首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A soil sterilization–reinoculation approach was used to manipulate soil microbial diversity and to assess the effect of the diversity of the ammonia-oxidizing bacteria (AOB) on the recovery of the nitrifying community to metal stress (zinc). Gamma-irradiated soil was inoculated with 13 different combinations of up to 22 different soils collected worldwide to create varying degrees of AOB diversity. Two months after inoculation, AOB amoA DGGE based diversity (weighted richness) varied more than 10-fold among the 13 treatments, the largest value observed where the number of inocula had been largest. Subsequently, the 13 treatments were either or not amended with ZnCl2. Initially, Zn amendment completely inhibited nitrification. After 6 months of Zn exposure, recovery of the potential nitrification activity in the Zn amended soils ranged from <10 % to >100 % of the potential nitrification activity in the corresponding non-amended soils. This recovery was neither related to DGGE-based indices of AOB diversity nor to the AOB abundance assessed 2 months after inoculation (p?>?0.05). However, recovery was significantly related (r?=?0.75) to the potential nitrification rate before Zn amendment and only weakly to the number of soil inocula used in the treatments (r?=?0.46). The lack of clear effects of AOB diversity on recovery may be related to an inherently sufficient diversity and functional redundancy of AOB communities in soil. Our data indicate that potential microbial activity can be a significant factor in recovery.  相似文献   

2.
The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the α subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils.  相似文献   

3.
利用氯仿熏蒸法和变性梯度凝胶电泳法(PCR-DGGE)研究了秸秆覆盖还田与施肥对灰棕冲积水稻土0—10cm和10—20cm土层土壤微生物生物量碳、氮和固氮菌群落结构的影响。结果表明:土壤微生物量碳、氮和固氮菌多样性从0—10cm土层到10—20cm土层均呈现降低趋势。无秸秆覆盖处理(对照组)的土壤微生物生物量碳(SMB-C)和微生物生物量氮(SMB-N)量最小。在秸秆覆盖还田处理中,低氮和无钾处理的SMB-C和SMB-N都显著低于全量氮磷钾肥处理。虽然无磷处理的SMB-N低于全量氮磷钾处理,但差异不显著。说明秸秆覆盖还田配施充足氮磷钾肥能显著提高土壤微生物生物量碳、氮。由DGGE图谱多样性指数分析得知,配施充足氮磷钾肥的处理土壤的固氮菌多样性最丰富。UPGMA聚类分析显示,10种不同处理的聚类图也不同,对照(无秸秆)处理0—10cm和10—20cm的微生物不同于其它处理单独聚在了一个群里。DGGE条带测序得知,14个条带的近缘种大部分为非培养细菌nifH基因片段,主要优势菌群其归属于变形菌门(Proteobacteria)的β-变形菌纲(Betaproteobacteria)。应用PCR-DGGE技术可以解释灰棕冲积水稻土秸秆覆盖不同肥料用量固氮菌分子群落结构特点。  相似文献   

4.
The effects of mineral fertilizer (NPK) and organic manure on the community structure of soil ammonia-oxidizing bacteria (AOB) was investigated in a long-term (16-year) fertilizer experiment. The experiment included seven treatments: organic manure, half organic manure N plus half fertilizer N, fertilizer NPK, fertilizer NP, fertilizer NK, fertilizer PK, and the control (without fertilization). N fertilization greatly increased soil nitrification potential, and mineral N fertilizer had a greater impact than organic manure, while N deficiency treatment (PK) had no significant effect. AOB community structure was analyzed by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) of the amoA gene, which encodes the alpha subunit of ammonia monooxygenase. DGGE profiles showed that the AOB community was more diverse in N-fertilized treatments than in the PK-fertilized treatment or the control, while one dominant band observed in the control could not be detected in any of the fertilized treatments. Phylogenetic analysis showed that the DGGE bands derived from N-fertilized treatments belonged to Nitrosospira cluster 3, indicating that N fertilization resulted in the dominance of Nitrosospira cluster 3 in soil. These results demonstrate that long-term application of N fertilizers could result in increased soil nitrification potential and the AOB community shifts in soil. Our results also showed the different effects of mineral fertilizer N versus organic manure N; the effects of P and K on the soil AOB community; and the importance of balanced fertilization with N, P, and K in promoting nitrification functions in arable soils.  相似文献   

5.
s-Triazine herbicides are widely used for weed control, and are persistent in soils. Nitrification is an essential process in the global nitrogen cycle in soil, and involves ammonia-oxidizing Bacteria (AOB) and ammonia-oxidizing Archaea (AOA). In this study, we evaluated the effect of the s-triazine herbicide simazine on the nitrification and on the structure of ammonia-oxidizing microbial communities in a fertilized agricultural soil. The effect of simazine on AOB and AOA were studied by PCR-amplification of amoA genes of nitrifying Bacteria and Archaea in soil microcosms and denaturing gradient gel electrophoresis (DGGE) analyses. Simazine [50?μg g(-1) dry weight soil (d.w.s)] completely inhibited the nitrification processes in the fertilized agricultural soil. The inhibition by simazine of ammonia oxidation observed was similar to the reduction of ammonia oxidation by the nitrification inhibitor acetylene. The application of simazine-affected AOB community DGGE patterns in the agricultural soil amended with ammonium, whereas no significant changes in the AOA community were observed. The DGGE analyses strongly suggest that simazine inhibited Nitrosobacteria and specifically Nitrosospira species. In conclusion, our results suggest that the s-triazine herbicide not only inhibits the target susceptible plants but also inhibits the ammonia oxidation and the AOB in fertilized soils.  相似文献   

6.
The effect of effluent irrigation on community composition and function of ammonia-oxidizing bacteria (AOB) in soil was evaluated, using techniques of molecular biology and analytical soil chemistry. Analyses were conducted on soil sampled from lysimeters and from a grapefruit orchard which had been irrigated with wastewater effluent or fertilizer-amended water (FAW). Specifically, comparisons of AOB community composition were conducted using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified fragments of the gene encoding the α-subunit of the ammonia monooxygenase gene (amoA) recovered from soil samples and subsequent sequencing of relevant bands. A significant and consistent shift in the population composition of AOB was detected in soil irrigated with effluent. This shift was absent in soils irrigated with FAW, despite the fact that the ammonium concentration in the FAW was similar. At the end of the irrigation period, Nitrosospira-like populations were dominant in soils irrigated with FAW, while Nitrosomonas-like populations were dominant in effluent-irrigated soils. Furthermore, DGGE analysis of the amoA gene proved to be a powerful tool in evaluating the soil AOB community population and population shifts therein.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) are potentially important in nutrient cycling in agricultural soils and particularly in soils managed for organic production; little is known, however, about the interrelationships between AMF and other members of soil microbial communities. Ammonia oxidizing bacteria (AOB) are a trophic group of bacteria having an enormous impact on nitrogen availability in soils and are expected to be influenced by the presence of AMF. In a field study, we utilized a unique genetic system comprised of a mycorrhiza defective tomato mutant (named rmc) and its mycorrhiza wild-type progenitor (named 76RMYC+). We examined the effect of AMF by comparing AOB community composition and populations in soil containing roots of the two tomato genotypes in an organically managed soil. Responses of AOB to soil N and P amendments were also studied in the same experiment. Phylogenetic analysis of cloned AOB sequences, derived from excised denaturing gradient gel electrophoresis (DGGE) bands, revealed that the organic farm soil supported a diverse yet stable AOB community, which was neither influenced by mycorrhizal colonization of roots nor by N and P addition to the soil. Real-time TaqMan polymerase chain reaction (PCR) was used to quantify AOB population sizes and showed no difference between any of the treatments. An alternative real-time PCR protocol for quantification of AOB utilizing SYBR green yielded similar results as the TaqMan real-time PCR method, although with slightly lower resolution. This alternative method is advantageous in not requiring the detailed background information about AOB community composition required for adaptation of the TaqMan system for a new soil.  相似文献   

8.
Methyl bromide (MB) and other alternatives were evaluated for suppression of Fusarium spp., Phytophthora spp., and Meloidogyne spp. and their influence on soil microbial communities. Both Fusarium spp. and Phytophthora spp. were significantly reduced by the MB (30.74 mg kg-1), methyl iodide (MI: 45.58 mg kg-1), metham sodium (MS: 53.92 mg kg-1) treatments. MS exhibited comparable effectiveness to MB in controlling Meloidogyne spp. and total nematodes, followed by MI at the tested rate. By contrast, sulfuryl fluoride (SF: 33.04 mg kg-1) and chloroform (CF: 23.68 mg kg-1) showed low efficacy in controlling Fusarium spp., Phytophthora spp., and Meloidogyne spp. MB, MI and MS significantly lowered the abundance of different microbial populations and microbial biomass in soil, whereas SF and CF had limited influence on them compared with the control. Diversity indices in Biolog studies decreased in response to fumigation, but no significant difference was found among treatments in PLFA studies. Principal component and cluster analyses of Biolog and PLFA data sets revealed that MB and MI treatments greatly influenced the soil microbial community functional and structural diversity compared with SF treatment. These results suggest that fumigants with high effectiveness in suppressing soil-borne disease could significantly influence soil microbial community.  相似文献   

9.
Community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the albic soil grown with soybean and rice for different years was investigated by construction of clone libraries, denaturing gradient gel electrophoresis (DGGE), and quantitative polymerase chain reaction (q-PCR) by PCR amplification of the ammonia monooxygenase subunit A (amoA) gene. Soil samples were collected at two layers (0–5 and 20–25 cm) from a soybean field and four rice paddy fields with 1, 5, 9, and 17 years of continuous rice cultivation. Both the community structures and abundances of AOA and AOB showed detectable changes after conversion from soybean to rice paddy judged by clone library, DGGE, and q-PCR analyses. In general, the archaeal amoA gene abundance increased after conversion to rice cultivation, while bacterial amoA gene abundance decreased. The abundances of both AOA and AOB were higher in the surface layer than the bottom one in the soybean field, but a reverse trend was observed for AOB in all paddy samples regardless of the duration of paddy cultivation. Phylogenetic analysis identified nine subclusters of AOA and seven subclusters of AOB. Community composition of both AOA and AOB was correlated with available ammonium and increased pH value caused by flooding in multiple variance analysis. Community shift of AOB was also observed in different paddy fields, but the two layers did not show any detectable changes in DGGE analysis. Conversion from soybean to rice cultivation changed the community structure and abundance of AOA and AOB in albic agricultural soil, which requires that necessary cultivation practice be followed to manage the N utilization more effectively.  相似文献   

10.
We investigated the microbial community structure and population size of arboreal soils—including canopy and bromeliad epiphytic leaf-tank soils—and ground soils in a tropical lowland rainforest in Costa Rica using molecular and cultivation methods. PCR-DGGE analysis of 16S rRNA and 18S rRNA gene fragments and quantitative real-time PCR were applied to survey the bacteria, ammonia-oxidizing bacteria (AOB), and fungi. Bacteria from epiphytic tank soils were isolated and identified. Bacillaceae, Pseudomonadaceae and Micrococcaceae were the most abundant families. According to cluster analysis of DGGE fingerprints a significant difference among the three soil types was evident for bacterial communities. In addition, the microbial communities of canopy and tank soils clustered apart from ground soils. The fungal and AOB communities were diverse but non-specific for the soil types analyzed.  相似文献   

11.
While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg−1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.  相似文献   

12.
Chemolithotrophic ammonia-oxidizing bacteria (AOB) can produce N2O, a highly potent greenhouse gas. Denaturing gradient gel electrophoresis (DGGE) analyses of the ammonia monooxygenase structural gene (amoA) and 16S rDNA gene were used to investigate the AOB community structure in the cover soils of municipal solid waste (MSW) landfills under three operating conditions: (a) MSW with soil cover, (b) MSW with soil cover, irrigation piping and vegetation, and (c) MSW covered with high-density polyethylene (HDPE) liner, soil cover, irrigation piping and vegetation. AOB species in MSW cover soils were significantly distinguished by the operation of HDPE liner isolation. The community structures of the Nitrosomonas europaea-like AOB species dominated in soils without HDPE liner isolation, whether vegetation and irrigation with landfill leachate existed or not, whereas Nitrospira-like AOB species dominated in soils with HDPE liner isolation. Lower N2O flux from the soils with HDPE liner isolation would be partially related to these special community structures.  相似文献   

13.
The highly effective nicotine-degrading bacterium Pseudomonas sp. HF-1 was augmented into the tobacco waste-contaminated soil to degrade nicotine and evaluate the effect of the bioremediation. Comparing with non-adding (NA) systems, the treatments with addition of strain HF-1 (TA) exhibited considerably stronger pollution disposal abilities and higher stability of pH value and moisture content, especially in groups containing a large quantity of tobacco waste. The denaturing gradient gel electrophoresis (DGGE) profiles showed that the Shannon–Wiener index decreased with increasing wastes in the NA treatments, while a gradual increase was found in the TA groups. A comparison of sequences from DGGE bands demonstrated that there were differences in the dominant microbial species between the two treatments, suggesting that strain HF-1 could persist in the soil and enhance the efficiency of tobacco waste disposal. The results of real-time fluorescence quantitative PCR (RT-qPCR) also indicated that strain HF-1 existed in the TA systems and grew with relative high quantities. In conclusion, the nicotine-degrading strain HF-1 played a leading role in the bioremediation of the tobacco waste-contaminated soil and influenced the dynamics and structure of the microbial community.  相似文献   

14.
Soil biofumigation with brassica plant residues has been shown to significantly suppress soilborne pathogen. However, little published data reported the impact of biofumigation on microbial community structure in pepper (Capsicum annuum L.) production systems under field conditions. Biofumigation with rapeseed (Brassica napus ‘Dwarf Essex’) meal and chemical fumigation with dazomet were tested to control the pepper disease caused by Phytophthora capsici. BF treatment showed the lowest disease incidence among these treatments. Effects on soil bacterial and fungal communities were assessed by denaturating gradient gel electrophoresis and the results showed that the biofumigation increased bacterial diversity and decreased fungal diversity. There was a negative correlation between soil bacterial diversity and disease incidence and a positive correlation between soil fungal diversity and disease incidence. Cloning of the microbial community showed that the microbial community structures were altered by biofumigation. Soil was also evaluated for their chemical properties. Biofumigation increased soil content of total N, NO3 ?–N, available P and available K. A significant correlation between soil microbial community structures and soil chemical properties was found. Overall, these results indicated that biofumigation reduced disease incidence of pepper through altering soil microbial community structures.  相似文献   

15.
The effect of effluent irrigation on community composition and function of ammonia-oxidizing bacteria (AOB) in soil was evaluated, using techniques of molecular biology and analytical soil chemistry. Analyses were conducted on soil sampled from lysimeters and from a grapefruit orchard which had been irrigated with wastewater effluent or fertilizer-amended water (FAW). Specifically, comparisons of AOB community composition were conducted using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified fragments of the gene encoding the alpha-subunit of the ammonia monooxygenase gene (amoA) recovered from soil samples and subsequent sequencing of relevant bands. A significant and consistent shift in the population composition of AOB was detected in soil irrigated with effluent. This shift was absent in soils irrigated with FAW, despite the fact that the ammonium concentration in the FAW was similar. At the end of the irrigation period, Nitrosospira-like populations were dominant in soils irrigated with FAW, while Nitrosomonas-like populations were dominant in effluent-irrigated soils. Furthermore, DGGE analysis of the amoA gene proved to be a powerful tool in evaluating the soil AOB community population and population shifts therein.  相似文献   

16.
以连续种植的香蕉枯萎病高发病蕉园为试验点,通过实时定量PCR和高通量测序等方法,研究了田间条件下石灰碳铵熏蒸联合生物有机肥施用对香蕉枯萎病的防治效果,以及对土壤细菌群落结构和组成的影响。结果表明: 与不熏蒸施用有机肥(OF)相比,香蕉枯萎病发病率在施用有机肥前使用石灰碳铵进行熏蒸处理(LAOF)和施用生物有机肥前使用石灰碳铵进行熏蒸处理(LABF)中分别降低了13.3%和21.7%,病原菌的拷贝数分别降低了22.4%和33.0%。与OF处理相比,石灰碳铵熏蒸联合不同肥料施用均显著降低了细菌的丰富度和多样性,形成了明显不同的群落结构,且熏蒸对群落组成的差异产生了决定性的影响。LABF的细菌丰富度和多样性均低于其他处理,群落组成也与其他处理存在明显差异。与OF处理相比,熏蒸处理(LAOF和LABF)显著增加了土壤中水恒杆菌、布鲁式菌和漯河杆菌属的相对丰度,且在LABF中的相对丰度均高于LAOF,水恒杆菌和布鲁式菌的相对丰度差异显著。在田间条件下,施用生物有机肥之前使用石灰碳铵进行熏蒸处理能够显著降低病原菌数量,改变土壤细菌群落结构,激发土壤有益微生物,从而减少香蕉枯萎病的发生。  相似文献   

17.
Impact of Fumigants on Soil Microbial Communities   总被引:12,自引:1,他引:11       下载免费PDF全文
Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA] analysis and denaturing gradient gel electrophoresis [DGGE] of 16S ribosomal DNA [rDNA] fragments amplified directly from soil DNA) approaches. Changes in soil microbial community structure were examined in a microcosm experiment following the application of methyl bromide (MeBr), methyl isothiocyanate, 1,3-dichloropropene (1,3-D), and chloropicrin. Variations among Biolog fingerprints showed that the effect of MeBr on heterotrophic microbial activities was most severe in the first week and that thereafter the effects of MeBr and the other fumigants were expressed at much lower levels. The results of PLFA analysis demonstrated a community shift in all treatments to a community dominated by gram-positive bacterial biomass. Different 16S rDNA profiles from fumigated soils were quantified by analyzing the DGGE band patterns. The Shannon-Weaver index of diversity, H, was calculated for each fumigated soil sample. High diversity indices were maintained between the control soil and the fumigant-treated soils, except for MeBr (H decreased from 1.14 to 0.13). After 12 weeks of incubation, H increased to 0.73 in the MeBr-treated samples. Sequence analysis of clones generated from unique bands showed the presence of taxonomically unique clones that had emerged from the MeBr-treated samples and were dominated by clones closely related to Bacillus spp. and Heliothrix oregonensis. Variations in the data were much higher in the Biolog assay than in the PLFA and DGGE assays, suggesting a high sensitivity of PLFA analysis and DGGE in monitoring the effects of fumigants on soil community composition and structure. Our results indicate that MeBr has the greatest impact on soil microbial communities and that 1,3-D has the least impact.  相似文献   

18.
AIMS: To investigate whether two different wastewater treatment plants (WWTPs) -- treating the same pharmaceutical influent -- select for a different bacterial and/or ammonia oxidizing bacterial (AOB) community. METHODS AND RESULTS: Molecular fingerprinting demonstrated that each WWTP had its own total bacterial and AOB community structure, but Nitrosomonas eutropha and N. europea were dominant in both WWTP A and B. The DNA and RNA analysis of the AOB communities revealed different patterns; so the most abundant species may not necessarily be the most active ones. Nitritation failures, monitored by chemical parameter analysis, were reflected as AOB community shifts and visualized by denaturing gradient gel electrophoresis (DGGE)-based moving window analysis. CONCLUSIONS: This research demonstrated the link between functional performance (nitritation parameters) and the presence and activity of a specific microbial ecology (AOB). Clustering and moving window analysis based on DGGE showed to be valuable to monitor community shifts in both WWTPs. SIGNIFICANCE AND IMPACT OF THE STUDY: This study of specific community shifts together with functional parameter analysis has potential as a tool for relating functional instability (such as operational failures) to specific-bacterial community shifts.  相似文献   

19.
作为一种新型土壤改良剂,生物炭对土壤微生物群落的影响已有报道,但在采煤塌陷复垦区土壤氮循环微生物群落对生物炭添加的响应鲜有报道。以生物炭和炭基肥为添加材料,以淮北地区塌陷复垦土为供试土壤,通过室外盆栽试验,采用荧光定量PCR(qPCR)和末端限制性片段长度多态性(T-RFLP)技术,研究不同生物炭处理的土壤硝化和反硝化微生物的菌群变化。试验共设5个处理:对照(CK)、常规化肥(CF)、炭基肥(BF)、2%生物炭配施化肥(LB)和4%生物炭配施化肥(HB)。结果表明: 与CK处理相比,各施肥处理均显著提高了土壤氨氧化古菌(AOA)、氨氧化细菌(AOB)、反硝化细菌nirKnirS基因丰度。与CF处理相比,生物炭和炭基肥处理显著提高了AOB和nirK基因丰度,增幅分别达到42.9%~82.1%和33.5%~62.7%。冗余分析表明,土壤有机碳、pH、NH4+-N和速效钾是显著影响AOB群落结构的主要因子,而土壤有机碳、pH和NO3--N含量是影响nirK型反硝化细菌群落结构的关键因子。因此,施用生物炭与炭基肥能改良采煤塌陷复垦区土壤质量,提高硝化和反硝化微生物丰度,并改变AOB和nirK型反硝化细菌群落结构。  相似文献   

20.
The long-term application of excessive chemical fertilizers has resulted in the degeneration of soil quality parameters such as soil microbial biomass, communities, and nutrient content, which in turn affects crop health, productivity, and soil sustainable productivity. The objective of this study was to develop a rapid and efficient solution for rehabilitating degraded cropland soils by precisely quantifying soil quality parameters through the application of manure compost and bacteria fertilizers or its combination during maize growth. We investigated dynamic impacts on soil microbial count, biomass, basal respiration, community structure diversity, and enzyme activity using six different treatments [no fertilizer (CK), N fertilizer (N), N fertilizer + bacterial fertilizer (NB), manure compost (M), manure compost + bacterial fertilizer (MB), and bacterial fertilizer (B)] in the plowed layer (0–20 cm) of potted soil during various maize growth stages in a temperate cropland of eastern China. Denaturing gradient electrophoresis (DGGE) fingerprinting analysis showed that the structure and composition of bacterial and fungi communities in the six fertilizer treatments varied at different levels. The Shannon index of bacterial and fungi communities displayed the highest value in the MB treatments and the lowest in the N treatment at the maize mature stage. Changes in soil microorganism community structure and diversity after different fertilizer treatments resulted in different microbial properties. Adding manure compost significantly increased the amount of cultivable microorganisms and microbial biomass, thus enhancing soil respiration and enzyme activities (p<0.01), whereas N treatment showed the opposite results (p<0.01). However, B and NB treatments minimally increased the amount of cultivable microorganisms and microbial biomass, with no obvious influence on community structure and soil enzymes. Our findings indicate that the application of manure compost plus bacterial fertilizers can immediately improve the microbial community structure and diversity of degraded cropland soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号