首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development and use of transgenic plants has steadily increased, but there are still little data about the responses of soil microorganisms to these genetic modifications. We utilized a greenhouse trial approach to evaluate the effects of altered stem lignin in trembling aspen (Populus tremuloides) on soil microbial communities in three soils which differed in their chemical and physical properties; they included a sandy loam (CO-Colorado), a silt loam (KS-Kansas), and a clay loam (TX-Texas). Three transgenic aspen lines were developed from a natural clone common to the Great Lakes region of North America. The concentrations of stem lignin concentrations were reduced by 35% (Line 23), 40% (Line 141) and 50% (Line 72). Line 72 and Line 141 also had a 40 and 20% increase in syringyl-type stem lignin, respectively. Indirectly, these modifications resulted in increased (5–13%) and decreased (−5 to −57%) levels of root production across the lines and soil types. Responses of the soil microbial communities were investigated using: phospholipid fatty acids (PLFA), neutral lipid fatty acids (NLFA), and 3) extracellular enzyme assays. PLFA analyses indicated that there were large differences in microbial community composition between the three soils. Similarly, there were large differences in total NLFA between soils, with the KS soils having the highest amount and CO the lowest. Enzyme activities did not differ between soils, except for cellubiohydrolase, which was highest in CO soil. Across all three soils, responses to the four genetic lines were not consistent. Interactions between soil type and genetic line make it difficult to assess the potential ecological impacts of transgenic aspen on soil microbial communities and their associated functions. Given these interactions, field trials with transgenic aspen should encompass the wide range of soils targeted for commercial planting in order to determine their effect(s) on the resident soil microbial community. Responsible Editor: Barbara Wick  相似文献   

2.
在农田生态系统中,施肥是维持和提高土壤有机碳(SOC)水平的重要管理措施。微生物代谢和植物组分存留共同控制着有机碳的截获过程。本研究利用肥料与肥力长期(30年)定位试验,以氨基糖和木质素分别作为微生物和植物残留组分标识物,探讨长期不同施肥处理对黑土农田中微生物和植物残体组分积累及有机碳库的影响。结果表明: 与未施肥处理相比,施用无机肥(单施氮肥或有机无机肥配施)可增加作物生物量和土壤氨基糖的积累,但对木质素和SOC含量无显著影响,说明无机肥施入刺激了微生物底物同化,加速了有机碳和木质素在耕层的周转。与无机肥相比,长期施用有机肥促进了SOC的累积(增幅38.3%),但是氨基糖在土壤有机碳中所占的比例并未发生显著变化,说明微生物残留物对SOC积累的贡献具有饱和性;而有机肥施入增加了木质素在SOC中的比例,即增加了植物残体对SOC长期积累的贡献。与单施有机肥相比,有机无机肥配施增加了微生物残留物对SOC的积累。因此,长期施肥可以调节微生物残留物和植物残留组分的不同积累过程,从而影响SOC的积累和稳定机制。  相似文献   

3.
Few experiments have yet been performed to explore the potential ecological impacts of genetic modification in long-lifespan species such as trees. In this paper, we review the available data on GM trees with modified lignin focussing on the results of the first long-term field trials of such trees. These trials evaluated poplars expressing antisense transgenes to reduce the expression of the lignin biosynthesis genes cinnamyl alcohol dehydrogenase (CAD) or caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT) with the aim of producing trees with improved pulping characteristics. The trees were grown for 4 years at two sites in France and England, and their ecological impacts and agronomic performance were assessed. Modifications to lignin in the poplars were maintained over the 4 years of the trial. The trees remained healthy throughout and growth was normal. The lignin modifications had no unexpected biological or ecological impacts. Interactions with leaf-feeding insects, microbial pathogens and soil organisms were unaltered although the short-term decomposition of transgenic roots was slightly enhanced. Investigation of the ecological impacts of the GM trees was curtailed by the early termination of the field trial when it was attacked and largely destroyed by anti-GM protestors. To supplement our work on the decomposition of GM plant materials with modified lignin, we have therefore turned to the study of transgenic tobacco lines where we can perform more comprehensive and controlled analyses of the biological and ecological effects of lignin-gene suppression.  相似文献   

4.
Humic substances readily identifiable in the environment are involved in several biotic and abiotic reactions affecting carbon turnover, soil fertility, plant nutrition and stimulation, xenobiotic transformation and microbial respiration. Inspired by natural roles of humic substances, several applications of these substances, including crop stimulants, redox mediators, anti-oxidants, human medicines, environmental remediation and fish feeding, have been developed. The annual market for humic substances has grown rapidly for these reasons and due to eco-conscious features, but there is a limited supply of natural coal-related resources such as lignite and leonardite from which humic substances are extracted in bulk. The structural similarity between humic substances and lignin suggests that lignocellulosic refinery resulting in lignin residues as a by-product could be a potential candidate for a bulk source of humic-like substances, but structural differences between the two polymeric materials indicate that additional transformation procedures allowing lignin architecture to fully mimic commercial humic substances are required. In this review, we introduce the emerging concept of artificial humification of lignin-related materials as a promising strategy for lignin valorization. First, the core structural features of humic substances and the relationship between these features and the physicochemical properties, natural functions and versatile applications of the substances are described. In particular, the mechanism by which humic substances stimulate the growth of plants and hence can improve crop productivity is highlighted. Second, top-down and bottom-up transformation pathways for scalable humification of small lignin-derived phenols, technical lignins and lignin-containing plant residues are described in detail. Finally, future directions are suggested for research and development of artificial lignin humification to achieve alternative ways of producing customized analogues of humic substances.  相似文献   

5.
The biochemical characteristics or quality of crop residues is an important factor governing soil residue decomposition. To improve C and N biotransformation models the process underlying this decomposition needs to be better understood and new quality criteria found to describe it. The aims of this explorative study were to (i) improve our understanding of residue decomposition from detailed studies of cell wall biochemical compositions and tissue architecture (ii) find new ways of exploring generic indicators of organic matter quality. To do this, the cell wall composition and tissue architecture of wheat leaves, internodes and roots, before and after their incorporation into soil were determined. Results showed that leaves which were poorly lignified decomposed faster in soil than internodes and roots. Cellulose was the most degraded polysaccharide irrespective of wheat residue. However, cellulose was much more degraded in the case of leaves as compared to internodes and roots. Leaves also presented a highly condensed lignin structure and the extent to which uncondensed leaf lignin was affected by soil decomposition suggests that the contribution of leaf lignin to C mineralization during incubation was very low. Roots which contained similar amounts of lignin than the internodes decomposed more slowly. Roots were enriched in phenolic acids, and more particularly p-coumaric acid (pCA) and presented a more condensed lignin structure than internodes. Phenolic acids are involved in the formation of lignin–polysaccharide complexes known to be recalcitrant to enzymatic attack. Microscopic investigations confirmed that the vessels were the most resistant tissues to decomposition in soil and this could be related either to their lignin content or to the quality of this lignin (condensed-like type lignin). Therefore, cell wall biochemical analyses have revealed that phenolic acids, which in their esterified form represent only 0.1–1% of plant dry matter, have cross link functions within the cell walls that could be of major interest in estimating soil residue degradability. Lignin quality (monomers, level of condensation) was another crucial criterion that could explain why residues with similar amounts of lignin decomposed at different rates in soil (roots vs. aerial parts). Visualization of residue cell walls before and after decomposition in soil underlined the interest of a microscopic approach coupled with image analysis. This study, corroborated by the extensive literature on forage digestibility, confirmed that the proportions of vascular tissue and sclerenchyma cells in plant material are determinant factors affecting plant degradability. In the future, classification of plant material based on these criteria could lead to the definition of new quality parameters for models of C and N biotransformation in soil.  相似文献   

6.
Ibekwe  A.M.  Kennedy  A.C. 《Plant and Soil》1999,206(2):151-161
Soil microbiological parameters may be the earliest predictors of soil quality changes. Recently, molecular techniques such as fatty acid methyl ester (FAME) profiles have been used to characterize soil microbial communities. Fatty acid methyl ester (FAME) from whole soil may be derived from live cells, dead cells, humic materials, as well as plant and root exudates. Our objective was to verify differences in FAME profiles from two agricultural soils with different plants. Soil samples were collected from Ritzville and Palouse silt loams for fatty acid analysis. Soil samples from wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), pea (Pisum sativum L.), jointed goatgrass ( Aegilops cylindrica L.) and downy brome (Bromus tectorum L.) rhizospheres were also collected for fatty acid analysis. Principal component analysis (PCA) of the two soils explained 42% of the variance on PC1, which accounted for Palouse soil. Ritzville soil accounted for 19% of the variance on PC2. Factor analysis showed that rhizosphere microbial communities from various plant species may differ depending on the plant species. Presence of Gram-positive bacteria as identified by a15:0, i15:0, a17:0 and i17:0 peaks were similar between rhizosphere and nonrhizosphere soils. Gram-negative bacteria characterized by short chain hydroxy acids (10:03OH and 12:03OH) as well as cyclopropane acids (cy17:0) were higher in rhizosphere soil than nonrhizosphere. This indicates a possible shift in the bacterial community to more Gram-negative bacteria and fewer Gram-positive bacteria in the rhizospheres of the plants species studied.  相似文献   

7.
Vascular plants have lignified tissues that transport water, minerals, and photosynthetic products throughout the plant. They are the dominant primary producers in terrestrial ecosystems and capture significant quantities of atmospheric carbon dioxide (CO2) through photosynthesis. Some of the fixed CO2 is respired by the plant directly, with additional CO2 lost from rhizodeposits metabolized by root-associated soil microorganisms. Microbially-mediated mineralization of organic nitrogen (N) from plant byproducts (rhizodeposits, dead plant residues) followed by nitrification generates another greenhouse gas, nitrous oxide (N2O). In anaerobic soils, reduction of nitrate by microbial denitrifiers also produces N2O. The plant-microbial interactions that result in CO2 and N2O emissions from soil could be affected by genetic modification. Down-regulation of genes controlling lignin biosynthesis to achieve lower lignin concentration or a lower guaiacyl:syringyl (G:S) ratio in above-ground biomass is anticipated to produce forage crops with greater digestibility, improve short rotation woody crops for the wood-pulping industry and create second generation biofuel crops with low ligno-cellulosic content, but unharvested residues from such crops are expected to decompose quickly, potentially increasing CO2 and N2O emissions from soil. The objective of this review are the following: 1) to describe how plants influence CO2 and N2O emissions from soil during their life cycle; 2) to explain how plant residue chemistry affects its mineralization, contributing to CO2 and N2O emissions from soil; and 3) to show how modification of plant lignin biosynthesis could influence CO2 and N2O emissions from soil, based on experimental data from genetically modified cell wall mutants of Arabidopsis thaliana. Conceptual models of plants with modified lignin biosynthesis show how changes in phenology, morphology and biomass production alter the allocation of photosynthetic products and carbon (C) losses through rhizodeposition and respiration during their life cycle, and the chemical composition of plant residues. Feedbacks on the soil environment (mineral N concentration, soil moisture, microbial communities, aggregation) affecting CO2 and N2O emissions are described. Down-regulation of the Cinnamoyl CoA Reductase 1 (CCR1) gene is an excellent target for highly digestable forages and biofuel crops, but A. thaliana with this mutation has lower plant biomass and fertility, prolonged vegetative growth and plant residues that are more susceptible to biodegradation, leading to greater CO2 and N2O emissions from soil in the short term. The challenge in future crop breeding efforts will be to select tissue-specific genes for lignin biosynthesis that meet commercial demands without compromising soil CO2 and N2O emission goals.  相似文献   

8.
This study describes how early and late successional plant species affect soil microorganisms in alpine ecosystems. We quantify the relative importance of plant species and soil properties as determinants of belowground microbial communities. Sixteen plant species were selected from six successional stages (4–14–20–43–75–135 years) within the foreland of the Rotmoosferner glacier, Austria, and at one (reference) site outside the foreland. The size, composition and function of the communities of microorganism in the bulk soil and the rhizosphere were characterized by ninhydrin-reactive nitrogen, phospholipid fatty acids and enzyme activities (β-glucosidase, β-xylosidase, N-acetyl-β-glucosaminidase, leucine aminopeptidase, acid phosphatase, sulphatase). The results show that the microbial data could be grouped according to early (up to 43 years) and late-colonizing plant species (75 or more years). In early succession, no plant species or soil age effect was detected on the microbial biomass, phospholipid fatty acids, or enzyme activity. The rhizosphere microbial community was similar to that in the bulk soil, which in turn was determined by the abiotic environmental conditions. In late succession, improved soil conditions probably mediated plant species effects on the belowground microbial community. The most pronounced rhizosphere effects were attributed to plant species of the 75- and 135-year-old sites. The microbial colonization (size, composition, activity) of the bulk soil predominantly followed changes in vegetation cover, plant life forms and soil organic matter. In summary, the observed successional pattern of the above- and belowground communities provides an example of the facilitation models of primary succession.  相似文献   

9.
以藏嵩草沼泽化草甸为研究对象,利用磷脂脂肪酸(PLFA)技术,研究连续6年N素添加对地上植被群落数量特征、土壤微生物群落结构的影响。结果表明:①藏嵩草沼泽化草甸群落生物量、枯枝落叶对施肥处理无明显响应,且莎草科植物对土壤氮素的吸收和利用率较低。②施肥增加了0-10 cm土壤微生物类群PLFAs丰富度尤其细菌和革兰氏阳性菌PLFAs,降低了10-20 cm PLFAs丰富度;③磷脂脂肪酸饱和脂肪酸/单烯不饱和脂肪酸、细菌PLFAs/真菌PLFAs的比值随土壤层次增加而增加;④0-10 cm土层革兰氏阳性菌、真菌PLFAs含量与pH、土壤速效磷、速效氮、土壤有机质显著正相关(P0.05或P0.01);10-20 cm土层,细菌、革兰氏阳性菌、真菌和总PLFAs含量与土壤有机质含量显著正相关(P0.05或P0.01)。表明藏嵩草沼泽化草甸微生物PLFAs含量和丰富度对施肥的响应存在明显的土层梯度效应,土壤微生物PLFAs含量和丰富度主要受表层土壤初始养分含量的影响。  相似文献   

10.
Forest soils store vast amounts of terrestrial carbon, but we are still limited in mechanistic understanding on how soil organic carbon (SOC) stabilization or turnover is controlled by biotic and abiotic factors in forest ecosystems. We used phospholipid fatty acids (PLFAs) as biomarker to study soil microbial community structure and measured activities of five extracellular enzymes involved in the degradation of cellulose (i.e., β‐1,4‐glucosidase and cellobiohydrolase), chitin (i.e., β‐1,4‐N‐acetylglucosaminidase), and lignin (i.e., phenol oxidase and peroxidase) as indicators of soil microbial functioning in carbon transformation or turnover across varying biotic and abiotic conditions in a typical temperate forest ecosystem in central China. Redundancy analysis (RDA) was performed to determine the interrelationship between individual PFLAs and biotic and abiotic site factors as well as the linkage between soil microbial structure and function. Path analysis was further conducted to examine the controls of site factors on soil microbial community structure and the regulatory pathway of changes in SOC relating to microbial community structure and function. We found that soil microbial community structure is strongly influenced by water, temperature, SOC, fine root mass, clay content, and C/N ratio in soils and that the relative abundance of Gram‐negative bacteria, saprophytic fungi, and actinomycetes explained most of the variations in the specific activities of soil enzymes involved in SOC transformation or turnover. The abundance of soil bacterial communities is strongly linked with the extracellular enzymes involved in carbon transformation, whereas the abundance of saprophytic fungi is associated with activities of extracellular enzymes driving carbon oxidation. Findings in this study demonstrate the complex interactions and linkage among plant traits, microenvironment, and soil physiochemical properties in affecting SOC via microbial regulations.  相似文献   

11.
植物残体是引起土壤、微生物和胞外酶C∶N∶P改变的关键因素,但是其作用机理尚不明确。本研究以青藏高原东缘高寒草甸为对象,通过测定土壤、微生物生物量和胞外酶活性等指标,探究移除地上植物或根系及植物残体添加对土壤、微生物和胞外酶C∶N∶P的影响。结果表明: 与无人为扰动草甸相比,移除地上植物显著降低了土壤C∶N(变幅为-23.7%,下同)、C∶P(-14.7%)、微生物生物生物量C∶P、N∶P,显著提高了微生物生物量C∶N、胞外酶C∶N∶P。与移除地上植物相比,移除地上植物和根系显著降低了土壤C∶N(-11.6%)、C∶P(-24.0%)、N∶P(-23.3%)和微生物生物量C∶N,显著提高了微生物生物量N∶P和胞外酶N∶P;移除地上植物后添加植物残体显著提高了微生物生物量C∶N、C∶P和胞外酶C∶N,显著降低了胞外酶N∶P。与移除地上植物和根系相比,移除地上植物和根系后添加植物残体显著降低了土壤C∶N(-16.4%)、微生物生物量C∶P、N∶P和胞外酶N∶P,显著提高了胞外酶C∶N。综上可知,去除植物显著影响土壤、微生物和胞外酶的C∶N∶P,微生物生物量和胞外酶C∶N∶P对植物残体的响应更为敏感。有无根系是添加植物残体时土壤、微生物和胞外酶的生态化学计量稳定性强弱的关键所在。添加植物残体的措施适用于植物根系尚且完好的草甸,有利于高寒草甸土壤碳固存,对没有根系的草甸土壤可能不适用,会增加土壤CO2排放。  相似文献   

12.
This study is one of the first to show that invasive plant-induced changes in the soil microbial community can negatively impact native plant performance. This greenhouse experiment tested whether soil microbial communities specific to the rhizospheres of an invasive grass (Aegilops triuncialis) and two native plants (Lasthenia californica and Plantago erecta) affected invasive and/or native plant performance. Each of these species were grown in separate pots for 2 months to prime the soils with plant-specific rhizosphere microbial communities. Each plant species was then planted in native- and invasive-primed soil, and effects on plant performance were monitored. At 5 months, differences in microbial biomarker fatty acids between invaded and native soils mirrored previous differences found in field-collected soil. L. californica performance was significantly reduced when grown in invaded soil compared to native soil (flowering date was delayed, aboveground biomass decreased, specific root length increased, and root mass ratio increased). In contrast, P. erecta and A. triuncialis performance were unaffected when grown in invaded vs native soil. These results suggest that in some cases, invasion-induced changes in the soil microbial community may contribute to a positive feedback loop, leading to the increased dominance of invasive species in an ecosystem.  相似文献   

13.
The soil microbial community is essential for maintaining ecosystem functioning and is intimately linked with the plant community. Yet, little is known on how soil microbial communities in the root zone vary at continental scales within plant species. Here we assess the effects of soil chemistry, large-scale environmental conditions (i.e. temperature, precipitation and nitrogen deposition) and forest land-use history on the soil microbial communities (measured by phospholipid fatty acids) in the root zone of four plant species (Geum urbanum, Milium effusum, Poa nemoralis and Stachys sylvatica) in forests along a 1700 km latitudinal gradient in Europe.Soil microbial communities differed significantly among plant species, and soil chemistry was the main determinant of the microbial community composition within each plant species. Influential soil chemical variables for microbial communities were plant species-specific; soil acidity, however, was often an important factor. Large-scale environmental conditions, together with soil chemistry, only explained the microbial community composition in M. effusum and P. nemoralis. Forest land-use history did not affect the soil microbial community composition.Our results underpin the dominant role of soil chemistry in shaping microbial community composition variation within plant species at the continental scale, and provide insights into the composition and functionality of soil microbial communities in forest ecosystems.  相似文献   

14.
Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 (CE15) are involved in microbial degradation of lignocellulosic plant materials. GEs are capable of degrading complex polymers of lignin and hemicellulose cleaving ester bonds between glucuronic acid residues in xylan and lignin alcohols. GEs promote separation of lignin, hemicellulose and cellulose which is crucial for efficient utilization of biomass as an energy source and feedstock for further processing into products or chemicals. Genes encoding GEs are found in both fungi and bacteria, but, so far, bacterial GEs are essentially unexplored, and despite being discovered >10?years ago, only a limited number of GEs have been characterized. The first laboratory scale example of improved xylose and glucuronic acid release by the synergistic action of GE with cellulolytic enzymes was only reported recently (improved C5 sugar and glucuronic acid yields) and, until now, not much is known about their biotechnology potential. In this review, we discuss the diversity, structure and properties of microbial GEs and consider the status of their action on natural substrates and in biological systems in relation to their future industrial use.  相似文献   

15.
土壤微生物是表征土壤质量变化的敏感指标之一。借助长期定位试验, 采用磷脂脂肪酸分析方法研究了3种种植方式(玉米(Zea mays)连作、玉米非连作和撂荒)对土壤微生物群落组成的影响。结果表明, 在不同的种植方式下, 土壤微生物群落组成有明显的差异。玉米连作的土壤中总磷脂脂肪酸和细菌磷脂脂肪酸含量最低, 分别为33.12 nmol·g-1和18.09 nmol·g-1。非连作的土壤真菌磷脂脂肪酸和真菌/细菌分别为0.61 nmol·g-1和3.06%, 显著低于撂荒和连作(p < 0.05), 非连作方式下, 革兰氏阳性细菌/革兰氏阴性细菌增大。撂荒土壤的总磷脂脂肪酸和细菌磷脂脂肪酸分别为42.98和24.68 nmol·g-1, 高于耕作处理。 同时, 在撂荒方式下, 革兰氏阳性细菌和革兰氏阴性细菌的含量增加, 革兰氏阳性细菌/革兰氏阴性细菌降低。主成分分析结果表明: 耕作处理(玉米连作和非连作)分布第一主成分负方向上, 第一主成分得分系数分别为-2.48和-1.84; 撂荒分布第一主成分正方向上, 第一主成分得分系数为2.31, 与连作和非连作差异显著(p < 0.05)。冗余分析(RDA)表明: 土壤pH、总氮、有效磷和土壤>0.25 mm水稳性团聚体含量与磷脂脂肪酸呈正相关, 并且土壤pH和土壤>0.25 mm水稳性团聚体含量对土壤微生物群落的影响最大。  相似文献   

16.
The dynamics and fate of terrestrial organic matter (OM) under elevated atmospheric CO2 and nitrogen (N) fertilization are important aspects of long‐term carbon sequestration. Despite numerous studies, questions still remain as to whether the chemical composition of OM may alter with these environmental changes. In this study, we employed molecular‐level methods to investigate the composition and degradation of various OM components in the forest floor (O horizon) and mineral soil (0–15 cm) from the Duke forest free air CO2 enrichment (FACE) experiment. We measured microbial responses to elevated CO2 and N fertilization in the mineral soil using phospholipid fatty acid (PLFA) profiles. Increased fresh carbon inputs into the forest floor under elevated CO2 were observed at the molecular‐level by two degradation parameters of plant‐derived steroids and cutin‐derived compounds. The ratios of fungal to bacterial PLFAs and Gram‐negative to Gram‐positive bacterial PLFAs decreased in the mineral soil with N fertilization, indicating an altered soil microbial community composition. Moreover, the acid to aldehyde ratios of lignin‐derived phenols increased with N fertilization, suggesting enhanced lignin degradation in the mineral soil. 1H nuclear magnetic resonance (NMR) spectra of soil humic substances revealed an enrichment of leaf‐derived alkyl structures with both elevated CO2 and N fertilization. We suggest that microbial decomposition of SOM constituents such as lignin and hydrolysable lipids was promoted under both elevated CO2 and N fertilization, which led to the enrichment of plant‐derived recalcitrant structures (such as alkyl carbon) in the soil.  相似文献   

17.
Humic acids (HA) contribute to soil fertility because of their chemical, physical, and biological properties. The origin of HAs in soils has puzzled scientists for decades, and what HAs are and what their origin is remain unclear. The isolation of HAs in plants, which have characteristics close to soil HAs, suggests the probable origin of soil-HA is the preservation of plant tissue, indicating biochemical origin. In this paper HA from maize plant at different stages of maturity is isolated, from which it was found that the evolution of this fraction depends on and is derived from cell wall formation. Evidence was also found that HA was above all composed of lignin and cutin residues, and was characterized by low surface area. After 8 months of incubation in both mineral-artificial and natural soils, humic acid isolated form maize plant could be recovered intact.  相似文献   

18.
Biofumigation (BIOF) is carried out mainly by the incorporation of brassica plant parts into the soil, and this fumigation activity has been linked to their high glucosinolate (GSL) content. GSLs are hydrolyzed by the endogenous enzyme myrosinase to release isothiocyanates (ITCs). A microcosm study was conducted to investigate the effects induced on the soil microbial community by the incorporation of broccoli residues into soil either with (BM) or without (B) added myrosinase and of chemical fumigation, either as soil application of 2-phenylethyl ITC (PITC) or metham sodium (MS). Soil microbial activity was evaluated by measuring fluorescein diacetate hydrolysis and soil respiration. Effects on the structure of the total microbial community were assessed by phospholipid fatty acid analysis, while the impact on important fungal (ascomycetes (ASC)) and bacterial (ammonia-oxidizing bacteria (AOB)) guilds was evaluated by denaturating gradient gel electrophoresis (DGGE). Overall, B, and to a lesser extent BM, stimulated microbial activity and biomass. The diminished effect of BM compared to B was particularly evident in fungi and Gram-negative bacteria and was attributed to rapid ITC release following the myrosinase treatment. PITC did not have a significant effect, whereas an inhibitory effect was observed in the MS-treated soil. DGGE analysis showed that the ASC community was temporarily altered by BIOF treatments and more persistently by the MS treatment, while the structure of the AOB community was not affected by the treatments. Cloning of the ASC community showed that MS application had a deleterious effect on potential plant pathogens like Fusarium, Nectria, and Cladosporium compared to BIOF treatments which did not appear to inhibit them. Our findings indicate that BIOF induces changes on the structure and function of the soil microbial community that are mostly related to microbial substrate availability changes derived from the soil amendment with fresh organic materials.  相似文献   

19.
In a field experiment we have examined the effect of long-term grassland management regimes (viz., intensive versus extensive) and dominant plant species (viz., Arrhenatherum elatius, Holcus lanatus and Dactylis glomerata) on soil organic carbon (SOC) build up, soil microbial communities using biomarker phospholipid fatty acids (PLFA), and the relationship between SOC and PLFAs of major groups of microorganisms (viz., bacteria, fungi, and actinomycetes). The results have revealed that changes in SOC were not significantly affected by the intensity of management or by the plant species composition or by their interaction. The amount of PLFA of each microbial group was affected weakly by management regime and plant species, but the canonical variance analysis (CVA), based on individual PLFA values, demonstrated significant (P<0.05) effects of management regime and plant species on the composition of microbial community. Positive and significant (P<0.01) relationships were observed between PLFA of bacteria (R2=0.47), fungi (R2=0.33), actinomycetes (R2=0.71) and total microbial PLFA (R2=0.53) and SOC content.  相似文献   

20.
Atmospheric nitrogen (N) deposition greatly affects ecosystem processes and properties. However, few studies have simultaneously examined the responses of both the above- and belowground communities to N deposition. Here, we investigated the effects of 8 years of simulated N deposition on soil microbial communities and plant diversity in a subtropical forest. The quantities of experimental N added (g of N m−2 year−1) and treatment codes were 0 (N0, control), 6 (N1), 12 (N2), and 24 (N3). Phospholipid fatty acids (PLFAs) analysis was used to characterize the soil microbial community while plant diversity and coverage were determined in the permanent field plots. Microbial abundance was reduced by the N3 treatment, and plant species richness and coverage were reduced by both N2 and N3 treatments. Declines in plant species richness were associated with decreased abundance of arbuscular mycorrhizal fungi, increased bacterial stress index, and reduced soil pH. The plasticity of soil microbial community would be more related to the different responses among treatments when compared with plant community. These results indicate that long-term N deposition has greater effects on the understory plant community than on the soil microbial community and different conservation strategies should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号