳储量的分配格局.结果表明: 杉木人工林生态系统总碳储量表现为过熟林(345.59 t·hm-2)>成熟林(331.14 t·hm-2)>近熟林(299.11 t·hm-2)>幼龄林(187.60 t·hm-2)>中龄林(182.81 t·hm-2).不同林龄碳储量分布格局均为土壤层>植被层>凋落物层,地下部分>地上部分.其中,植被层为34.80~134.55 t·hm-2,占总碳储量的18.6%~38.9%,随林龄的增加而增加;凋落物层为1.26~2.07 t·hm-2,占总碳储量的0.4%~1.1%;土壤层为149.24~206.02 t·hm-2,占总碳储量的61.9%~80.0%.植被层碳储量以乔木层(33.51~133.7 t·hm-2)最大,占92.8%~98.9%.其中,乔木层各器官碳储量以树干(20.98~95.68 t·hm-2)最大,占乔木层碳储量的62.6%~72.6%,随林龄的增加而增加;枝、叶碳储量分别占4.8%~11.0%和11.1%~14.2%,随林龄的增加而减小,在过熟林阶段有所上升;根的碳储量占11.3%~12.3%,波动较小,比较稳定.  相似文献   

19.
对福建德化葛坑国有林场1996年种植的秃杉Taiwania flousiana人工林植被碳库和氮库分配格局进行调查。结果表明,秃杉人工林各器官碳含量在442.86~488.72 g·kg-1之间,而各器官氮含量在2.26~8.93 g·kg-1之间。20年生秃杉人工林单株碳库和氮库分别为96.10 kg和0.679 kg。各器官碳库大小顺序为树干(64.56 kg) >树根(16.11 kg) > 树叶(8.18 kg) > 树枝(7.25 kg)。各器官中氮库大小顺序为树干(0.379 kg) > 树叶(0.157 kg) > 树根(0.085 kg) > 树枝(0.058 kg)。乔木层的碳库和氮库主要集中在树干,分别占67.18%和55.82%。20年生秃杉人工林林分植被碳储量和氮储量分别为84.29 t·hm-2和0.60 t·hm-2。  相似文献   

20.
不同发育阶段杉木人工林土壤有机质特征及团聚体稳定性   总被引:1,自引:0,他引:1  
为比较不同发育阶段杉木人工林土壤团聚体稳定性和有机质变化规律,选取杉木幼龄林、中龄林和成熟林为对象,研究不同发育阶段杉木林土壤总碳、总氮、可溶性有机质、微生物生物量、团聚体分布和稳定性。结果表明:随着林分的发育,表层土壤总氮含量呈增加趋势,总碳先减少后增加,3个发育阶段20~100 cm土层的总碳变化不大。可溶性有机质含量和微生物生物量均随土壤加深而显著下降,0~20 cm土层可溶性有机碳含量随着林龄增加而下降,中龄林微生物生物量碳明显低于幼龄林和成熟林,活性有机质与土壤总碳、总氮、土壤容重、p H值和含水量均存在不同程度相关关系,说明杉木人工林土壤活性有机质含量受多个土壤因素的影响。5 mm大团聚体数量和平均重量直径随林分发育呈增加趋势,团聚体破坏率下降。团聚体的稳定性随土层加深而显著下降,中龄林和成熟林深层土壤0.25 mm水稳性团聚体比例、平均重量直径、几何重量直径均大于幼龄林,团聚体破坏率低于幼龄林,表明杉木林分的发育有利于底层土壤结构的稳定。土壤团聚体稳定性与土壤粉粒含量、活性有机碳组分、总碳、总氮呈显著正相关。杉木人工林发育到成熟林阶段,土壤碳和氮得到积累,土壤团聚体稳定性显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号