首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PRELP (proline arginine-rich end leucine-rich repeat protein) is a heparin-binding leucine-rich repeat protein in connective tissue extracellular matrix. In search of natural ligands and biological functions of this molecule, we found that PRELP binds the basement membrane heparan sulfate proteoglycan perlecan. Also, recombinant perlecan domains I and V carrying heparan sulfate bound PRELP, whereas other domains without glycosaminoglycan substitution did not. Heparin, but not chondroitin sulfate, inhibited the interactions. Glycosaminoglycan-free recombinant perlecan domain V and mutated domain I did not bind PRELP. The dissociation constants of the PRELP-perlecan interactions were in the range of 3-18 nm as determined by surface plasmon resonance. As expected, truncated PRELP, without the heparin-binding domain, did not bind perlecan. Confocal immunohistochemistry showed that PRELP outlines basement membranes with a location adjacent to perlecan. We also found that PRELP binds collagen type I and type II through its leucine-rich repeat domain. Electron microscopy visualized a complex with PRELP binding simultaneously to the triple helical region of procollagen I and the heparan sulfate chains of perlecan. Based on the location of PRELP and its interaction with perlecan heparan sulfate chains and collagen, we propose a function of PRELP as a molecule anchoring basement membranes to the underlying connective tissue.  相似文献   

2.
Heparin/heparan sulfate interact with growth factors, chemokines, extracellular proteins, and receptors. Integrins are αβ heterodimers that serve as receptors for extracellular proteins, regulate cell behavior, and participate in extracellular matrix assembly. Heparin binds to RGD‐dependent integrins (αIIbβ3, α5β1, αvβ3, and αvβ5) and to RGD‐independent integrins (α4β1, αXβ2, and αMβ2), but their binding sites have not been located on integrins. We report the mapping of heparin binding sites on the ectodomain of αvβ3 integrin by molecular modeling. The surface of the ectodomain was scanned with small rigid probes mimicking the sulfated domains of heparan sulfate. Docking results were clustered into binding spots. The best results were selected for further docking simulations with heparin hexasaccharide. Six potential binding spots containing lysine and/or arginine residues were identified on the ectodomain of αvβ3 integrin. Heparin would mostly bind to the top of the genu domain, the Calf‐I domain of the α subunit, and the top of the β subunit of RGD‐dependent integrins. Three spots were close enough from each other on the integrin surface to form an extended binding site that could interact with heparin/heparan sulfate chains. Because heparin does not bind to the same integrin site as protein ligands, no steric hindrance prevents the formation of ternary complexes comprising the integrin, its protein ligand, and heparin/heparan sulfate. The basic amino acid residues predicted to interact with heparin are conserved in the sequences of RGD‐dependent but not of RGD‐independent integrins suggesting that heparin/heparan sulfate could bind to different sites on these two integrin subfamilies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
An essential property of human extracellular superoxide dismutase (hEC-SOD) is its affinity for heparin and heparan sulfate proteoglycans located on cell surfaces and in the connective tissue matrix. The C-terminal domain of hEC-SOD plays the major role in this interaction. This domain has an unusually high content of charged amino acids: six arginine, three lysine, and five glutamic acid residues. In this study, we used alanine scanning mutagenesis of charged amino acids in the C-terminal domain to elucidate the requirements for the heparin/heparan sulfate interaction. As a tool in this study, we used a fusion protein comprising the C-terminal domain of hEC-SOD fused to human carbonic anhydrase II (HCAII). The interaction studies were performed using the surface plasmon resonance technique and heparin-Sepharose chromatography. Replacement of the glutamic acid residues by alanine resulted, in all cases, in tighter binding. All alanine substitutions of basic amino acid residues, except one (R205A), reduced heparin affinity. The arginine and lysine residues in the cluster of basic amino acid residues (residues 210-215), the RK-cluster, are of critical importance for the binding to heparin, and arginine residues promote stronger interactions than lysine residues.  相似文献   

4.
The small leucine-rich repeat proteins, fibromodulin and osteoadherin, have N-terminal extensions with a variable number of O-sulfated tyrosine residues. This modification combined with a number of aspartic and glutamic acid residues results in a highly negatively charged domain of less than 30 amino acids. We hypothesized that this domain shares functional properties with heparin regarding binding to proteins and polypeptides containing clusters of basic amino acids. Two other family members, PRELP and chondroadherin, have distinctly different clusters of basic amino acids in their N and C termini, respectively, and PRELP is known to bind to heparin via this domain. Another heparin-binding protein is the cytokine Oncostatin M, with a different cluster of basic amino acids in its C terminus. We used polypeptides representing these basic domains in solid phase assays and demonstrate interactions with the negatively charged N-terminal domain of fibromodulin and full-length osteoadherin. The tyrosine sulfate domains also bound heparin-binding proteins such as basic fibroblast growth factor-2, thrombospondin I, MMP13, the NC4 domain of collagen IX, and interleukin-10. Fibronectin with large heparin-binding domains did not bind, neither did CILP containing a heparin-binding thrombospondin type I motif without clustered basic amino acids. Affinity depends on the number and position of the sulfated tyrosine residues shown by different binding properties of 10-kDa fragments subfractionated by ion-exchange chromatography. These interactions may sequester growth factors, cytokines, and matrix metalloproteinases in the extracellular matrix as well as contribute to its organization.The integrity of the extracellular matrix depends on a multitude of interactions between molecular constituents leading to the formation of major macromolecular assemblies important for tissue functions. A major component in most types of extracellular matrix is the network of fibrillar structures primarily composed of collagen I in fibrous tissues and bone, whereas cartilage contains the similar collagen II.These collagen fibrils contain a number of associated molecules, often bound to their surface. One such molecule is the distinct collagen IX, containing three triple helical domains each surrounded by non-triple helical domains. Another set of molecules binding to triple helical collagen is the members of the small leucine-rich repeat protein family, such as fibromodulin (1), lumican (2), decorin (3), biglycan (4), PRELP (5), chondroadherin (6), and possibly osteoadherin. The typical LRR3 protein contains 10–11 repeats of some 25 amino acids with leucine residues at conserved locations. This domain represents a common denominator for the family and contains structures providing for interaction with, e.g. triple helical collagen (79). The LRR proteins contain an extension at either the N- or C-terminal end or, in a few cases, at both ends. These extensions may contribute to a second function exemplified by PRELP, where the N-terminal with a stretch of clustered arginine residues provides binding to heparin/heparan sulfate containing optimally five or more disaccharides with three sulfate groups each (10). In decorin and biglycan, the N-terminal extension have substituents of glycosaminoglycan chains of dermatan/chondroitin sulfate that can contribute to collagen binding (11) as well as provide putative self interactions with a similar chain on another molecule. In particular, it has been shown that decorin and biglycan will bind via their protein core to the N-terminal globular domain of collagen VI (4) and direct the formation of the collagen VI-beaded filament network, provided that the glycosaminoglycan chains are intact.There are a number of proteins known to interact with heparin. Whereas heparin is not present in the extracellular matrix, these proteins may bind to stretches within the heparan sulfate chains enriched in disaccharides having high sulfate content. The heparan sulfate is found particularly as a component of cell surface proteoglycans such as glypicans (12) and syndecans (13) and of the extracellular matrix proteoglycans perlecan (14) and agrin (15). Important ligands for these chains are growth factors exemplified by members of the FGF family. Other molecules that bind to heparan sulfate include fibronectin, having two such domains with molecular weights of around 20,000 (16). Also several members of the metalloproteinase family contain heparin-binding motifs as do many cytokines.The most common heparin-binding sequence contains clusters of basic amino acids, often with additional proline residues. PRELP and chondroadherin as well as the other proteins mentioned represent examples having such sequences. A different type of motif, first found in thrombospondin I, contains consecutive repeats of a WXZ sequence, where the tryptophan may be mannosylated (17, 18). This is referred to as the thrombospondin type I motif heparin-binding structure. Thrombospondin I in addition contains a heparin-binding basic cluster of amino acids (19). CILP on the other hand only contains the thrombospondin type 1 motif. These domains can bind to heparin with high affinity, an interaction that can be disrupted by high salt.A very different type of extension is found in the N-terminal part of fibromodulin and osteoadherin. These proteins contain a number of tyrosine residues, which may and often do, carry a sulfate group. Thus, fibromodulin contains up to nine such residues and osteoadherin as many as eight, where six are located in the N-terminal and two in the C-terminal extension (20). Any given preparation contains molecules within the same species with a range of levels of O-sulfate-substituted tyrosine. The functional significances of these domains have been unknown. We now show that these domains can mimic heparin in several interactions.  相似文献   

5.
Slit is a large secreted protein that provides important guidance cues in the developing nervous system and in other organs. Signaling by Slit requires two receptors, Robo transmembrane proteins and heparan sulfate (HS) proteoglycans. How HS controls Slit-Robo signaling is unclear. Here we show that the second leucine-rich repeat domain (D2) of Slit, which mediates binding to Robo receptors, also contains a functionally important binding site for heparin, a highly sulfated variant of HS. Heparin markedly enhances the affinity of the Slit-Robo interaction in a solid-phase binding assay. Analytical gel filtration chromatography demonstrates that Slit D2 associates with a soluble Robo fragment and a heparin-derived oligosaccharide to form a ternary complex. Retinal growth cone collapse triggered by Slit D2 requires cell surface HS or exogenously added heparin. Mutation of conserved basic residues in the C-terminal cap region of Slit D2 reduces heparin binding and abolishes biological activity. We conclude that heparin/HS is an integral component of the minimal Slit-Robo signaling complex and serves to stabilize the relatively weak Slit-Robo interaction.  相似文献   

6.
The cDNA sequence of the murine proline/arginine-rich end leucine-rich repeat protein (PRELP) gene was cloned by PCR-based techniques. The gene encodes a protein of 378 amino acids, which is four amino acid residues shorter than its human counterpart. This difference resides mainly in the amino terminal region of the mature protein, which is five amino acids shorter in the mouse than the human and has a lower arginine content. The remainder of the protein, including the structure of the leucine-rich repeats, the potential sites for N-linked glycosylation, and the disulfide-bonded domains are well conserved between species. In common with humans, the murine gene possesses three exons, with the translation initiation codon residing in exon 2 and the termination codon in exon 3. Exons 1 and 2 are separated by an intron of approximately 6.7 kbp, whereas exons 2 and 3 are separated by an intron of approximately 1.7 kbp. Western blot analysis of mouse cartilage extracts indicates that PRELP exists as a glycoprotein of approximately 55 kDa, as in human cartilage. Immunohistochemical and in situ hybridization analysis reveal that PRELP is expressed in cartilage throughout both fetal development and post-natal life, in contrast to the human where expression in cartilage is not apparent prior to birth. Northern blot analysis indicates that PRELP mRNA is also expressed in the developing embryo prior to skeletogenesis. The promoter region of the mouse PRELP gene possesses no TATA box in its proximal region, in common with humans, and shows differences in the conservation of elements known to be involved in regulating expression of the human PRELP gene.  相似文献   

7.
Chondroadherin, a leucine-rich repeat family member, contains a very C-terminal sequence CKFPTKRSKKAGRH359, now shown to bind to heparin with a KD of 13 μm. This observation led us to investigate whether chondroadherin interacts via this C-terminal heparin-binding domain with glycosaminoglycan chains of proteoglycans at the cell surface. Cells were shown to bind this heparin-binding peptide in FACS analysis, and the interaction was shown to be with glycosaminoglycans because it was abolished when sulfation was inhibited by chlorate treatment of the cells. In separate experiments, heparin and heparan sulfate inhibited the peptide interaction in a dose-dependent manner. Using a human chondrosarcoma and a murine osteoblast cell line, heparan sulfate proteoglycans were identified as the cell surface receptors involved in the binding. Different binding syndecans were identified in the two different cell lines, indicating that the same protein core of a proteoglycan may have structural and functional differences in the attached heparan sulfate chains. Upon binding to coated peptide, cells spread, demonstrating engagement of the cytoskeleton, but no focal adhesion complex was formed. The number of cells adhering via their β1 integrin receptor to collagen type II or chondroadherin was profoundly and rapidly enhanced by the addition of the heparin-binding peptide. The peptide added to the cells caused ERK phosphorylation, showing that it triggered intracellular signaling. The results show that heparan sulfate chains differ between various members of the proteoglycan families on a given cell, but also differ between the same proteoglycan on different cells with a potential for differential regulation of cellular activities.  相似文献   

8.
BACKGROUND: Annexin V, an abundant anticoagulant protein, has been proposed to exert its effects by self-assembling into highly ordered arrays on phospholipid membranes to form a protective anti-thrombotic shield at the cell surface. The protein exhibits very high-affinity calcium-dependent interactions with acidic phospholipid membranes, as well as specific binding to glycosaminoglycans (GAGs) such as heparin and heparan sulfate, a major component of cell surface proteoglycans. At present, there is no structural information to elucidate this interaction or the role it may play in annexin V function at the cell surface. RESULTS: We report the 1.9 A crystal structure of annexin V in complex with heparin-derived tetrasaccharides. This structure represents the first of a heparin oligosaccharide binding to a protein where calcium ions are essential for the interaction. Two distinct GAG binding sites are situated on opposite protein surfaces. Basic residues at each site were identified from the structure and site-directed mutants were prepared. The heparin binding properties of these mutants were measured by surface plasmon resonance. The results confirm the roles of these mutated residues in heparin binding, and the kinetic and thermodynamic data define the functionally distinct character of each distal binding surface. CONCLUSION: The annexin V molecule, as it self-assembles into an organized array on the membrane surface, can bind the heparan sulfate components of cell surface proteoglycans. A novel model is presented in which proteoglycan heparan sulfate could assist in the localization of annexin V to the cell surface membrane and/or stabilization of the entire molecular assembly to promote anticoagulation.  相似文献   

9.
We utilized a 9-mer random phage display library to identify sequences which bind to laminin-1 and elute with heparan sulfate or peptide 11 (CDPGYIGSR). Laminin-1 derivatized plates were used for biopanning. Three consecutive rounds of low pH elutions were carried out, followed by three rounds of specific elutions, each consisting of a heparan sulfate elution followed by a peptide 11 elution. The random sequence inserts were sequenced for phage populations eluted at low pH, by heparan sulfate and by peptide 11. Specifically eluted phage populations exhibited three classes of mimotopes for different regions in the cDNA derived amino acid sequence of the 67 kDa laminin binding protein (LBP). These regions were (1) a palindromic sequence known as peptide G, (2) a predicted helical domain corresponding to LBP residues 205-229, and (3) TEDWS-containing C-terminal repeats. All elution conditions also yielded phage with putative heparin binding sequences. We modeled the LBP(205-229) domain, which is strongly predicted to have a helical secondary structure, and determined that this region likely possesses heparin-binding characteristics located to one side of the helix, while the opposite side appears to contain a hydrophobic patch where peptide 11 could bind. Using ELISA plate assays, we demonstrated that peptide 11 and heparan sulfate individually bound to synthetic LBP(205-229) peptide. We also demonstrated that the QPATEDWSA peptide could inhibit tumor cell adhesion to laminin-1. These data support the proposal that the 67 kDa LBP can bind the beta-1 laminin chain at the peptide 11 region, and suggest that heparan sulfate is a likely alternate ligand for the binding interactions. Our results also confirm previous data suggesting that the most C-terminal region of the LBP, which contains the TEDWS repeats, is involved in cell adhesion to laminin-1, and we specifically implicate the repeat sequence in that activity.  相似文献   

10.
Endostatin (20 kDa) is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds zinc, heparin/heparan sulfate, laminin, and sulfatides and inhibits angiogenesis and tumor growth. Here we determined the kinetics and affinity of the interaction of endostatin with heparin/heparan sulfate and investigated the effects of divalent cations on these interactions and on the biological activities of endostatin. The binding of human recombinant endostatin to heparin and heparan sulfate was studied by surface plasmon resonance using BIAcore technology and further characterized by docking and molecular dynamics simulations. Kinetic data, evaluated using a 1:1 interaction model, showed that heparan sulfate bound to and dissociated from endostatin faster than heparin and that endostatin bound to heparin and heparan sulfate with a moderate affinity (K(D) approximately 2 microm). Molecular modeling of the complex between endostatin and heparin oligosaccharides predicted that, compared with mutagenesis studies, two further arginine residues, Arg(47) and Arg(66), participated in the binding. The binding of endostatin to heparin and heparan sulfate required the presence of divalent cations. The addition of ZnCl(2) to endostatin enhanced its binding to heparan sulfate by approximately 40% as well as its antiproliferative effect on endothelial cells stimulated by fibroblast growth factor-2, suggesting that this activity is mediated by the binding of endostatin to heparan sulfate. In contrast, no increase in the antiangiogenic and anti-proliferative activities of endostatin promoted by vascular endothelial growth factor was observed upon the addition of zinc.  相似文献   

11.
Collagen-proteoglycan interactions participate in the regulation of matrix assembly and in cell-matrix interactions. We reported previously that a fragment (Ile824-Pro950) of the collagen alpha1(V) chain, HepV, binds to heparin via a cluster of three major basic residues, Arg912, Arg918, and Arg921, and two additional residues, Lys905 and Arg909 (Delacoux, F., Fichard, A., Cogne, S., Garrone, R., and Ruggiero, F. (2000) J. Biol. Chem. 275, 29377-29382). Here, we further characterized the binding of HepV and collagen V to heparin and heparan sulfate by surface plasmon resonance assays. HepV bound to heparin and heparan sulfate with a similar affinity (KD approximately 18 and 36 nM, respectively) in a cation-dependent manner, and 2-O-sulfation of heparin was shown to be crucial for the binding. An octasaccharide of heparin and a decasaccharide of heparan sulfate were required for HepV binding. Studies with HepV mutants showed that the same basic residues were involved in the binding to heparin, to heparan sulfate, and to the cell surface. The contribution of Lys905 and Arg909 was found to be significant. The triple-helical peptide GPC(GPP)5G904-R918(GPP)5GPC-NH2 and native collagen V molecules formed much more stable complexes with heparin than HepV, and collagen V bound to heparin/heparan sulfate with a higher affinity (in the nanomolar range) than HepV. Heat and chemical denaturation strongly decreased the binding, indicating that the triple helix plays a major role in stabilizing the interaction with heparin. Collagen V and HepV may play different roles in cell-matrix interactions and in matrix assembly or remodeling mediated by their specific interactions with heparan sulfate.  相似文献   

12.
The extracellular matrix of cultured human lung fibroblasts contains one major heparan sulfate proteoglycan. This proteoglycan contains a 400-kDa core protein and is structurally and immunochemically identical or closely related to the heparan sulfate proteoglycans that occur in basement membranes. Because heparitinase does not release the core protein from the matrix of cultured cells, we investigated the binding interactions of this heparan sulfate proteoglycan with other components of the fibroblast extracellular matrix. Both the intact proteoglycan and the heparitinase-resistant core protein were found to bind to fibronectin. The binding of 125I-labeled core protein to immobilized fibronectin was inhibited by soluble fibronectin and by soluble cold core protein but not by albumin or gelatin. A Scatchard plot indicates a Kd of about 2 x 10(-9) M. Binding of the core protein was also inhibited by high concentrations of heparin, heparan sulfate, or chrondroitin sulfate and was sensitive to high salt concentrations. Thermolysin fragmentation of the 125I-labeled proteoglycan yielded glycosamino-glycan-free core protein fragments of approximately 110 and 62 kDa which bound to both fibronectin and heparin columns. The core protein-binding capacity of fibronectin was very sensitive to proteolysis. Analysis of thermolytic and alpha-chymotryptic fragments of fibronectin showed binding of the intact proteoglycan and of its isolated core protein to a protease-sensitive fragment of 56 kDa which carried the gelatin-binding domain of fibronectin and to a protease-sensitive heparin-binding fragment of 140 kDa. Based on the NH2-terminal amino acid sequence analyses of the 56- and 140-kDa fragments, the core protein-binding domain in fibronectin was tentatively mapped in the area of overlap of the two fragments, carboxyl-terminally from the gelatin-binding domain, possibly in the second type III repeat of fibronectin. These data document a specific and high affinity interaction between fibronectin and the core protein of the matrix heparan sulfate proteoglycan which may anchor the proteoglycan in the matrix.  相似文献   

13.
The conservation of positively charged residues in the N terminus of the hepatitis C virus (HCV) envelope glycoprotein E2 suggests an interaction of the viral envelope with cell surface glycosaminoglycans. Using recombinant envelope glycoprotein E2 and virus-like particles as ligands for cellular binding, we demonstrate that cell surface heparan sulfate proteoglycans (HSPG) play an important role in mediating HCV envelope-target cell interaction. Heparin and liver-derived highly sulfated heparan sulfate but not other soluble glycosaminoglycans inhibited cellular binding and entry of virus-like particles in a dose-dependent manner. Degradation of cell surface heparan sulfate by pretreatment with heparinases resulted in a marked reduction of viral envelope protein binding. Surface plasmon resonance analysis demonstrated a high affinity interaction (KD 5.2 x 10-9 m) of E2 with heparin, a structural homologue of highly sulfated heparan sulfate. Deletion of E2 hypervariable region-1 reduced E2-heparin interaction suggesting that positively charged residues in the N-terminal E2 region play an important role in mediating E2-HSPG binding. In conclusion, our results demonstrate for the first time that cellular binding of HCV envelope requires E2-HSPG interaction. Docking of E2 to cellular HSPG may be the initial step in the interaction between HCV and the cell surface resulting in receptor-mediated entry and initiation of infection.  相似文献   

14.
We have shown that cell surface heparan sulfate serves as the initial receptor for both serotypes of herpes simplex virus (HSV). We found that virions could bind to heparin, a related glycosaminoglycan, and that heparin blocked virus adsorption. Agents known to bind to cell surface heparan sulfate blocked viral adsorption and infection. Enzymatic digestion of cell surface heparan sulfate but not of dermatan sulfate or chondroitin sulfate concomitantly reduced the binding of virus to the cells and rendered the cells resistant to infection. Although cell surface heparan sulfate was required for infection by HSV types 1 and 2, the two serotypes may bind to heparan sulfate with different affinities or may recognize different structural features of heparan sulfate. Consistent with their broad host ranges, the two HSV serotypes use as primary receptors ubiquitous cell surface components known to participate in interactions with the extracellular matrix and with other cell surfaces.  相似文献   

15.
The endo-beta-glucuronidase, heparanase, is an enzyme that cleaves heparan sulfate at specific intra-chain sites, yielding heparan sulfate fragments with appreciable size and biological activities. Heparanase activity has been traditionally correlated with cell invasion associated with cancer metastasis, angiogenesis, and inflammation. In addition, heparanase up-regulation has been documented in a variety of primary human tumors, correlating with increased vascular density and poor postoperative survival, suggesting that heparanase may be considered as a target for anticancer drugs. In an attempt to identify the protein motif that would serve as a target for the development of heparanase inhibitors, we looked for protein domains that mediate the interaction of heparanase with its heparan sulfate substrate. We have identified three potential heparin binding domains and provided evidence that one of these is mapped at the N terminus of the 50-kDa active heparanase subunit. A peptide corresponding to this region (Lys(158)-Asp(171)) physically associates with heparin and heparan sulfate. Moreover, the peptide inhibited heparanase enzymatic activity in a dose-responsive manner, presumably through competition with the heparan sulfate substrate. Furthermore, antibodies directed to this region inhibited heparanase activity, and a deletion construct lacking this domain exhibited no enzymatic activity. NMR titration experiments confirmed residues Lys(158)-Asn(162) as amino acids that firmly bound heparin. Deletion of a second heparin binding domain sequence (Gln(270)-Lys(280)) yielded an inactive enzyme that failed to interact with cell surface heparan sulfate and hence accumulated in the culture medium of transfected HEK 293 cells to exceptionally high levels. The two heparin/heparan sulfate recognition domains are potentially attractive targets for the development of heparanase inhibitors.  相似文献   

16.
Binding of heparin/heparan sulfate to fibroblast growth factor receptor 4   总被引:4,自引:0,他引:4  
Fibroblast growth factors (FGFs) are heparin-binding polypeptides that affect the growth, differentiation, and migration of many cell types. FGFs signal by binding and activating cell surface FGF receptors (FGFRs) with intracellular tyrosine kinase domains. The signaling involves ligand-induced receptor dimerization and autophosphorylation, followed by downstream transfer of the signal. The sulfated glycosaminoglycans heparin and heparan sulfate bind both FGFs and FGFRs and enhance FGF signaling by mediating complex formation between the growth factor and receptor components. Whereas the heparin/heparan sulfate structures involved in FGF binding have been studied in some detail, little information has been available on saccharide structures mediating binding to FGFRs. We have performed structural characterization of heparin/heparan sulfate oligosaccharides with affinity toward FGFR4. The binding of heparin oligosaccharides to FGFR4 increased with increasing fragment length, the minimal binding domains being contained within eight monosaccharide units. The FGFR4-binding saccharide domains contained both 2-O-sulfated iduronic acid and 6-O-sulfated N-sulfoglucosamine residues, as shown by experiments with selectively desulfated heparin, compositional disaccharide analysis, and a novel exoenzyme-based sequence analysis of heparan sulfate oligosaccharides. Structurally distinct heparan sulfate octasaccharides differed in binding to FGFR4. Sequence analysis suggested that the affinity of the interaction depended on the number of 6-O-sulfate groups but not on their precise location.  相似文献   

17.
Wu C  Wang S 《Journal of virology》2012,86(1):484-491
Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.  相似文献   

18.
Neurite growth-promoting protein (amphoterin, p30) binds syndecan.   总被引:8,自引:0,他引:8  
A new ligand for syndecan (a cell surface heparan sulfate-rich proteoglycan) has been discovered. In the solid-phase binding assay utilizing small nitrocellulose discs to immobilize matrix molecules, binding of syndecan to neurite growth-promoting protein, p30/amphoterin, was observed. This binding was strongly dependent on the concentration of amphoterin used to coat the discs, but was saturable with an excess amount of syndecan. The interaction was inhibitable with heparan sulfate and heparin but less effectively with chondroitin sulfate, indicating that heparan sulfate chains of syndecan were involved in the binding. Anti-amphoterin antibodies inhibited the binding partially. Mouse mammary epithelial cells were shown to bind amphoterin directly but not after trypsin treatment or in the presence of heparin and to produce amphoterin in the extracellular space. Both syndecan and amphoterin were found to localize on lateral surfaces of newly adhered mammary epithelial cells. Toward confluency amphoterin amounts decreased. Because amphoterin can be localized to the same sites with syndecan and because of their interaction, amphoterin is a new putative pericellular ligand for syndecan. These interactions may be involved in the regulation of cell behavior.  相似文献   

19.
20.
Bone morphogenetic proteins (BMPs) are expressed broadly and regulate a diverse array of developmental events in vivo. Essential to many of these functions is the establishment of activity gradients of BMP, which provide positional information that influences cell fates. Secreted polypeptides, such as Noggin, bind BMPs and inhibit their function by preventing interaction with receptors on the cell surface. These BMP antagonists are assumed to be diffusible and therefore potentially important in the establishment of BMP activity gradients in vivo. Nothing is known, however, about the potential interactions between Noggin and components of the cell surface or extracellular matrix that might limit its diffusion. We have found that Noggin binds strongly to heparin in vitro, and to heparan sulfate proteoglycans on the surface of cultured cells. Noggin is detected only on the surface of cells that express heparan sulfate, can be specifically displaced from cells by heparin, and can be directly cross-linked to a cell surface proteoglycan in culture. Heparan sulfate-bound Noggin remains functional and can bind BMP4 at the plasma membrane. A Noggin mutant with a deletion in a putative heparin binding domain has reduced binding to heparin and does not bind to the cell surface but has preserved BMP binding and antagonist functions. Our results imply that interactions between Noggin and heparan sulfate proteoglycans in vivo regulate diffusion and therefore the formation of gradients of BMP activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号