首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA damage activates apoptosis in several neuronal populations and is an important component of neuropathological conditions. While it is well established that neuronal apoptosis, induced by DNA damage, is dependent on the key cell death regulators p53 and Bax, it is unknown which proteins link the p53 signal to Bax. Using rat sympathetic neurons as an in vitro model of neuronal apoptosis, we show that cytosine arabinoside is a DNA damaging drug that induces the expression of the BH3-only pro-apoptotic genes Noxa, Puma and Bim. Increased expression occurred after p53 activation, measured by its phosphorylation at serine 15, but prior to the conformational change of Bax at the mitochondria, cytochrome c (cyt c) release and apoptosis. Hence Noxa, Puma and Bim could potentially link p53 to Bax. We directly tested this hypothesis by the use of nullizygous mice. We show that Puma, but not Bim or Noxa, is a crucial mediator of DNA damage-induced neuronal apoptosis. Despite the powerful pro-apoptotic effects of overexpressed Puma in Bax-expressing neurons, Bax nullizygous neurons were resistant to Puma-induced death. Therefore, Puma provides the critical link between p53 and Bax, and is both necessary and sufficient to mediate DNA damage-induced apoptosis of sympathetic neurons.  相似文献   

2.
Life in the balance: how BH3-only proteins induce apoptosis   总被引:22,自引:0,他引:22  
  相似文献   

3.
It is still unclear whether the BH3-only protein Puma (p53 up-regulated modulator of apoptosis) can prime cells to death and render antiapoptotic BH3-binding Bcl-2 homologues necessary for survival through its ability to directly interact with proapoptotic Bax and activate it. In this study, we provide further evidence, using cell-free assays, that the BH3 domain of Puma binds Bax at an activation site that comprises the first helix of Bax. We also show that, in yeast, Puma interacts with Bax and triggers its killing activity when Bcl-2 homologues are absent but not when Bcl-xL is expressed. Finally, endogenous Puma is involved in the apoptotic response of human colorectal cancer cells to the Bcl-2/Bcl-xL inhibitor ABT-737, even in conditions where the expression of Mcl-1 is down-regulated. Thus, Puma is competent to trigger Bax activity by itself, thereby promoting cellular dependence on prosurvival Bcl-2 family members.  相似文献   

4.
The B-cell CLL/lymphoma-2 (Bcl-2) family of proteins are important regulators of the intrinsic pathway of apoptosis, and their interactions, driven by Bcl-2 homology (BH) domains, are of great interest in cancer research. Particularly, the BH3 domain is of clinical relevance, as it promotes apoptosis through activation of Bcl-2-associated x protein (Bax) and Bcl-2 antagonist killer (Bak), as well as by antagonising the anti-apoptotic Bcl-2 family members. Although investigated extensively in vitro, the study of the BH3 domain alone inside cells is more problematic because of diminished secondary structure of the unconstrained peptide and a lack of stability. In this study, we report the successful use of a novel peptide aptamer scaffold – Stefin A quadruple mutant – to anchor and present the BH3 domains from Bcl-2-interacting mediator of cell death (Bim), p53 upregulated modulator of apoptosis (Puma), Bcl-2-associated death promoter (Bad) and Noxa, and demonstrate its usefulness in the study of the BH3 domains in vivo. When expressed intracellularly, anchored BH3 peptides exhibit much the same binding specificities previously established in vitro, however, we find that, at endogenous expression levels, Bcl-2 does not bind to any of the anchored BH3 domains tested. Nonetheless, when expressed inside cells the anchored PUMA and Bim BH3 α-helices powerfully induce cell death in the absence of efficient targeting to the mitochondrial membrane, whereas the Noxa helix requires a membrane insertion domain in order to kill Mcl-1-dependent myeloma cells. Finally, the binding of the Bim BH3 peptide to Bax was the only interaction with a pro-apoptotic effector protein observed in this study.  相似文献   

5.
Mitochondrial apoptosis is controlled by proteins of the B-cell lymphoma 2 (Bcl-2) family. Pro-apoptotic members of this family, known as BH3-only proteins, initiate activation of the effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak), which is counteracted by anti-apoptotic family members. How the interactions of Bcl-2 proteins regulate cell death is still not entirely clear. Here, we show that in the absence of extrinsic apoptotic stimuli Bak activates without detectable contribution from BH3-only proteins, and cell survival depends on anti-apoptotic Bcl-2 molecules. All anti-apoptotic Bcl-2 proteins were targeted via RNA interference alone or in combinations of two in primary human fibroblasts. Simultaneous targeting of B-cell lymphoma-extra large and myeloid cell leukemia sequence 1 led to apoptosis in several cell types. Apoptosis depended on Bak whereas Bax was dispensable. Activator BH3-only proteins were not required for apoptosis induction as apoptosis was unaltered in the absence of all BH3-only proteins known to activate Bax or Bak directly, Bcl-2-interacting mediator of cell death, BH3-interacting domain death agonist and p53-upregulated modulator of apoptosis. These findings argue for auto-activation of Bak in the absence of anti-apoptotic Bcl-2 proteins and provide evidence of profound differences in the activation of Bax and Bak.The regulated elimination of cells by apoptosis is a key mechanism of development, tissue homeostasis and defense. In vertebrates, apoptosis is regulated through two pathways, the death receptor-mediated (extrinsic) and the mitochondrial (intrinsic) pathway, which is activated by numerous apoptotic stimuli. Mitochondrial apoptosis is characterized by loss of mitochondrial outer membrane integrity and the release of mitochondrial intermembrane space proteins, most notably cytochrome c, which leads to the activation of the caspase-9 and effector caspases.1Release of cytochrome c is governed by proteins of the B-cell lymphoma 2 (Bcl-2) family.2 The Bcl-2 family consists of three groups, whose expression and interaction decide cell survival. The anti-apoptotic Bcl-2 proteins include Bcl-2, Bcl-XL (B-cell lymphoma-extra large), Bcl-w (Bcl-2-like protein 2), Mcl-1 (myeloid cell leukemia sequence 1) and A1 (Bcl-2-related protein A1). The pro-apoptotic group of BH3-only proteins (containing a BH3-domain: Bim (Bcl-2-interacting mediator of cell death), Bid (BH3-interacting domain death agonist), Puma (p53-upregulated modulator of apoptosis), Noxa (Phorbol-12-myristate-13-acetate-induced protein 1), Bad (Bcl-2-associated death promoter), Bik (Bcl-2-interacting killer) and Hrk (activator of apoptosis hara-kiri)) activate the pro-apoptotic effectors Bcl-2-associated X protein (Bax) and Bcl-2 homologous antagonist/killer (Bak). Bax and Bak can replace each other in most situations, but the presence of one of them is required for mitochondrial apoptosis. Upon activation Bax and Bak form oligomers in the outer mitochondrial membrane and cause the release of cytochrome c. How Bax and Bak are activated is still under debate. Different activation models have been proposed and investigated.According to the direct activation model BH3-only proteins can directly, by physical interaction activate Bax and Bak.3 The model was derived in studies investigating synthetic BH3-domain peptides in in vitro systems, that is, isolated mitochondria or liposomes, where peptides encompassing the BH3-domains of Bim or Bid (‘activator'' BH3-only proteins) were able to activate Bax. Peptides derived from the BH3-only proteins Bad, Bik, Hrk, Noxa or Puma did not activate Bax directly. However, these peptides can bind to anti-apoptotic Bcl-2 proteins with varying preferences.4 As this may neutralize a combination of anti-apoptotic proteins it may facilitate Bax/Bak activation by activator BH3-only proteins. Consequently, this group of BH3-only proteins has been named ‘sensitizer'' or ‘derepressor'' BH3-only proteins.3, 5, 6, 7 The direct activation model has received recent support by structural studies of activator BH3-domains bound to Bax.8 That study also found that the BH3-only peptides used previously lacked a residue that is important in the activation of Bax, and the previous results may have to be reconsidered. Indeed, a recent study illustrates that placing the BH3-domain from the various BH3-only proteins into intact Bid protein enhances Bax/Bak-activating capacity of the BH3-domains of Bid, Bim, Puma, Bmf (Bcl-2-modifying factor), Bik and Hrk.9The displacement (or indirect activation) model on the other hand posits that Bax and Bak are held in check by anti-apoptotic Bcl-2 proteins and auto-activate when this interaction is broken by BH3-only proteins (displacement). BH3-only proteins can bind to anti-apoptotic Bcl-2 proteins and upon apoptotic stimulation may cause the displacement of these proteins from Bax and Bak, which may lead to the activation of effectors. BH3-peptides derived from Bim and Puma can bind to all anti-apoptotic Bcl-2 proteins and its corresponding proteins exert killing upon overexpression, whereas Bad, Bmf, Bid, Bik, Hrk and Noxa display binding patterns restricted to certain anti-apoptotic Bcl-2 proteins.4 It was therefore suggested that Bax/Bak activation requires the neutralization/displacement of several anti-apoptotic proteins, which may be achieved by one BH3-only protein with broadly binding characteristics (such as Bim) or by the combination of BH3-only proteins with restricted binding capabilities (for instance Bad plus Noxa).10, 11The models have been further refined; the ‘embedded together'' model additionally considers the dynamic interaction of the proteins with the mitochondrial membrane,12 and it has been proposed that the models can be unified by taking two ‘modes'' of inhibition into account: anti-apoptotic Bcl-2 proteins have a dual function in inactivating both, BH3-only proteins and effectors. Pro-apoptotic signals cause the release of activator BH3-only proteins from sequestration with anti-apoptotic Bcl-2 proteins. Free BH3-only proteins directly activate effectors, however, cell death may still not be initiated because the effectors are then held in check by anti-apoptotic Bcl-2 proteins. Free activator BH3-only proteins are required to activate effectors.13This model unifies the two above models in the sense that it incorporates aspects of both, inhibition and displacement as well as direct activation. However, the core difference between the (direct) activation and the displacement model appears to be irreconcilable: in the activation model Bax and Bak are inactive unless receiving a stimulus from BH3-only proteins whereas in the displacement model they are active unless bound to anti-apoptotic proteins. Thus, in the absence of all other proteins one model predicts that Bax/Bak are active, the other that they are inactive. Obviously they cannot be both.The direct activation model has initially been established with Bax and the displacement model with Bak. The data are very strong that Bax is activated by direct interaction with BH3-only proteins. Recombinant Bak can also be directly activated by recombinant tBid,14 and Bid/BH3-chimaeras can activate recombinant Bak missing its C terminus.9 However, since Bak is normally inserted into the outer mitochondrial membrane where it may be bound to numerous other Bcl-2-family members, it has been difficult directly to test activation of Bak in the physiological situation.One possibility to ‘unify'' the original models may be in a model where Bax is physiologically activated by direct activation (Bax is inactive until receiving a signal through BH3-only proteins) whereas Bak is activated indirectly (auto-activates when the inhibition by Bcl-2-like proteins is relieved). Here we test this possibility of indirect Bak activation. We targeted anti-apoptotic Bcl-2 family proteins using RNAi. In this setting, protein concentrations and conditions are physiological, which avoids some of the problems associated with overexpression or cell-free experiments. Non-malignant cells may respond differently to the loss of anti-apoptotic Bcl-2 proteins compared with tumor cells.15 In this study, using non-malignant cells, we targeted all anti-apoptotic Bcl-2 molecules in combinations of two. In the absence of apoptotic stimuli we observed that the combined loss of Bcl-XL and Mcl-1 was sufficient to induce apoptosis. The direct activator proteins Bid, Bim and Puma were not needed. These observations provide evidence for indirect activation of Bak.  相似文献   

6.
During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.  相似文献   

7.
细胞凋亡, 即细胞程序性死亡, 在多细胞生物的发育和稳态调控过程中发挥关键作用。Bcl-2家族蛋白是凋亡过程中的主要调控因子, 关于Bcl-2家族蛋白在凋亡过程中的功能及其作用机制一直是研究的热点。已有研究显示Bcl-2家族蛋白不仅作用于线粒体引发凋亡, 并且参与了包括对细胞内质网Ca2+的调控、DNA损伤的修复及与自噬的相互作用等多种反应, 从多方面对细胞的生存状态进行调控。Bcl-2家族蛋白保守存在于脊椎动物和无脊椎动物中, 其功能在进化中存在异同。文章以高等脊椎动物(哺乳动物)和低等脊椎动物(硬骨鱼类)为代表, 总结了近年来Bcl-2家族蛋白在调控宿主凋亡与自噬、DNA损伤及新陈代谢等方面取得的最新进展。该研究为深入了解鱼类和哺乳类Bcl-2家族蛋白的功能和作用机制提供了重要参考。  相似文献   

8.
The novel anticancer drug ABT-737 is a Bcl-2 Homology 3 (BH3)-mimetic that induces apoptosis by inhibiting pro-survival Bcl-2 proteins. ABT-737 binds with equal affinity to Bcl-2, Bcl-xL and Bcl-w in vitro and is expected to overrule apoptosis resistance mediated by these Bcl-2 proteins in equal measure. We have profiled ABT-737 specificity for all six pro-survival Bcl-2 proteins, in p53 wild-type or p53-mutant human T-leukemic cells. Bcl-B was untargeted, like Bfl-1 and Mcl-1, in accord with their low affinity for ABT-737 in vitro. However, Bcl-2 proved a better ABT-737 target than Bcl-xL and Bcl-w. This was reflected in differential apoptosis-sensitivity to ABT-737 alone, or combined with etoposide. ABT-737 was not equally effective in displacing BH3-only proteins or Bax from Bcl-2, as compared with Bcl-xL or Bcl-w, offering an explanation for the differential ABT-737 sensitivity of tumor cells overexpressing these proteins. Inducible expression demonstrated that BH3-only proteins Noxa, but not Bim, Puma or truncated Bid could overrule ABT-737 resistance conferred by Bcl-B, Bfl-1 or Mcl-1. These data identify Bcl-B, Bfl-1 and Mcl-1, but also Bcl-xL and Bcl-w as potential mediators of ABT-737 resistance and indicate that target proteins can be differentially sensitive to BH3-mimetics, depending on the pro-apoptotic Bcl-2 proteins they are complexed with.  相似文献   

9.
Puma strikes Bax     
The commitment to programmed cell death via apoptosis is largely made upon activation of the proapoptotic mitochondrial proteins Bax or Bak. In this issue, Gallenne et al. (Gallenne, C., F. Gautier, L. Oliver, E. Hervouet, B. Noël, J.A. Hickman, O. Geneste, P.-F. Cartron, F.M. Vallette, S. Manon, and P. Juin. 2009. J. Cell Biol. 185:279–290) provide evidence that the p53 up-regulated modulator of apoptosis (Puma) protein can directly activate Bax.The Bcl-2 family of proteins participates in the control of the cell''s commitment to programmed cell death via the mitochondrial or intrinsic apoptotic pathway. Certain proteins in this family, including Bcl-2, Bcl-xL, Bcl-w, Mcl-1, and Bfl-1/A1, inhibit apoptosis, whereas others in this family promote apoptosis. Proapoptotic Bax and Bak appear to be indispensible for apoptosis (Lindsten et al., 2000; Wei et al., 2001). How does the cell determine fate in the face of competing pro- and antiapoptotic proteins? The rheostat model proposed that when there were more antiapoptotic proteins than proapoptotic proteins, the cell survived and vice versa. However, in many cases, the conversion of a living cell to one committed to death occurs without significant change in the levels of pro- and antiapoptotic proteins. The participation of a third class of proapoptotic proteins largely explained this riddle. These proteins, so-called BH3-only as they share homology only in the proapoptotic Bcl-2 homology 3 domain, appear to act as sentinels of cell damage, which convert initial perturbations into death signals, that act in the mitochondrial pathway. Now, Gallenne et al. (see p. 279 of this issue) provide mechanistic insight into how the BH3-only protein Puma promotes apoptosis. The authors find that Puma, like the BH3-only proteins Bim and Bid, directly activates Bax.A key event in the commitment to apoptosis is Bax- and Bak-mediated permeabilization of the outer mitochondrial membrane. For this to occur, Bax and Bak alter their conformation from an inactive to an active form, form homo-oligomers in the membrane, and contribute to the formation of pores, which allows the egress of proapoptotic proteins to the cytosol (Fig. 1). Although there is consensus that Bax and Bak must shift from an inactive to an active state for this to occur, there is less consensus about what specific factors cause this crucial switch (Willis et al., 2007). Bid and Bim have been shown to cause activation (conformational change and oligomerization) of Bax and Bak in cellular, mitochondrial, and liposomal systems (Wei et al., 2000; Kuwana et al., 2002; Cartron et al., 2004; Certo et al., 2006). Direct interaction between these activators and Bax has been established experimentally (Gavathiotis et al., 2008; Lovell et al., 2008). Additional studies have suggested that p53 itself may translocate to the mitochondria and activate Bax after select stimuli (Mihara et al. 2003; Chipuk et al., 2004). Even heat has been indicted as a potential activating factor (Pagliari et al., 2005). It is quite possible that many activating factors remain to be discovered.Open in a separate windowFigure 1.Control of mitochondrial permeabilization by Bcl-2 family proteins. Activated Bax or Bak are available to oligomerize either when they are directly activated by activating factors, including activator BH3-only proteins (top), or when preactivated Bax or Bak are displaced from antiapoptotic proteins by either activator or sensitizer BH3-only proteins (bottom). Gallenne et al. (2009) provide evidence that Puma is an activator rather than a sensitizer. Oligomerized Bax or Bak participate in forming a pore that allows egress of proapoptotic factors like cytochrome c. Cytochrome c promotes formation of the apoptosome complex, which causes activation of effector caspases. These proteases cleave many key cellular proteins to bring about the apoptotic phenotype. Figure adapted with permission from the Journal of Cell Science (Brunelle, J.K., and A. Letai. 2009. J. Cell Sci. 122:437–441).Antiapoptotic proteins inhibit apoptosis by binding proapoptotic factors. In many cases, the proapoptotic factors are activator BH3-only proteins like Bid and Bim. However, in some cases, the proapoptotic factors may also include activated monomeric Bax and Bak, which are intercepted before they can oligomerize and form pores. Cells have been described in which antiapoptotic proteins are loaded with abundant prodeath proteins as being “primed for death.” Such cells are particularly sensitive to treatment with chemotherapy and antagonists of antiapoptotic proteins like ABT-737 (Certo et al., 2006; Deng et al., 2007). In most cells, the vast majority of Bax and Bak are in the inactive form, and activated Bax and Bak can be difficult to detect in the absence of toxic perturbation. Nonetheless, BH3-only molecules, which lack the ability to directly activate Bax or Bak, can cause apoptosis by competing for binding to antiapoptotic proteins (Fig. 1). If this competition frees sufficient activator proteins (or activated Bax and Bak), oligomerization of Bax and Bak ensues, committing the cell to death. Based on performance in assays on mitochondria and artificial liposomes spiked with Bax, the BH3-only family has thus been segregated into two subfamilies: the sensitizers and the activators.Where does Puma fit in? Puma was initially identified as a p53-regulated gene that was induced after DNA damage (Nakano and Vousden, 2001). It has subsequently been found that Puma is responsible for much of the proapoptotic effect of p53 induction but that Puma can also cause apoptosis in a p53-independent fashion (Jeffers et al., 2003; Villunger et al., 2003). The assignment of Puma as either a sensitizer or an activator has been somewhat contentious. The BH3 domains of BH3-only proteins are both necessary and sufficient to interact with Bcl-2 family members and seem to largely recapitulate function of the entire protein. For instance, the BH3 domains of Bid and Bim can activate Bax and Bak in liposomal or mitochondrial settings. The Puma BH3 domain lacked this function in several studies, leading many to classify Puma as a sensitizer (Kuwana et al., 2005; Certo et al., 2006). However, experiments with the full-length protein translated in vitro show an ability to activate Bax comparable with that of Bim and Bid (Kim et al., 2006).Cartron et al. (2004) has previously found that the BH3 domains of Bim and Puma but not the sensitizer Bad interact with Bax and cause its activation. In Gallenne et al. (2009), the role of Puma as an activator is further supported by three main pieces of evidence. First, Bax preincubated with the Puma BH3 peptide is more toxic to microinjected cells than is Bax alone. This enhancement is blocked by coincubation with a peptide mimicking the putative interaction site on Bax, the Hα1 C-terminal peptide. This suggests that the interaction of the Puma BH3 domain with a site on the first α helix of Bax is necessary for Puma''s enhancement of Bax killing. It is worth noting that this interaction site on Bax, first identified by this group 4 yr ago, overlaps with an interaction site of the activator Bim BH3 peptide with Bax recently demonstrated by nuclear magnetic resonance in solution (Gavathiotis et al., 2008). The fact that two groups independently identified a similar and unexpected site for interaction of activating BH3 domains with Bax lends some confidence to this finding.Additionally, because the Bcl-2 family is absent from the yeast genome, the authors exploit yeast to study Puma and Bax in a setting uncontaminated by the contribution of unmeasured Bcl-2 family proteins. Again, they find that coexpression of Puma is necessary for efficient killing by Bax. Finally, the authors investigate the participation of Puma in killing human colorectal cancer cells with ABT-737. ABT-737 is a BH3 mimetic that promotes apoptosis by binding antiapoptotic proteins and displacing select prebound prodeath proteins. Thus, ABT-737 can only kill cells that are primed with either activators or preactivated Bax or Bak. They find that ABT-737 treatment results in the freeing of Puma, which then interacts with Bax, correlating with the death of the cell. This finding suggests that Puma can play the priming function that is likely critical to sensitivity to many chemotherapeutic agents as well as ABT-737 (Deng et al., 2007). This role may be particularly important in cells in which Bim and Bid are not expressed at high levels.Some questions remain. It is not clear why several laboratories have consistently failed to observe an activating function for the BH3 domain of Puma in either mitochondrial or liposomal systems. It is possible that even if Puma can play an activating role, the efficiency of this function may vary considerably according to context and perhaps be much less in many contexts than that of Bid or Bim. In a full-length Puma protein, perhaps interactions of the Puma BH3 domain with Bax are enhanced. It is also possible that unknown posttranslational modifications of Puma or Bax, varying according to cellular context, significantly influence the ability of Puma to activate Bax. In any case, Gallenne et al. (2009) have strengthened the case for Puma as an activator so that its potential contribution to this function cannot be ignored. One must now wonder: what other activators might still be out there waiting to be discovered?  相似文献   

10.
Release of apoptogenic proteins such as cytochrome c from mitochondria is regulated by pro- and anti-apoptotic Bcl-2 family proteins, with pro-apoptotic BH3-only proteins activating Bax and Bak. Current models assume that apoptosis induction occurs via the binding and inactivation of anti-apoptotic Bcl-2 proteins by BH3-only proteins or by direct binding to Bax. Here, we analyze apoptosis induction by the BH3-only protein Bim(S). Regulated expression of Bim(S) in epithelial cells was followed by its rapid mitochondrial translocation and mitochondrial membrane insertion in the absence of detectable binding to anti-apoptotic Bcl-2 proteins. This caused mitochondrial recruitment and activation of Bax and apoptosis. Mutational analysis of Bim(S) showed that mitochondrial targeting, but not binding to Bcl-2 or Mcl-1, was required for apoptosis induction. In yeast, Bim(S) enhanced the killing activity of Bax in the absence of anti-apoptotic Bcl-2 proteins. Thus, cell death induction by a BH3-only protein can occur through a process that is independent of anti-apoptotic Bcl-2 proteins but requires mitochondrial targeting.  相似文献   

11.
At the end of an immune response, apoptosis drastically reduces the numbers of activated T cells. It has been a matter of intense research how this form of apoptosis is regulated and initiated, and a number of proteins have been identified that contribute to this process. The present, widely accepted model assumes that the interplay of pro- and anti-apoptotic Bcl-2 family members determines the onset of activated T cell death, with the BH3-only protein Bim activating pro-apoptotic Bax/Bak. In the search for up-stream signals, factors from other immune cells have been shown to play a role, and the NF-κB family member Bcl-3 has been implicated as a signalling-intermediate in T cells. Recent work has tested the interrelation of these factors and has suggested that Bcl-3 acts as a regulator of Bim activation, that the induction of apoptosis through Bim can be complemented by its relative Puma, and that the presence of certain cytokines during T cell activation delays the activation of Bim and Puma. Here we discuss these recent insights and provide a view on how the regulation of activated T cell death is achieved and how extrinsic signals may translate into the activation of the apoptotic pathway.  相似文献   

12.
Zhao Z  Wang J  Tang J  Liu X  Zhong Q  Wang F  Hu W  Yuan Z  Nie C  Wei Y 《The Biochemical journal》2012,444(2):291-301
BH3 (Bcl-2 homology domain 3)-only proteins have an important role in the cisplatin resistance of cells. However, the effect of BH3-only proteins on cisplatin-resistant ovarian cancer cells has not been thoroughly elucidated. Our results from the present study indicate that Puma plays a critical role in the apoptosis of chemo-resistant ovarian cancer cells treated with BetA (betulinic acid). The reduction of Puma expression inhibits Bax activation and apoptosis. However, p53 gene silencing has little effect on Puma activation. Further experiments demonstrated that Akt-mediated FoxO3a (forkhead box O3a) nuclear translocation and the JNK (c-Jun N-terminal kinase)/c-Jun pathway only partially trigger Puma induction and apoptosis, whereas dominant-negative c-Jun expression with FoxO3a reduction completely inhibits Puma expression and cell death. Furthermore, our results suggest that JNK regulates the Akt/FoxO3a signalling pathway. Therefore the dual effect of JNK can efficiently trigger Puma activation and apoptosis in chemoresistant cells. Taken together, our results demonstrate the role of Puma in BetA-induced apoptosis and the molecular mechanisms of Puma expression regulated by BetA during ovarian cancer cell apoptosis. Our findings suggest that the JNK-potentiated Akt/FoxO3a and JNK-mediated c-Jun pathways co-operatively trigger Puma expression, which determines the threshold for overcoming chemoresistance in ovarian cancer cells.  相似文献   

13.
To identify the mechanisms of ultraviolet radiation (UVR)-induced cell death, for which the tumor suppressor p53 is essential, we have analyzed mouse embryonic fibroblasts (MEFs) and keratinocytes in mouse skin that have specific apoptotic pathways blocked genetically. Blocking the death receptor pathway provided no protection to MEFs, whereas UVR-induced apoptosis was potently inhibited by Bcl-2 overexpression, implicating the mitochondrial pathway. Indeed, Bcl-2 overexpression boosted cell survival more than p53 loss, revealing a p53-independent pathway controlled by the Bcl-2 family. Analysis of primary MEFs lacking individual members of its BH3-only subfamily identified major initiating roles for the p53 targets Noxa and Puma. In the transformed derivatives, where Puma, unexpectedly, was not induced by UVR, Noxa had the dominant role and Bim a minor role. Furthermore, loss of Noxa suppressed the formation of apoptotic keratinocytes in the skin of UV-irradiated mice. Collectively, these results demonstrate that UVR activates the Bcl-2-regulated apoptotic pathway predominantly through activation of Noxa and, depending on cellular context, Puma.  相似文献   

14.
Mitochondrial apoptosis regulates survival and development of hematopoietic cells. Prominent roles of some Bcl-2-family members in this regulation have been established, for instance for pro-apoptotic Bim and anti-apoptotic Mcl-1. Additional, mostly smaller roles are known for other Bcl-2-members but it has been extremely difficult to obtain a comprehensive picture of the regulation of mitochondrial apoptosis in hematopoietic cells by Bcl-2-family proteins. We here use a system of mouse ‘conditionally immortalized’ lymphoid-primed hematopoietic progenitor (LMPP) cells that can be differentiated in vitro to pro-B cells, to analyze the importance of these proteins in cell survival. We established cells deficient in Bim, Noxa, Bim/Noxa, Bim/Puma, Bim/Bmf, Bax, Bak or Bax/Bak and use specific inhibitors of Bcl-2, Bcl-XL and Mcl-1 to assess their importance. In progenitor (LMPP) cells, we found an important role of Noxa, alone and together with Bim. Cell death induced by inhibition of Bcl-2 and Bcl-XL entirely depended on Bim and could be implemented by Bax and by Bak. Inhibition of Mcl-1 caused apoptosis that was independent of Bim but strongly depended on Noxa and was completely prevented by the absence of Bax; small amounts of anti-apoptotic proteins were co-immunoprecipitated with Bim. During differentiation to pro-B cells, substantial changes in the expression of Bcl-2-family proteins were seen, and Bcl-2, Bcl-XL and Mcl-1 were all partially in complexes with Bim. In differentiated cells, Noxa appeared to have lost all importance while the loss of Bim and Puma provided protection. The results strongly suggest that the main role of Bim in these hematopoietic cells is the neutralization of Mcl-1, identify a number of likely molecular events during the maintenance of survival and the induction of apoptosis in mouse hematopoietic progenitor cells, and provide data on the regulation of expression and importance of these proteins during differentiation along the B cell lineage.Subject terms: Apoptosis, Immune cell death  相似文献   

15.
In the p53-deficient human B lymphoma Namalwa cell line that quickly undergoes apoptosis after DNA topoisomerase I inhibitor (camptothecin, CPT) treatment, we observed rapid and slight induction of the pro-apoptotic BH3-only Bik, Bim-EL, Bim-L and Bim-S proteins. In contrast, the expression levels of Bad and multidomain Bax-alpha and Bak remained mostly unchanged after CPT treatment. However, multiple pro-apoptotic proteins, including Bax-alpha, Bak, Bik, Bim-EL and Bim-L, translocated rapidly to the mitochondria after CPT treatment. Gel filtration chromatography experiments demonstrated that somes of the pro-apoptotic proteins assemble themselves into high molecular weight protein complexes. The protein composition of these oligomers was further analyzed by co-immunoprecipitation experiments performed on highly purified mitochondrial fractions, which revealed the formation of Bax/Bak, Bax/VDAC1, Bak/VDAC1, Bim/VDAC1 and Bim/Bcl-2 complexes after DNA damage induction. Thus, it appeared that induction, mitochondrial translocation and assembly in multimeric protein complexes of several pro-apoptotic members of the Bcl-2 family correlated with the rapid activation of apoptosis in a p53-independent pathway after CPT-mediated DNA strand breaks.  相似文献   

16.
Proteins of the Bcl-2 family are critical regulators of apoptosis, but how its BH3-only members activate the essential effectors Bax and Bak remains controversial. The indirect activation model suggests that they simply must neutralize all of the prosurvival Bcl-2 family members, whereas the direct activation model proposes that Bim and Bid must activate Bax and Bak directly. As numerous in vitro studies have not resolved this issue, we have investigated Bim''s activity in vivo by a genetic approach. Because the BH3 domain determines binding specificity for Bcl-2 relatives, we generated mice having the Bim BH3 domain replaced by that of Bad, Noxa, or Puma. The mutants bound the expected subsets of prosurvival relatives but lost interaction with Bax. Analysis of the mice showed that Bim''s proapoptotic activity is not solely caused by its ability to engage its prosurvival relatives or solely to its binding to Bax. Thus, initiation of apoptosis in vivo appears to require features of both models.  相似文献   

17.
18.
19.
20.
The key event in the mitochondrial pathway of apoptosis is the activation of Bax and Bak by BH3-only proteins through a molecular mechanism that is still a matter of debate. Here we studied interactions among anti- and proapoptotic proteins of the Bcl-2 family in living cells by using bimolecular fluorescence complementation analysis. Our results indicate that the antiapoptotic proteins Mcl-1 and Bcl-xL bind preferably to the BH3-only proteins Bim, PUMA, and Noxa but can also bind to Bak and Bax. We also found a direct interaction between Bim, PUMA, or Noxa with either Bax or Bak during apoptosis induction. In HeLa cells, interaction of Bim with Bax occurs in cytosol, and then Bim-Bax complexes translocate to mitochondria. Complexes of either PUMA or Noxa with Bax or Bak were always detected at mitochondria. Overexpression of Bcl-xL or Mcl-1 delayed Bim/Bax translocation to mitochondria. These results reveal the ability of main BH3-only proteins to directly activate Bax and Bak in living cells and suggest that a complex network of interactions regulate the function of Bcl-2 family members during apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号