首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A human scFv, 15-9, was selected from a phage display library for binding to murine laminin-1. A diabody was made from the scFv by shortening the linker from 15 to 5 amino acids between the VH and VL sequence. Radioiodinated scFv and diabody were analyzed for size, binding to laminin, and biodistribution in tumor bearing mice. Diabody preparations at concentrations greater than 10 nM were largely dimer forms (approximately 60 kDa) as judged by gel filtration, but diluted diabody was eluted as a monomer (approximately 30 kDa). At low concentrations the radiolabeled diabody did not bind well to laminin. The (125)I diabody had significantly lower accumulation in tumors than did the scFv when injected at lower concentrations. These data indicate that the diabody dimer dissociates at concentrations of about 10nM resulting in monomers with no binding activity for laminin and poor tumor homing properties.  相似文献   

2.
Coiled-coil domains are found in a wide variety of proteins, where they typically specify subunit oligomerization. Recently, we have demonstrated that agrin, a multidomain heparan sulfate proteoglycan with a crucial role in the development of the nerve-muscle synapse, binds to the three-stranded coiled-coil domain of laminin-1. The interaction with laminin mediates the integration of agrin into basement membranes. Here we characterize the binding site within the laminin-1 coiled coil in detail. Binding assays with individual laminin-1 full-length chains and fragments revealed that agrin specifically interacts with the gamma1 subunit of laminin-1, whereas no binding to alpha1 and beta1 chains was detected. By using recombinant gamma1 chain fragments, we mapped the binding site to a sequence of 20 residues. Furthermore, we demonstrate that a coiled-coil conformation of this binding site is required for its interaction with agrin. The finding that recombinant gamma1 fragments bound at least 10-fold less than native laminin-1 indicates that the structure of the three-stranded coiled-coil domain of laminin is required for high-affinity agrin binding. Interestingly, no binding to a chimeric gamma2 fragment was observed, indicating that the interaction of agrin with laminin is isoform specific.  相似文献   

3.
The 37/67-kDa human laminin receptor (LamR) is a cell surface protein that interacts with molecules located in the extra-cellular matrix. In particular, interactions between LamR and laminins play a major role in mediating changes in the cellular environment that affect cell adhesion, neurite outgrowth, tumor growth and metastasis. The exact interaction mode of laminin-1 and LamR is not fully understood. Laminin-1 is thought to bind to LamR through interaction with the so-called peptide G (residues 161–180) and the C-terminal helix (residues 205–229). Here we performed 100-ns atomistic force field-based molecular dynamics simulations to explore the structure and dynamics of LamR related to laminin-1 interactions. Our main finding is that loop 188–197 in the C-terminal region is highly flexible. It undergoes a major change resulting in a conformational switch that partially solvent exposes the R180 residue in the final part of the G peptide. So, R180 could contribute to laminin-1 binding. Projection of the simulations along the first two principal components also confirms the importance of this conformational switch in the LamR. This may be a basic prerequisite to clarify the key structural determinants of the interaction of LamR with laminin-1.  相似文献   

4.
Agrin is a large, multidomain heparan sulfate proteoglycan that is associated with basement membranes of several tissues. Particular splice variants of agrin are essential for the formation of synaptic structures at the neuromuscular junction. The binding of agrin to laminin appears to be required for its localization to synaptic basal lamina and other basement membranes. Here, electron microscopy was used to determine the structure of agrin and to localize its binding site in laminin-1. Agrin appears as an approximately 95 nm long particle that consists of a globular, N-terminal laminin-binding domain, a central rod predominantly formed by the follistatin-like domains and three globular, C-terminal laminin G-like domains. In a few cases, heparan sulfate glycosaminoglycan chains were seen emerging from the central portion of the core protein. Moreover, we show that agrin binds to the central region of the three-stranded, coiled-coil oligomerization domain in the long arm of laminin-1, which mediates subunit assembly of the native laminin molecule. In summary, our data show for the first time a protein-protein interaction of the extracellular matrix that involves a coiled-coil domain, and they assign a novel role to this domain of laminin-1. Based on this, we propose that agrin associates with basal lamina in a polarized way.  相似文献   

5.
We have identified a Mr 80K cell surface protein(s) from adult rat hepatocytes that binds basement membrane components, including collagen IV, heparan sulfate proteoglycan, and laminin. Freshly isolated hepatocytes were cell surface-labeled with 125I using the lactoperoxidase-catalyzed method, and detergent-solubilized membrane proteins were chromatographed on affinity columns prepared with purified basement membrane components. A Mr 80K protein was eluted with 0.15-1 M NaCl from a collagen IV column. Two proteins (Mr 80K and 38K) were eluted from a heparan sulfate proteoglycan column. The larger protein was also eluted from a column made with heparan sulfate side chains. Several proteins (Mr 80K, 67K, 45K, and 32K) bound to an affinity chromatography column made with the laminin A chain-derived synthetic peptide PA22-2, which is active for promoting cell attachment. When fractions eluted from these columns were analyzed by two-dimensional gel electrophoresis, the Mr 80K proteins showed similar patterns with a pI ranging from 8 to 9. The Mr 80K protein(s) may have an important role in the interaction of hepatocytes with basement membrane.  相似文献   

6.
N-Deacetylase-N-sulfotransferase 1 (Ndst1) catalyzes the initial modification of heparan sulfate and heparin during their biosynthesis by removal of acetyl groups from subsets of N-acetylglucosamine units and subsequent sulfation of the resulting free amino groups. In this study, we used a phage display library to select peptides that interact with Ndst1, with the aim of finding inhibitors of the enzyme. The phage library consisted of cyclic random 10-mer peptides expressed in the phage capsid protein pIII. Selection was based on the ability of engineered phage to bind to recombinant murine Ndst1 (mNdst1) and displacement with heparin. Peptides that were enriched through multiple cycles of binding and disassociation displayed two specific sequences, CRGWRGEKIGNC and CNMQALSMPVTC. Both peptides inhibited mNdst1 activity in vitro, however, by distinct mechanisms. The peptide CRGWRGEKIGNC presents a chemokine-like repeat motif (BXX, where B represents a basic amino acid and X is a noncharged amino acid) and binds to heparan sulfate, thus blocking the binding of substrate to the enzyme. The peptide NMQALSMPVT inhibits mNdst1 activity by direct interaction with the enzyme near the active site. The discovery of inhibitory peptides in this way suggests a method for developing peptide inhibitors of heparan sulfate biosynthesis.  相似文献   

7.
G J Cole  R Akeson 《Neuron》1989,2(2):1157-1165
The neural cell adhesion molecule (N-CAM) plays an integral role in cell interactions during neural development, with the binding of heparan sulfate proteoglycan to the amino-terminal region of N-CAM being required for N-CAM function. In the present study we have used synthetic peptides (HBD-1 and HBD-2), derived from the primary amino acid sequence of rat N-CAM, to identify the region of N-CAM that binds heparan sulfate. The 28 amino acid HBD-1 synthetic peptide was shown to bind both [3H]heparin and dissociated retinal cells. Retinal cells also attach to a substratum of HBD-2 peptide, but fail to bind to a control peptide containing a scrambled amino acid sequence of HBD-2. The HBD-2 peptide also inhibits retinal cell adhesion to N-CAM, demonstrating the physiological importance of the amino acid sequence encoded by the HBD peptide. These data therefore permit the localization of a heparin binding domain to a 17 amino acid region of immunoglobulin-like loop 2.  相似文献   

8.
Trypanosoma cruzi causing Chagas' disease needs to invade host cells to complete its life cycle. Macromolecules on host cell surfaces such as laminin, thrombospondin, heparan sulfate, and fibronectin are believed to be important in mediating parasite-host cell adhesions and in the invasion process of the host cell by the parasite. The SELEX technique (systematic evolution of ligands by exponential enrichment) was used to evolve nuclease-resistant RNA ligands (aptamer = to fit) that bind with affinities of 40-400 nm to parasite receptors for the host cell matrix molecules laminin, fibronectin, thrombospondin, and heparan sulfate. After eight consecutive rounds of in vitro selection four classes of RNA aptamers based on structural similarities were isolated and sequenced. All members of each class shared a common sequence motif and competed with the respective host cell matrix molecule that was used for displacement during the selection procedure. RNA pools following seven and eight selection rounds as well as individual aptamers sharing consensus motifs were active in inhibiting invasion of LLC-MK(2) monkey kidney cells by T. cruzi in vitro.  相似文献   

9.
The major macromolecules of basement membranes-collagen IV, laminin-1, and heparan sulfate proteoglycan (HSPG)-have been analyzed by atomic force microscopy (AFM), both individually and in combination with each other. The positions of laminin binding to collagen IV were mapped and compared with the positions of imperfections in the amino acid sequence of collagen IV; the apparent molecular volumes of the HSPG proteoglycans were measured and used to estimate the corresponding molecular weights. Even the thin, thread-like strands of the polyanion heparan sulfate can be visualized with AFM without staining, coating, or fixation. These strands are single polysaccharide chains and are thus thinner than single-stranded DNA. The heparan sulfate strands in HSPG are necessary for protein filtration in kidney basement membranes. We propose that these thin strands filter proteins by functioning as an entropic brush-i.e., that they filter proteins by their constant thermally driven motion in the basement membrane. These AFM analyses in air are a step toward AFM analyses under fluid of basement membrane macromolecules interacting with each other.  相似文献   

10.
Herndon  ME; Stipp  CS; Lander  AD 《Glycobiology》1999,9(2):143-155
The method of affinity coelectrophoresis was used to study the binding of nine representative glycosaminoglycan (GAG)-binding proteins, all thought to play roles in nervous system development, to GAGs and proteoglycans isolated from developing rat brain. Binding to heparin and non-neural heparan and chondroitin sulfates was also measured. All nine proteins-laminin-1, fibronectin, thrombospondin-1, NCAM, L1, protease nexin-1, urokinase plasminogen activator, thrombin, and fibroblast growth factor-2-bound brain heparan sulfate less strongly than heparin, but the degree of difference in affinity varied considerably. Protease nexin-1 bound brain heparan sulfate only 1.8- fold less tightly than heparin (Kdvalues of 35 vs. 20 nM, respectively), whereas NCAM and L1 bound heparin well (Kd approximately 140 nM) but failed to bind detectably to brain heparan sulfate (Kd>3 microM). Four proteins bound brain chondroitin sulfate, with affinities equal to or a few fold stronger than the same proteins displayed toward cartilage chondroitin sulfate. Overall, the highest affinities were observed with intact heparan sulfate proteoglycans: laminin-1's affinities for the proteoglycans cerebroglycan (glypican-2), glypican-1 and syndecan-3 were 300- to 1800-fold stronger than its affinity for brain heparan sulfate. In contrast, the affinities of fibroblast growth factor-2 for cerebroglycan and for brain heparan sulfate were similar. Interestingly, partial proteolysis of cerebroglycan resulted in a >400- fold loss of laminin affinity. These data support the views that (1) GAG-binding proteins can be differentially sensitive to variations in GAG structure, and (2) core proteins can have dramatic, ligand-specific influences on protein-proteoglycan interactions.   相似文献   

11.
The presence of many laminin receptors of the beta1 integrin family on most cells makes it difficult to define the biological functions of other major laminin receptors such as integrin alpha6beta4 and dystroglycan. We therefore tested the binding of a beta1 integrin-null cell line GD25 to four different laminin variants. The cells were shown to produce dystroglycan, which based on affinity chromatography bound to laminin-1, -2/4, and -10/11, but not to laminin-5. The cells also expressed the integrin alpha6Abeta4A variant. GD25 beta1 integrin-null cells are known to bind poorly to laminin-1, but we demonstrate here that these cells bind avidly to laminin-2/4, -5, and -10/11. The initial binding at 20 min to each of these laminins could be inhibited by an integrin alpha6 antibody, but not by a dystroglycan antibody. Hence, integrin alpha6Abeta4A of GD25 cells was identified as a major receptor for initial GD25 cell adhesion to three out of four tested laminin isoforms. Remarkably, cell adhesion to laminin-5 failed to promote cell spreading, proliferation, and extracellular signal-regulated kinase (ERK) activation, whereas all these responses occurred in response to adhesion to laminin-2/4 or -10/11. The data establish GD25 cells as useful tools to define the role integrin alpha6Abeta4A and suggest that laminin isoforms have distinctly different capacities to promote cell adhesion and signaling via integrin alpha6Abeta4A.  相似文献   

12.
A laminin-binding peptide (peptide G), predicted from the cDNA sequence for a 33-kDa protein related to the 67-kDa laminin receptor, specifically inhibits binding of laminin to heparin and sulfatide. Since the peptide binds directly to heparin and inhibits interaction of another heparin-binding protein with the same sulfated ligands, this inhibition is due to direct competition for binding to sulfated glycoconjugates rather than an indirect effect of interaction with the binding site on laminin for the 67-kDa receptor. Direct binding of laminin to the peptide is also inhibited by heparin. This interaction may result from contamination of the laminin with heparan sulfate, as binding is enhanced by the addition of substoichiometric amounts of heparin but inhibited by excess heparin and two heparin-binding proteins. Furthermore, laminin binds more avidly to a heparin-binding peptide derived from thrombospondin than to the putative receptor peptide. Adhesion of A2058 melanoma cells on immobilized peptide G is also heparin-dependent, whereas adhesion of the cells on laminin is not. Antibodies to the beta 1-integrin chain or laminin block adhesion of the melanoma cells to laminin but not to peptide G. Thus, the reported inhibition of melanoma cell adhesion to endothelial cells by peptide G may result from inhibition of binding of laminin or other proteins to sulfated glycoconjugate receptors rather than from specific inhibition of laminin binding to the 67-kDa receptor.  相似文献   

13.
Although the primary function of AChE (acetylcholinesterase) is the synaptic hydrolysis of acetylcholine, it appears that the protein is also able to promote various non-cholinergic activities, including cell adhesion, neurite outgrowth and amyloidosis. We have observed previously that AChE is able to bind to mouse laminin-111 in vitro by an electrostatic mechanism. We have also observed that certain mAbs (monoclonal antibodies) recognizing AChE's PAS (peripheral anionic site) inhibit both laminin binding and cell adhesion in neuroblastoma cells. Here, we investigated the interaction sites of the two molecules, using docking, synthetic peptides, ELISAs and conformational interaction site mapping. Mouse AChE was observed on docking to bind to a discontinuous, largely basic, structure, Val(2718)-Arg-Lys-Arg-Leu(2722), Tyr(2738)-Tyr(2739), Tyr(2789)-Ile-Lys-Arg-Lys(2793) and Val(2817)-Glu-Arg-Lys(2820), on the mouse laminin alpha1 G4 domain. ELISAs using synthetic peptides confirmed the involvement of the AG-73 site (2719-2729). This site overlaps extensively with laminin's heparin-binding site, and AChE was observed to compete with heparan sulfate for laminin binding. Docking showed the major component of the interaction site on AChE to be the acidic sequence Arg(90)-Glu-Leu-Ser-Glu-Asp(95) on the omega loop, and also the involvement of Pro(40)-Pro-Val(42), Arg(46) (linked to Glu(94) by a salt bridge) and the hexapeptide Asp(61)-Ala-Thr-Thr-Phe-Gln(66). Epitope analysis, using CLiPS technology, of seven adhesion-inhibiting mAbs (three anti-human AChE, one anti-Torpedo AChE and three anti-human anti-anti-idiotypic antibodies) showed their major recognition site to be the sequence Pro(40)-Pro-Met-Gly-Pro-Arg-Arg-Phe(48) (AChE human sequence). The antibodies, however, also reacted with the proline-containing sequences Pro(78)-Gly-Phe-Glu-Gly-Thr-Glu(84) and Pro(88)-Asn-Arg-Glu-Leu-Ser-Glu-Asp(95). Antibodies that recognized other features of the PAS area but not the Arg(90)-Gly-Leu-Ser-Glu-Asp(95) motif interfered neither with laminin binding nor with cell adhesion. These results define sites for the interaction of AChE and laminin and suggest that the interaction plays a role in cell adhesion. They also suggest the strong probability of functional redundancy between AChE and other molecules in early development, particularly heparan sulfate proteoglycans, which may explain the survival of the AChE-knockout mouse.  相似文献   

14.
Three distinctive heparin-binding sites were observed in type IV collagen by the use of rotary shadowing: in the NC1 domain and at distances 100 and 300 nm from the NC1 domain. Scatchard analysis indicated different affinities for these sites. Electron microscopic analysis of heparin-type IV collagen interaction with increasing salt concentrations showed the different affinities to be NC1 greater than 100 nm greater than 300 nm. The NC1 domain bound specifically to chondroitin/dermatan sulfate side chains as well. This binding was observed at the electron microscope and in solid-phase binding assays (where chondroitin sulfate could compete for the binding of [3H]heparin to NC1-coated substrata). The triple helix-rich, rod-like domain of type IV collagen did not bind to chondroitin/dermatan sulfate side chains. In solid-phase binding assays only heparin could compete for the binding of [3H]heparin to this domain. In order to more precisely map potential heparin-binding sites in type IV collagen, we chemically synthesized 17 arginine- and lysine-containing peptides from the alpha 1(IV) and alpha 2(IV) chains. Three peptides from the known sequence of the alpha 1(IV) and alpha 2(IV) chains were shown to specifically bind heparin: peptide Hep-I (TAGSCLRKFSTM), from the alpha 1(NC1) chain, peptide Hep-II (LAGSCLARFSTM), a peptide corresponding to the same sequence in peptide Hep-I from the alpha 2 (NC1) chain, and peptide Hep-III (GEFYFDLRLKGDK) which contained an interruption of the triple helical sequence of the alpha 1(IV) chain at about 300 nm from the NC1 domain, were demonstrated to bind heparin in solid-phase binding assays and compete for the binding of [3H]heparin to type IV collagen-coated substrata. Therefore, each of these peptides may represent a potential heparin-binding site in type IV collagen. The mapping of the binding of heparin or related structures, such as heparan sulfate proteoglycan, to specific sequences of type IV collagen could help the understanding of several structural and functional properties of this basement membrane protein as well as interactions with other basement membrane and/or cell surface-associated macromolecules.  相似文献   

15.
Binding of Mycobacterium leprae to and invasion of Schwann cells (SC) represent a crucial step that initiates nerve damage in leprosy. We and others have described that M. leprae colonization of the peripheral nerve system may be mediated in part by a surface-exposed histone-like protein (Hlp), characterized as a laminin-binding protein (LBP). Hlp/LBP has also been shown to play a role in the binding of mycobacteria to alveolar epithelial cells and macrophages. In the present study we report that M. leprae expresses Hlp/LBP protein during the course of human infection. Additionally, we analyzed the interaction of Hlp/LBP with the extracellular matrix and host cell surface. We show that Hlp/LBP, besides laminin, also binds heparin and heparan sulfate. Testing truncated recombinant Hlp molecules corresponding to the N-terminal (rHlp-N) and the C-terminal (rHlp-C) domains of the protein, we established that interaction of Hlp/LBP with laminin-2 and heparin is mainly mediated by the C-terminal domain of the protein. Moreover, the same domain was found to be involved in Hlp/LBP-mediating bacterial binding to human SC. Finally, evidence is shown suggesting that M. leprae produces a post-translationally modified Hlp/LBP containing methyllysine residues. Methylation of the lysine residues, however, seems not to affect the adhesive properties of Hlp/LBP. Taken together, our observations reinforce the involvement of Hlp/LBP as an adhesin in mycobacterial infections and define its highly positive C-terminal region as the major adhesive domain of this protein.  相似文献   

16.
A large, low-density form of heparan sulfate proteoglycan was isolated from the Engelbreth-Holm-Swarm (EHS) tumor and demonstrated to bind in immobilized-ligand assays to laminin fragment E3, collagen type IV, fibronectin and nidogen. The first three ligands mainly recognize the heparan sulfate chains, as shown by inhibition with heparin and heparan sulfate and by the failure to bind to the proteoglycan protein core. Nidogen, obtained from the EHS tumor or in recombinant form, binds exclusively to the protein core in a heparin-insensitive manner. Studies with other laminin fragments indicate that the fragment E3 possesses a unique binding site of laminin for the proteoglycan. A major binding site of nidogen was localized to its central globular domain G2 by using overlapping fragments. This allows for the formation of ternary complexes between laminin, nidogen and proteoglycan, suggesting a key role for nidogen in basement-membrane assembly. Evidence is provided for a second proteoglycan-binding site in the C-terminal globule G3 of nidogen, but this interaction prevents the formation of such ternary complexes. Therefore, the G3-mediated nidogen binding to laminin and proteoglycan are mutually exclusive.  相似文献   

17.
Lutheran (Lu) blood group antigens and the basal cell adhesion molecule antigen reside on two glycoproteins that belong to the Ig superfamily (IgSF) and carry five Ig-like extracellular domains. These glycoproteins act as widely expressed adhesion molecules and represent the unique receptors for laminin-10/11 in erythroid cells. Here, we report the mapping of IgSF domains responsible for binding to laminin. In plasmonic resonance surface experiments, only recombinant Lu proteins containing the N-terminal IgSF domains 1-3 were able to bind laminin-10/11 and to inhibit binding of laminin to Lu-expressing K562 cells. Mutant recombinant proteins containing only IgSF domain 1, domains 1 + 2, domains 1 + 3, domains 2 + 3, domain 3, domain 4, domain 5, and domains 4 + 5 failed to bind laminin as well as a construct containing all of the extracellular domains except domain 3. Altogether, these results indicate that IgSF domains 1-3 are involved in laminin binding and that a specific spatial arrangement of these three first domains is most probably necessary for interaction. Neither the RGD nor the N-glycosylation motifs present in IgSF domain 3 were involved in laminin binding.  相似文献   

18.
Purified NMuMG mouse mammary epithelial cell surface proteoglycan (PG), a membrane-intercalated core protein bearing both heparan sulfate and chondroitin sulfate glycosaminoglycan (GAG) chains, binds to a thrombospondin (TSP) affinity column and is eluted by a salt gradient. Double immunofluorescence microscopy demonstrates extensive co-localization of bound exogenous TSP and cells bearing exposed cell surface PG at their apical surface. The binding, as assayed by both methods, is heparitinase-sensitive, but not chondroitinase-sensitive. Alkali-released heparan sulfate chains bind to a TSP affinity column, similarly to native PG, whereas the chrondroitin sulfate chains do not. Core protein does not bind to TSP. These results indicate that NMuMG cells bind TSP via their surface PG and that the binding is mediated by the heparan sulfate chains.  相似文献   

19.
Rotary shadowing electron microscopy was used to examine complexes formed by incubating combinations of the basement membrane components: type IV collagen, laminin, large heparan sulfate proteoglycan and fibronectin. Complexes were analyzed by length measurement from the globular (COOH) domain of type IV collagen, and by examination of the four arms of laminin and the two arms of fibronectin. Type IV collagen was found to contain binding sites for laminin, heparan sulfate proteoglycan and fibronectin. With laminin the most frequent site was centered approximately 81 nm from the carboxy end of type IV collagen. Less frequent sites appeared to be present at approximately 216 nm and approximately 291 nm, although this was not apparent when the sites were expressed as a fraction of the length of type IV collagen to which they were bound. For heparan sulfate proteoglycan the most frequent site occurred at approximately 206 nm with a less frequent site at approximately 82 nm. For fibronectin, a single site was present at approximately 205 nm. Laminin bound to type IV collagen through its short arms, particularly through the end of the lateral short arms and to heparan sulfate proteoglycan mainly through the end of its long arm. Fibronectin bound to type IV collagen through the free end region of its arms. Using a computer graphics program, the primary laminin binding sites of two adjacent type IV collagen molecules were found to align in the "polygonal" model of type IV collagen, whereas with the "open network" model, a wide meshed matrix is predicted. It is proposed that basement membrane may consist of a lattice of type IV collagen coated with laminin, heparan sulfate proteoglycan and fibronectin.  相似文献   

20.
Agrin is a heparan sulfate proteoglycan that is required for the formation and maintenance of neuromuscular junctions. During development, agrin is secreted from motor neurons to trigger the local aggregation of acetylcholine receptors (AChRs) and other proteins in the muscle fiber, which together compose the postsynaptic apparatus. After release from the motor neuron, agrin binds to the developing muscle basal lamina and remains associated with the synaptic portion throughout adulthood. We have recently shown that full-length chick agrin binds to a basement membrane-like preparation called Matrigel™. The first 130 amino acids from the NH2 terminus are necessary for the binding, and they are the reason why, on cultured chick myotubes, AChR clusters induced by full-length agrin are small. In the current report we show that an NH2-terminal fragment of agrin containing these 130 amino acids is sufficient to bind to Matrigel™ and that the binding to this preparation is mediated by laminin-1. The fragment also binds to laminin-2 and -4, the predominant laminin isoforms of the muscle fiber basal lamina. On cultured myotubes, it colocalizes with laminin and is enriched in AChR aggregates. In addition, we show that the effect of full-length agrin on the size of AChR clusters is reversed in the presence of the NH2-terminal agrin fragment. These data strongly suggest that binding of agrin to laminin provides the basis of its localization to synaptic basal lamina and other basement membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号