首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
During aerobic growth on glucose, several species of luminous marine bacteria exhibited an imcomplete oxidative catabolism of substrate. Pyruvate, one of the products of glucose metabolism, was excreted into the medium during exponential growth and accounted for up to 50% of the substrate carbon metabolized. When glucose was depleted from the medium, the excreted pyruvate was promptly utilized, demonstrating that the cells are capable of pyruvate catabolism. Pyruvate excretion is not a general phenomenon of carbohydrate metabolism since it does not occur during the utilization of glycerol or maltose. When cells pregrown on glycerol were exposed to glucose, they began to excrete pyruvate, even if protein synthesis was blocked with chloramphenicol. Glucose thus appears to have an effect on the activity of preexisting catabolic enzymes.  相似文献   

2.
Pyruvate production and excretion by the luminous marine bacteria.   总被引:10,自引:2,他引:8       下载免费PDF全文
During aerobic growth on glucose, several species of luminous marine bacteria exhibited an imcomplete oxidative catabolism of substrate. Pyruvate, one of the products of glucose metabolism, was excreted into the medium during exponential growth and accounted for up to 50% of the substrate carbon metabolized. When glucose was depleted from the medium, the excreted pyruvate was promptly utilized, demonstrating that the cells are capable of pyruvate catabolism. Pyruvate excretion is not a general phenomenon of carbohydrate metabolism since it does not occur during the utilization of glycerol or maltose. When cells pregrown on glycerol were exposed to glucose, they began to excrete pyruvate, even if protein synthesis was blocked with chloramphenicol. Glucose thus appears to have an effect on the activity of preexisting catabolic enzymes.  相似文献   

3.
Filamentous fungi are able to spill energy when exposed to energy excess by uncoupling catabolism from anabolism, e.g. via overflow metabolism. In current study we tested the hypothesis that overflow metabolism is regulated via the energetic status of the hyphae (i.e. energy charge, ATP concentration). This hypothesis was studied in Penicillium ochrochloron during the steady state of glucose- or ammonium-limited chemostat cultures as well as during three transient states ((i) glucose pulse to a glucose-limited chemostat, (ii) shift from glucose-limited to ammonium-limited conditions in a chemostat, and (iii) ammonium exhaustion in batch culture). Organic acids were excreted under all conditions, even during exponential growth in batch culture as well as under glucose-limited conditions in a chemostat. Partial uncoupling of catabolism and anabolism via overflow metabolism was thus constitutively present. Under all tested conditions, overflow metabolism was independent of the energy charge or the ATP concentration of the hyphae. There was a reciprocal correlation between glucose uptake rate and intracellular adenine nucleotide content. During all transients states a rapid decrease in energy charge and the concentrations of nucleotides was observed shortly after a change in glycolytic flux (“ATP paradoxon”). A possible connection between the change in adenine nucleotide concentrations and the purine salvage pathway is discussed.  相似文献   

4.
The relations between motility and respiration were studied in ejaculated bull spermatozoa respiring with lactate. Motility was quantitatively evaluated by a turbidimetric procedure as percentage of cells moving per minute from the bottom of the cuvette into the light path. For selective inhibition of ATP-consuming reactions including motility or of mitochondrial respiration, vanadate or cyanide, respectively, were used. Both inhibitors were found to produce proportional changes in motility and respiration. The simultaneous changes in motility and respiration were linked to shifts in the cellular ATP/ADP ratio. Partial uncoupling of respiration in vanadate-inhibited cells gave similar relations between respiration and ATP/ADP ratios as stepwise inhibition of ATP-utilizing reactions by vanadate. Presuming saturation kinetics with respect to the ATP/ADP ratio, half maximum constants of 1.7 and 4.7 for the ATP/ADP ratio and maximum values of about 130% and 300% (in comparison to untreated cells) were estimated for motility and respiration, respectively. Respiration showed a much steeper dependence on the ATP/ADP ratio than motility resulting in an apparent cooperativity coefficient of 2.9. From these dependences on the ATP/ADP ratio, the shares in the control of ATP turnover in untreated cells were estimated. At sufficient supply with substrate, more than 80% of control were excreted by motility and other ATP-utilizing reactions, the rest by mitochondrial ATP production, i.e., the reactions of oxidative phosphorylation.  相似文献   

5.
6.
GTP catabolism induced by sodium azide or deoxyglucose was studied in purine nucleoside phosphorylase (PNP) deficient human B lymphoblastoid cells. In PNP deficient cells, as in control cells, guanylate was both dephosphorylated and deaminated but dephosphorylation was the major pathway. Only nucleosides were excreted during GTP catabolism by PNP deficient cells and the main product was guanosine. The level of nucleoside excretion was largely affected by intracellular orthophosphate (Pi) level. In contrast, normal cells excreted nucleosides only at low Pi level while at high Pi levels, purine bases (guanine and hypoxanthine) were exclusively excreted. PNP deficiency had no effect on the extent of GMP deamination.  相似文献   

7.
1. A rapid-sampling technique was used to obtain perchloric acid extracts of cells growing in a chemostat culture, so that meaningful values for ATP content could be obtained in spite of the fact that the turnover time for the total ATP content was about 1sec. 2. For steady-state growth, it was found that, in a glucose-limited chemostat culture, the ATP/ADP concentration ratio was approximately constant with changes in dissolved-oxygen tensions above the critical value, but fell when the culture was grown under oxygen-limited conditions and was at a minimum in anaerobically grown cultures. The steady-state ATP content was lower in cells growing under nitrogen-limited conditions with glucose in excess than in glucose-limited cells. The steady-state ATP content was independent of growth rate at growth rates over 0.1hr.(-1). 3. When the respiration rate of the cells was stimulated by lowering the oxygen tension the ATP content did not increase, indicating either an increased turnover rate of ATP or a fall in the P/O ratio. The sudden addition of extra glucose or succinate to a glucose-limited culture increased the respiration rate of the cells, but the ATP content quickly returned to the steady-state value after initial perturbations. This control over ATP content is explained in terms of regulation by adenine nucleotides of the catabolism and anabolism of glucose. An exception to this control over ATP content was found when the respiration rate was stimulated by addition of an antifoam.  相似文献   

8.
Erythrocytes from the Yucatan miniature pig, like those from the normal domestic pig, lack functional glucose transporters and were unable to utilize plasma glucose as an energy source. In contrast, inosine and adenosine entered the cells rapidly. The nucleoside transporter responsible for this uptake was identified as a band 4.5 polypeptide (5000 copies per cell; apparent Mr 45 000-66 000). Inosine concentrations in the physiological plasma range (1.6-2.5 microM) were found to maintain normal erythrocyte ATP levels and ATP/ADP ratios during prolonged in vitro incubation of cells at 37 degrees C, an effect that was blocked by the specific nucleoside transport inhibitor, nitrobenzylthioguanosine. In the absence of extracellular nucleoside, cells 'protected' themselves against some of the consequences of deprivation of energy substrate by glycolyzing the ribose moiety of inosine produced during ATP catabolism. Although erythrocytes from the miniature pig were capable of utilizing extracellular adenosine as an energy substrate, plasma samples from these animals contained less than 0.4 microM adenosine. It is concluded that inosine is a major physiological energy source of pig erythrocytes.  相似文献   

9.
To establish a balance between the ATP produced in catabolism and the ATP consumed in net biosynthesis of cellular components the energy metabolism of Saccharomyces cerevisiae utilizing glucose in the absence of a nitrogen source (resting cells) was studied. The following results were obtained. (i) Cell number and biomass increased 2- and 2.5-fold, respectively, during the first 8 h of ammonium starvation. After this period, both values remained constant. (ii) The rate of sugar consumption and ATP production decreased with the duration of starvation to about 20% of the original in 24 h. (iii) About 60% of the sugar consumed was fermented to ethanol and about 10% assimilated as cellular material. Of the assimilated sugar, as much as 80% was accumulated as carbohydrate. (iv) Only 15% of the total ATP produced in catabolism seems to be consumed in net biosynthesis and maintenance of intracellular pH. The fate of the remaining 85% is unknown.  相似文献   

10.
In mammalian cell cultures, ammonia that is released into the medium as a result of glutamine metabolism and lactate that is excreted due to incomplete glucose oxidation are both known to essentially inhibit the growth of cells. For some cell lines, for example, hybridoma cells, excreted ammonia also has an effect on product formation. Although glutamine has been generally considered as the major energy source for mammalian cells, it was recently found that various adherent cell lines (MDCK, CHO-K1, and BHK21) can grow as well in glutamine-free medium, provided glutamine is substituted with pyruvate. In such a medium the level of both ammonia and lactate released was significantly reduced. In this study, metabolic flux analysis (MFA) was applied to Madin Darby Canine Kidney (MDCK) cells cultivated in glutamine-containing and glutamine-free medium. The results of the MFA allowed further investigation of the influence of glutamine substitution with pyruvate on the metabolism of MDCK cells during different growth stages of adherent cells, e.g., early exponential and late contact-inhibited phase. Pyruvate seemed to directly enter the TCA cycle, whereas most of the glucose consumed was excreted as lactate. Although the exact mechanisms are not clear so far, this resulted in a reduction of the glucose uptake necessary for cellular metabolism in glutamine-free medium. Furthermore, consumption of ATP by futile cycles seemed to be significantly reduced when substituting glutamine with pyruvate. These findings imply that glutamine-free medium favors a more efficient use of nutrients by cells. However, a number of metabolic fluxes were similar in the two cultivations considered, e.g., most of the amino acid uptake and degradation rates or fluxes through the branch of the TCA cycle converting alpha-ketoglutarate to malate, which is responsible for the mitochondrial ATP synthesis. Besides, the specific rate of cell growth was approximately the same in both cultivations. Thus, the switch from glutamine-containing to glutamine-free medium with pyruvate provided a series of benefits without dramatic changes of cellular metabolism.  相似文献   

11.
Regulation of sugar transport and metabolism in lactic acid bacteria   总被引:6,自引:0,他引:6  
Abstract The phosphoenolpyruvate (PEP)-dependent lactose: phosphotransferase system (PTS), P-β-galactosidase, and enzymes of the d -tagatose-6P pathway, are prerequisite for rapid homolactic fermentation of lactose by Group N ('starter') streptococci. Moreover, the reactions of transport and catabolism constitute an open cycle in which ATP and lactic acid are metabolic products. The efficient and controlled operation of this cycle requires 'fine-control' mechanisms to ensure: (i) tight coupling between transport and energy-yielding reactions, (ii) co-metabolism of both glucose and galactose moieties of the disaccharide, and (iii) coordination of the rate of sugar transport to the rate of sugar catabolism. The elucidation of these fine-control mechanisms in intact cells of Streptococcus lactis has required the isolation of glucokinase (GK) and mannose-PTS defective mutants, the synthesis of novel lactose analogs, and the use of high resolution [31P]NMR spectroscopy. It has been established that PEP provides the crucial link between transport and energy-yielding reactions of the PTS: glycolysis cycle, and that both ATP-dependent glucokinase and PEP-dependent mannose-PTS can participate in the phosphorylation of intracellular glucose. Finally, evidence has been obtained in vivo, for modulation of pyruvate kinase activity in response to fluctuation in, concentrations of positive (FDP), and negative (Pi) effectors of the allosteric enzyme. Fine-control of pyruvate kinase activity may in turn regulate: (i) the distribution of PEP to either the PTS or ATP synthesis, (ii) overall activity of the PTS: glycolysis cycle, and (iii) the formation of the endogenous PEP-potential in starved organisms. The accumulation of non-metabolizable PTS sugars (e.g., 2-deoxy- d -glucose) by growing cells can perturb these fine-control mechanisms and, by establishment of a PEP-dissipating futile cycle, may result in bacteriostasis.  相似文献   

12.
Saccharomyces sp. SK0704 (further defined as SK0704) isolated from long-term-ripening kimchi was identified by a biochemical method with an API kit; its physiology was found to be very similar to that of S. cerevisiae ATCC 26603 (further defined as ATCC 26603), except in terms of starch utilization. SK0704 did not excrete extracellular glucoamylase, but utilized starch as a sole carbon source under only aerobic conditions. Crude enzyme excreted from SK0704 catalyzed the saccharification of starch to glucose, but ATCC 26603 did not. The PCR product obtained using the chromosomal DNA of SK0704 and the primers designed on the basis of the extracellular glucoamylase-coding gene of S. diastaticus was homologous with the intracellular sporulation-specific glucoamylase of S. cerevisiae. SDS-PAGE pattern of soluble protein extracted from yeast cells grown on glucose was greatly different from that on starch. From these results, we proposed that the SK0704 may have a specific physiological function for starch catabolism such as membrane transport system and intracellular sac-charification of starch.  相似文献   

13.
Increased glycolytic flux is a common feature of many cancer cells, which have adapted their metabolism to maximize glucose incorporation and catabolism to generate ATP and substrates for biosynthetic reactions. Indeed, glycolysis allows a rapid production of ATP and provides metabolic intermediates required for cancer cells growth. Moreover, it makes cancer cells less sensitive to fluctuations of oxygen tension, a condition usually occurring in a newly established tumor environment. Here, we provide evidence for a dual role of MAPK14 in driving a rearrangement of glucose metabolism that contributes to limiting reactive oxygen species (ROS) production and autophagy activation in condition of nutrient deprivation. We demonstrate that MAPK14 is phosphoactivated during nutrient deprivation and affects glucose metabolism at 2 different levels: on the one hand, it increases SLC2A3 mRNA and protein levels, resulting in a higher incorporation of glucose within the cell. This event involves the MAPK14-mediated enhancement of HIF1A protein stability. On the other hand, MAPK14 mediates a metabolic shift from glycolysis to the pentose phosphate pathway (PPP) through the modulation of PFKFB3 (6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase 3) degradation by the proteasome. This event requires the presence of 2 distinct degradation sequences, KEN box and DSG motif Ser273, which are recognized by 2 different E3 ligase complexes. The mutation of either motif increases PFKFB3 resistance to starvation-induced degradation. The MAPK14-driven metabolic reprogramming sustains the production of NADPH, an important cofactor for many reduction reactions and for the maintenance of the proper intracellular redox environment, resulting in reduced levels of ROS. The final effect is a reduced activation of autophagy and an increased resistance to nutrient deprivation.  相似文献   

14.
Muscle contents of ATP, ADP, AMP, creatine phosphate and creatine as well as glycogen, some glycolytic intermediates, pyruvate and lactate were compared in the intact, thyroidectomized and triiodothyronine (T3) treated dogs under resting conditions. After thyroidectomy muscle glycogen, glucose 1-phosphate and glucose 6-phosphate contents were significantly elevated while in T3-treated animals these variables were decreased in comparison with control dogs. Muscle free glucose was not altered by thyroidectomy but T3 treatment significantly increased its content. Muscle lactate content was elevated both in hypo- and hyperthyroid animals. Muscle ATP and total adenine nucleotide contents were significantly increased in hyperthyroid dogs while no differences were found between the three groups in the muscle creatine phosphate content. It is assumed that in T3-treated animals carbohydrate catabolism is enhanced in the resting skeletal muscle in spite of high tissue ATP content. Muscle metabolite alterations in hypothyroid dogs seem to reflect the hypometabolism accompanied by a diminished rate of glycogenolysis with inhibited rate of pyruvate oxidation or decreased rate of lactate removal from the cells.  相似文献   

15.
Concentrations of intracellular orthophosphate were determined in Ehrlich ascites tumor cells incubated with glucose, inosine, or uridine in media of different orthophosphate concentration. The effects of orthophosphate concentration on the accumulation of lactate and of phosphoribosyl pyrophosphate and on concentrations of ribose 1-phosphate and ribose 5-phosphate in tumor cells incubated with glucose were also determined. Both the phosphorolysis of inosine and the rate of catabolism of ATP in cells incubated with 2-deoxyglucose were also influenced by the orthophosphate concentration of the medium.  相似文献   

16.
Streptococcus faecalis grown with glucose as the primary energy source contains a single, nicotinamide adenine dinucleotide phosphate (NADP)-specific 6-phosphogluconate dehydrogenase. Extracts of gluconate-adapted cells, however, exhibited 6-phosphogluconate dehydrogenase activity with either NADP or nicotinamide adenine dinucleotide (NAD). This was shown to be due to the presence of separate enzymes in gluconate-adapted cells. Although both enzymes catalyzed the oxidative decarboxylation of 6-phosphogluconate, they differed from one another with respect to their coenzyme specificity, molecular weight, pH optimum, K(m) values for substrate and coenzyme, and electrophoretic mobility in starch gels. The two enzymes also differed in their response to certain effector ligands. The NADP-linked enzyme was specifically inhibited by fructose-1,6-diphosphate, but was insensitive to adenosine triphosphate (ATP) and certain other nucleotides. The NAD-specific enzyme, in contrast, was insensitive to fructose-1,6-diphosphate, but was inhibited by ATP. The available data suggest that the NAD enzyme is involved primarily in the catabolism of gluconate, whereas the NADP enzyme appears to function in the production of reducing equivalents (NADPH) for use in various reductive biosynthetic reactions.  相似文献   

17.
In vivo rates of glucose uptake and acid production by oral streptococci grown in glucose- or nitrogen-limited continuous culture and batch culture were compared with the glucose phosphorylation activities of harvested, decryptified cells. The strains examined contained significant phosphoenolpyruvate-phosphotransferase system (PTS) activity, measured by a glucose 6-phosphate (G6P) dehydrogenase-linked assay procedure, but this activity was insufficient to account for the in vivo glucose uptake rates. However, ATP was a superior phosphoryl donor to phosphoenolpyruvate, and unlike the PTS, phosphoryl transfer with ATP was insensitive to bacteriostatic concentrations of chlorhexidine, suggesting glucokinase-mediated G6P formation. Again, G6P formation from the PTS and glucokinase reactions was not commensurate with some of the glucose uptake rates observed, implying that other phosphorylation reactions must be occurring. Two novel reactions involving carbamyl phosphate and acetyl phosphate were identified in some of the strains. No G6P formation was detected with these potential phosphoryl donors, but in the presence of phosphoglucomutase, glucose 1-phosphate (G1P) formation was evident, which was insensitive to chlorhexidine. G1P is a precursor of glycogen, and good correlation was obtained between G1P formation activity and endogenous metabolism of washed cells measured either as a rate of acid production at a constant pH 7 or as a decrease in pH with time in the absence of titrant. A "league table" of abilities to synthesize G1P and produce acid from endogenous metabolism was compiled for oral streptococci grown in batch culture. This indicated that Streptococcus mutans Ingbritt and Streptococcus sanguis Challis were unable to form G1P or produce much acid endogenously, whereas increasing activities were obtained with Streptococcus salivarius, Streptococcus sanguis, and Streptococcus mitis. In particular, S. mitis had the highest G1P formation activities and was able to decrease the pH to less than 5 in 15 min by endogenous metabolism alone. The data are consistent with the intracellular accumulation of free glucose driven by proton motive force when PTS activities are low and the subsequent phosphorylation to either G6P for metabolism via glycolysis or G1P for glycogen biosynthesis. The accumulation of acetyl phosphate during glucose-limited growth and the availability of arginine for catabolism to carbamyl phosphate provide an explanation as to why some glucose-limited oral streptococci continue to synthesize glycogen under these conditions, which might prevail in plaque.  相似文献   

18.
Citrate excretion by Penicillium simplicissimum was investigated in a chemostat. Carbon-limited grown P. simplicissimum did not excrete no citrate. Citrate was excreted, however, when growth was nitrogen-limited. Further effects of nitrogen-limitation were a slightly increased rate of glucose and oxygen consumption. This behaviour is typical for a so-called `overflow metabolism', i.e. the uncoupling of anabolism from catabolism under conditions of carbon excess. Still more citrate was excreted by nitrogen-limited P. simplicissimum when (i) the extracellular osmolarity was increased from 0.2 to 1.5 osm kg–1 or (ii) when the pH was increased from 4 to 7; or (iii) when the extracellular potassium concentration was lowered from 6 to 0.5 mM. These results were interpreted in terms of a higher energy-consumption under these conditions.  相似文献   

19.
Conversion of glucose to fructose and sorbitol is documented in rat hepatoma-derived cultured cells (HTC cells). After addition of 5.5 mM [U-14C]glucose to incubation medium, labeled sorbitol and fructose accumulated intracellularly at a linear rate over a period of 60 min. The sugars were isolated, identified, and quantitated by paper chromatography, gas-liquid chromatography, and enzymatic phosphorylation of fructose. Primary culture of adult rat hepatocytes was analyzed similarly and demonstrated no significant accumulation of labeled fructose or sorbitol. The basis for this difference between HTC cells and primary hepatocyte culture was examined both in terms of enzyme activities that mediate the formation of sorbitol and fructose and in terms of the catabolism of these sugars. Both types of culture (as well as extracts of intact rat liver) exhibited enzymatic activities catalyzing the conversion of glucose to sorbitol (aldose reductase) and sorbitol to fructose (sorbitol dehydrogenase). However, the cultures differed strikingly with regard to the catabolism of sorbitol and fructose. The conversion of labeled sorbitol to metabolites in HTC cells was negligible; by contrast, hepatocytes in primary culture utilized the sugars at rates comparable to that of glucose, which may account for the lack of their accumulation in primary culture. The findings suggest that the conversion of glucose to sorbitol and fructose by HTC cells may represent a retained normal liver function, one which is amplified by the inability of HTC cells to dispose of these sugars.  相似文献   

20.
Hu JJ  Wang L  Zhang SP  Wang YQ  Xi XF 《Bioresource technology》2011,102(14):7147-7153
The inhibitory effect of organic carbon on CO2 fixation (CF) by the non-photosynthetic microbial community (NPMC) and its mechanism were studied. The results showed that different concentrations of glucose inhibited CF to some extent. However, when these microorganisms pre-cultured with glucose were re-cultured without organic carbon, their CF efficiency differed significantly from the control based on the glucose concentration in the pre-culture. ATP as bioenergy and NADH as reductant had no obvious inhibitory effect on CF; conversely, they improved CF efficiency to some extent, especially when both were present simultaneously. These results implied that not all organic materials inhibited CF by NPMC, and only those that acted as good carbon sources, such as glucose, inhibited CF. Moreover, some metabolites generated during the catabolism of glucose by heterotrophic metabolism of NPMC might inhibit CF, while other cumulated materials present in the cell interior, such as ATP and NADH, might improve CF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号