首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study evaluates the in vitro, in vivo, and ex vivo antithrombotic and anticoagulant effect of two flavonoids: quercetin and quercetin‐3‐O‐β‐d ‐glucoside (isoquercetin). The present results have shown that quercetin and isoquercetin inhibit the enzymatic activity of thrombin and FXa and suppress fibrin clot formation and blood clotting. The prolongation effect of quercetin and isoquercetin against epinephrine and collagen‐induced platelet activation may have been caused by intervention in intracellular signaling pathways including coagulation cascade and aggregation response on platelets and blood. The in vivo and ex vivo anticoagulant efficacy of quercetin and isoquercetin was evaluated in thrombin‐induced acute thromboembolism model and in ICR mice. Our findings showed that in vitro and in vivo inhibitory effects of quercetin were slightly higher than that of quercetin glucoside, whereas in vitro and ex vivo anticoagulant effects of quercetin were weaker than that of quercetin glucoside because of their structural characteristics.  相似文献   

2.
The post‐translational processing of human α1‐antichymotrypsin (AACT) in Bright Yellow‐2 (BY‐2) tobacco cells was assessed in relation to the cellular compartment targeted for accumulation. As determined by pulse‐chase labelling experiments and immunofluorescence microscopy, AACT sent to the vacuole or the endoplasmic reticulum (ER) was found mainly in the culture medium, similar to a secreted form targeted to the apoplast. Unexpectedly, AACT expressed in the cytosol was found in the nucleus under a stable, non‐glycosylated form, in contrast with secreted variants undergoing multiple post‐translational modifications during their transit through the secretory pathway. All secreted forms of AACT were N‐glycosylated, with the presence of complex glycans as observed naturally on human AACT. Proteolytic trimming was also observed for all secreted variants, both during their intracellular transit and after their secretion in the culture medium. Overall, the targeting of human AACT to different compartments of BY‐2 tobacco cells led to the production of two protein products: (i) a stable, non‐glycosylated protein accumulated in the nucleus; and (ii) a heterogeneous mixture of secreted variants resulting from post‐translational N‐glycosylation and proteolytic processing. Overall, these data suggest that AACT is sensitive to resident proteases in the ER, the Golgi and/or the apoplast, and that the production of intact AACT in the plant secretory pathway will require innovative approaches to protect its structural integrity in vivo. Studies are now needed to assess the activity of the different AACT variants, and to identify the molecular determinants for the nuclear localization of AACT expressed in the cytosol.  相似文献   

3.
O‐linked β‐N‐acetlyglucosamine or O‐GlcNAc modification is a dynamic post‐translational modification occurring on the Ser/Thr residues of many intracellular proteins. The chronic imbalance between phosphorylation and O‐GlcNAc on tau protein is considered as one of the main hallmarks of Alzheimer's disease. In recent years, many studies also showed that O‐GlcNAc levels can elevate upon acute stress and suggested that this might facilitate cell survival. However, many consider chronic stress, including oxidative damage as a major risk factor in the development of the disease. In this study, using the neuronal cell line SH‐SY5Y we investigated the dynamic nature of O‐GlcNAc after treatment with 0.5 mM H2O2 for 30 min. to induce oxidative stress. We found that overall O‐GlcNAc quickly increased and reached peak level at around 2 hrs post‐stress, then returned to baseline levels after about 24 hrs. Interestingly, we also found that tau protein phosphorylation at site S262 showed parallel, whereas at S199 and PHF1 sites showed inverse dynamic to O‐Glycosylation. In conclusion, our results show that temporary elevation in O‐GlcNAc modification after H2O2‐induced oxidative stress is detectable in cells of neuronal origin. Furthermore, oxidative stress changes the dynamic balance between O‐GlcNAc and phosphorylation on tau proteins.  相似文献   

4.
Thrombin, the ultimate protease in the blood coagulation cascade, mediates its known cellular effects by unique proteolytic activation of G‐protein‐coupled protease‐activated receptors (PARs), such as PAR1, PAR3, and PAR4, and a “tethered ligand” mechanism. PAR1 is variably expressed in subpopulations of neurons and largely determines thrombin's effects on morphology, calcium mobilization, and caspase‐mediated apoptosis. In spinal cord motoneurons, PAR1 expression correlates with transient thrombin‐mediated [Ca2+]i flux, receptor cleavage, and elevation of rest [Ca2+]i activating intracellular proteases. At nanomolar concentrations, thrombin retracts neurites via PAR1 activation of the monomeric, 21 kDa Ras G‐protein RhoA, which is also involved in neuroprotection at lower thrombin concentrations. Such results suggest potential downstream targets for thrombin's injurious effects. Consequently, we employed several G‐protein‐specific modulators prior to thrombin exposure in an attempt to uncouple both heterotrimeric and monomeric G‐proteins from motoneuronal PAR1. Cholera toxin, stimulating Gs, and lovastatin, which blocks isoprenylation of Rho, reduced thrombin‐induced calcium mobilization. In contrast, pertussis toxin and mastoparan, inhibiting or stimulating Go/Gi, were found to exacerbate thrombin action. Effects on neuronal rounding and apoptosis were also detected, suggesting therapeutic utility may result from interference with downstream components of thrombin signaling pathways in human motor neuron disorders, and possibly other neurodegenerative diseases. Published 2001 John Wiley & Sons, Inc. J Neurobiol 48: 87–100, 2001  相似文献   

5.
A relaxin‐like gonad‐stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin responsible for final gamete maturation. An RGP ortholog was newly identified from Astropecten scoparius of the order Paxillosida. The A. scoparius RGP (AscRGP) precursor is encoded by a 354 base pair open reading frame and is a 118 amino acid (aa) protein consisting of a signal peptide (26 aa), B‐chain (21 aa), C‐peptide (47 aa), and A‐chain (24 aa). There are three putative processing sites (Lys‐Arg) between the B‐chain and C‐peptide, between the C‐peptide and A‐chain, and within the C‐peptide. This structural organization revealed that the mature AscRGP is composed of A‐ and B‐chains with two interchain disulfide bonds and one intrachain disulfide bond. The C‐terminal residues of the B‐chain are Gln‐Gly‐Arg, which is a potential substrate for formation of an amidated C‐terminal Gln residue. Non‐amidated (AscRGP‐GR) and amidated (AscRGP‐NH2) peptides were chemically synthesized and their effect on gamete shedding activity was examined using A. scoparius ovaries. Both AscRGP‐GR and AscRGP‐NH2 induced oocyte maturation and ovulation in similar dose‐dependent manners. This is the first report on a C‐terminally amidated functional RGP. Collectively, these results suggest that AscRGP‐GR and AscRGP‐NH2 act as a natural gonadotropic hormone in A. scoparius.  相似文献   

6.
The yeast (Saccharomyces cerevisiae) 26S proteasome consists of the 19S regulatory particle (19S RP) and 20S proteasome subunits. We detected comprehensively co‐ and post‐translational modifications of these subunits using proteomic techniques. First, using MS/MS, we investigated the N‐terminal modifications of three 19S RP subunits, Rpt1, Rpn13, and Rpn15, which had been unclear, and found that the N‐terminus of Rpt1 is not modified, whereas that of Rpn13 and Rpn15 is acetylated. Second, we identified a total of 33 Ser/Thr phosphorylation sites in 15 subunits of the proteasome. The data obtained by us and other groups reveal that the 26S proteasome contains at least 88 phospho‐amino acids including 63 pSer, 23 pThr, and 2 pTyr residues. Dephosphorylation treatment of the 19S RP with λ phosphatase resulted in a 30% decrease in ATPase activity, demonstrating that phosphorylation is involved in the regulation of ATPase activity in the proteasome. Third, we tried to detect glycosylated subunits of the 26S proteasome. However, we identified neither N‐ and O‐linked oligosaccharides nor O‐linked β‐N‐acetylglucosamine in the 19S RP and 20S proteasome subunits. To date, a total of 110 co‐ and post‐translational modifications, including Nα‐acetylation, Nα‐myristoylation, and phosphorylation, in the yeast 26S proteasome have been identified.  相似文献   

7.
A series of alkyl, alkoxyl, and alkylthio substituted A–π–D–π–A type nonfullerene acceptors (NFAs) IDTCN‐C , IDTCN‐O, and IDTCN‐S are designed and synthesized. The introduction of a lateral side chain at the outer position of the π bridge unit can endow the terminal moiety with a confined planar conformation due to the steric hindrance. Thus, compared with nonsubstituted NFA ( IDTT2F ), these acceptors tend to form favorable face‐on orientation and exhibit strong crystallinity as verified with grazing‐incidence wide‐angle X‐ray scattering measurement. Moreover, the variation of side chain can significantly change the lowest unoccupied molecular orbital (LUMO) energy level of acceptors. As state‐of‐the‐art NFAs, a power conversion efficiency of 13.28% (Voc = 0.91 V, Jsc = 19.96 mA cm?2, and FF = 73.2%) is obtained for the as‐cast devices based on IDTCN‐O , which is among the highest value reported in literature. The excellent photovoltaic performance for IDTCN‐O can be attributed to its slightly up‐shifted LUMO level and more balanced charge transport. This research demonstrates side chain engineering is an effective way to achieve high efficiency organic solar cells.  相似文献   

8.
Cell‐to‐cell communication is essential for the coordinated development of multicellular organisms. Members of the CLAVATA3/EMBRYO‐SURROUNDING REGION‐RELATED (CLE) family, a group of small secretory peptides, are involved in these processes in plants. Although post‐translational modifications are considered to be indispensable for their activity, the detailed mechanisms governing these modifications are not well understood. Here, we report that SUPPRESSOR OF LLP1 1 (SOL1), a putative Zn2+ carboxypeptidase previously isolated as a suppressor of the CLE19 over‐expression phenotype, functions in C–terminal processing of the CLE19 proprotein to produce the functional CLE19 peptide. Newly isolated sol1 mutants are resistant to CLE19 over‐expression, consistent with the previous report (Casamitjana‐Martinez, E., Hofhuis, H.F., Xu, J., Liu, C.M., Heidstra, R. and Scheres, B. (2003) Curr. Biol. 13, 1435–1441). As expected, our experiment using synthetic CLE19 peptide revealed that the sol1 mutation does not compromise CLE signal transduction pathways per se. SOL1 possesses enzymatic activity to remove the C–terminal arginine residue of CLE19 proprotein in vitro, and SOL1‐dependent cleavage of the C–terminal arginine residue is necessary for CLE19 activity in vivo. Additionally, the endosomal localization of SOL1 suggests that this processing occurs in endosomes in the secretory pathway. Thus, our data indicate the importance of C–terminal processing of CLE proproteins to ensure CLE activities.  相似文献   

9.
Mimicry of structural motifs is a common feature in proteins. The 10‐membered hydrogen‐bonded ring involving the main‐chain C?O in a β‐turn can be formed using a side‐chain carbonyl group leading to Asx‐turn. We show that the N? H component of hydrogen bond can be replaced by a Cγ‐H group in the side chain, culminating in a nonconventional C? H···O interaction. Because of its shape this β‐turn mimic is designated as ω‐turn, which is found to occur ~three times per 100 residues. Three residues (i to i + 2) constitute the turn with the C? H···O interaction occurring between the terminal residues, constraining the torsion angles ?i + 1, ψi + 1, ?i + 2 and χ1(i + 2) (using the interacting Cγ atom). Based on these angles there are two types of ω‐turns, each of which can be further divided into two groups. Cβ‐branched side‐chains, and Met and Gln have high propensities to occur at i + 2; for the last two residues the carbonyl oxygen may participate in an additional interaction involving the S and amino group, respectively. With Cys occupying the i + 1 position, such turns are found in the metal‐binding sites. N‐linked glycosylation occurs at the consensus pattern Asn‐Xaa‐Ser/Thr; with Thr at i + 2, the sequence can adopt the secondary structure of a ω‐turn, which may be the recognition site for protein modification. Location between two β‐strands is the most common occurrence in protein tertiary structure, and being generally exposed ω‐turn may constitute the antigenic determinant site. It is a stable scaffold and may be used in protein engineering and peptide design. Proteins 2015; 83:203–214. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
O‐Acyl isopeptides, in which the N‐acyl linkage on the hydroxyamino acid residue (e.g. Ser and Thr) is replaced by an O‐acyl linkage, generally suppress unfavorable aggregation properties derived from the corresponding parent peptides. Here, we report the synthesis of an O‐acyl isopeptide of 34‐mer pyroGlu‐ADan (2), a component of amyloid deposits in hereditary familial Danish dementia, by using native chemical ligation. Native chemical ligation of pyroGlu1‐ADan(1‐21)‐SCH2CH2SO3?Na+ (3) and Cys22O‐acyl isopeptide (4), in which the amino group of the Ser29 residue at the isopeptide moiety was protected by an allyloxycarbonyl group, proceeded well in an aqueous solvent to yield a ligated O‐acyl isopeptide (5). Subsequent disulfide bond formation and deprotection of the allyloxycarbonyl group followed by HPLC purification gave 2 with a reasonable overall yield. 2 was converted to the parent peptide 1 via an O‐to‐N acyl migration reaction. The sequential method, namely (i) native chemical ligation of the O‐acyl isopeptide, (ii) HPLC purification as the O‐acyl isopeptide form, and (iii) O‐to‐N acyl migration into the desired polypeptide, would be helpful to solve problems with HPLC purification of hydrophobic polypeptides in the process of chemical protein synthesis. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The chemical synthesis of proteins has facilitated functional studies of proteins due to the site‐specific incorporation of post‐translational modifications, labels, and non‐proteinogenic amino acids. Moreover, native chemical ligation provides facile access to proteins by chemical means. However, the application of the native chemical ligation reaction in the synthesis of parallel formats such as protein arrays has been complicated because of the often cumbersome and time‐consuming synthesis of the required peptide thioesters. An Fmoc‐based peptide thioester synthesis with self‐purification on the sulfonamide ‘safety‐catch’ linker widens this bottleneck because HPLC purification can be avoided. The method is based on an on‐resin cyclization–thiolysis reaction sequence. A macrocyclization via the N‐terminus of the full‐length peptide followed by a thiolytic C‐terminal ring opening allows selective detachment of the truncation products and the full‐length peptide. A brief overview of the chemical aspects of this method is provided including the optimization steps and the automation process. Furthermore, the application of the cyclization–thiolysis approach combined with the native chemical ligation reaction in the parallel synthesis of a library of 16 SH3‐domain variants of SHO1 in yeast is described, demonstrating the value of this new technique for the chemical synthesis of protein arrays. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
EeCentrocin 1 is a potent antimicrobial peptide isolated from the marine sea urchin Echinus esculentus. The peptide has a hetero‐dimeric structure with the antimicrobial activity confined in its largest monomer, the heavy chain (HC), encompassing 30 amino acid residues. The aim of the present study was to develop a shorter drug lead peptide using the heavy chain of EeCentrocin 1 as a starting scaffold and to perform a structure‐activity relationship study with sequence modifications to optimize antimicrobial activity. The experiments consisted of 1) truncation of the heavy chain, 2) replacement of amino acids unfavourable for in vitro antimicrobial activity, and 3) an alanine scan experiment on the truncated and modified heavy chain sequence to identify essential residues for antimicrobial activity. The heavy chain of EeCentrocin 1 was truncated to less than half its initial size, retaining most of its original antimicrobial activity. The truncated and optimized lead peptide ( P6 ) consisted of the 12 N‐terminal amino acid residues from the original EeCentrocin 1 HC sequence and was modified by two amino acid replacements and a C‐terminal amidation. Results from the alanine scan indicated that the generated lead peptide ( P6 ) contained the optimal sequence for antibacterial activity, in which none of the alanine scan peptides could surpass its antimicrobial activity. The lead peptide ( P6 ) was also superior in antifungal activity compared to the other peptides prepared and showed minimal inhibitory concentrations (MICs) in the low micromolar range. In addition, the lead peptide ( P6 ) displayed minor haemolytic and no cytotoxic activity, making it a promising lead for further antimicrobial drug development.  相似文献   

13.
A peptide SPOT array was synthesized on a glass chip and used to determine protease subsite preference. To synthesize a peptide array for positional scanning, the ratio of the isokinetic concentration was determined for every Fmoc‐amino acid except Cys. Based on this ratio, a peptide array consisting of Dabcyl‐X‐X‐P2‐Arg‐X‐X‐X‐Lys(FITC) (X: equimolar mixture of 19 amino acids, P2: one of 19 amino acids) was synthesized on a chitosan‐grafted glass chip. Subsequently, the peptide substrates on the array were hydrolyzed by thrombin to screen for subsite specificity using a fluorescence quenching‐based assay. The P2 subsite specificity of thrombin was screened by the fluorescence images obtained after hydrolysis. Pro at the P2 subsite showed the highest specificity for thrombin based on both the fluorescence quenching‐based assay and the solution phase assay. From these results, we confirmed that our mixture‐based peptide SPOT array format on the chitosan‐grafted glass chips could be used to determine protease subsite preference. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Sunflower trypsin inhibitor‐1 (SFTI‐1), a bicyclic tetradecapeptide, has become a versatile tool as a scaffold for the development of the inhibitors of therapeutically relevant serine proteases, among them matriptase and kallikreins. Herein, we report the rational design of potent monocyclic and bicyclic inhibitors of human matriptase‐1. We found that the presence of positive charge and lack of bulky residues at the peptide N‐terminus is required for the maintenance of inhibitory activity. Replacement of the N‐terminal glycine residue by lysine allowed for the chemical conjugation with a fluorophor via the ε‐amino group without significant loss of inhibitory activity. Head‐to‐tail and side‐chain‐to‐tail cyclization resulted in potent inhibitors with comparable activities against matriptase‐1. The most potent synthetic bicyclic inhibitor found in this study (Ki = 2.6 nM at pH 7.6) is a truncated version of SFTI‐1 (cyclo‐KRCTKSIPPRCH) lacking a C‐terminal proline and aspartate residue. It combines an internal disulfide bond with a peptide macrocycle that is formed through side‐chain‐to‐tail cyclization of the ε‐amino group of an N‐terminal lysine and a C‐terminal proline. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Recombinant human lecithin‐cholesterol acyltransferase Fc fusion (huLCAT‐Fc) is a chimeric protein produced by fusing human Fc to the C‐terminus of the human enzyme via a linker sequence. The huLCAT‐Fc homodimer contains five N‐linked glycosylation sites per monomer. The heterogeneity and site‐specific distribution of the various glycans were examined using enzymatic digestion and LC‐MS/MS, followed by automatic processing. Almost all of the N‐linked glycans in human LCAT are fucosylated and sialylated. The predominant LCAT N‐linked glycoforms are biantennary glycans, followed by triantennary sugars, whereas the level of tetraantennary glycans is much lower. Glycans at the Fc N‐linked site exclusively contain typical asialobiantennary structures. HuLCAT‐Fc was also confirmed to have mucin‐type glycans attached at T407 and S409. When LCAT‐Fc fusions were constructed using a G‐S‐G‐G‐G‐G linker, an unexpected +632 Da xylose‐based glycosaminoglycan (GAG) tetrasaccharide core of Xyl‐Gal‐Gal‐GlcA was attached to S418. Several minor intermediate species including Xyl, Xyl‐Gal, Xyl‐Gal‐Gal, and a phosphorylated GAG core were also present. The mucin‐type O‐linked glycans can be effectively released by sialidase and O‐glycanase; however, the GAG could only be removed and localized using chemical alkaline β‐elimination and targeted LC‐MS/MS. E416 (the C‐terminus of LCAT) combined with the linker sequence is likely serving as a substrate for peptide O‐xylosyltransferase. HuLCAT‐Fc shares some homology with the proposed consensus site near the linker sequence, in particular, the residues underlined PPP E416GS418G G G GDK. GAG incorporation can be eliminated through engineering by shifting the linker Ser residue downstream in the linker sequence.  相似文献   

16.
The emergence of strains of multidrug‐resistant Gram‐negative bacteria mandates a search for new types of antimicrobial agents. Alyteserin‐2a (ILGKLLSTAAGLLSNL.NH2) is a cationic, α‐helical peptide, first isolated from skin secretions of the midwife toad, Alytes obstetricans, which displays relatively weak antimicrobial and haemolytic activities. Increasing the cationicity of alyteserin‐2a while maintaining amphipathicity by the substitution Gly11→ Lys enhanced the potency against both Gram‐negative and Gram‐positive bacteria by between fourfold and 16‐fold but concomitantly increased cytotoxic activity against human erythrocytes by sixfold (mean concentration of peptide producing 50% cell death; LC50 = 24 µm ). Antimicrobial potency was increased further by the additional substitution Ser7→Lys, but the resulting analogue remained cytotoxic to erythrocytes (LC50 = 38 µm ). However, the peptide containing d ‐lysine at positions 7 and 11 showed high potency against a range of Gram‐negative bacteria, including multidrug‐resistant strains of Acinetobacter baumannii and Stenotrophomonas maltophilia (minimum inhibitory concentration = 8 µm ) but appreciably lower haemolytic activity (LC50 = 185 µm ) and cytotoxicity against A549 human alveolar basal epithelial cells (LC50 = 65 µm ). The analogue shows potential for treatment of nosocomial pulmonary infections caused by bacteria that have developed resistance to commonly used antibiotics. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Novel experimental methods, including a modified single fiber in vitro motility assay, X‐ray diffraction experiments, and mass spectrometry analyses, have been performed to unravel the molecular events underlying the aging‐related impairment in human skeletal muscle function at the motor protein level. The effects of old age on the function of specific myosin isoforms extracted from single human muscle fiber segments, demonstrated a significant slowing of motility speed (< 0.001) in old age in both type I and IIa myosin heavy chain (MyHC) isoforms. The force‐generating capacity of the type I and IIa MyHC isoforms was, on the other hand, not affected by old age. Similar effects were also observed when the myosin molecules extracted from muscle fibers were exposed to oxidative stress. X‐ray diffraction experiments did not show any myofilament lattice spacing changes, but unraveled a more disordered filament organization in old age as shown by the greater widths of the 1, 0 equatorial reflections. Mass spectrometry (MS) analyses revealed eight age‐specific myosin post‐translational modifications (PTMs), in which two were located in the motor domain (carbonylation of Pro79 and Asn81) and six in the tail region (carbonylation of Asp900, Asp904, and Arg908; methylation of Glu1166; deamidation of Gln1164 and Asn1168). However, PTMs in the motor domain were only observed in the IIx MyHC isoform, suggesting PTMs in the rod region contributed to the observed disordering of myosin filaments and the slowing of motility speed. Hence, interventions that would specifically target these PTMs are warranted to reverse myosin dysfunction in old age.  相似文献   

18.
Phosphorylation and O‐GlcNAcylation are two widespread post‐translational modifications (PTMs), often affecting the same eukaryotic target protein. Plum pox virus (PPV) is a member of the genus Potyvirus which infects a wide range of plant species. O‐GlcNAcylation of the capsid protein (CP) of PPV has been studied extensively, and some evidence of CP phosphorylation has also been reported. Here, we use proteomics analyses to demonstrate that PPV CP is phosphorylated in vivo at the N‐terminus and the beginning of the core region. In contrast with the ‘yin–yang’ mechanism that applies to some mammalian proteins, PPV CP phosphorylation affects residues different from those that are O‐GlcNAcylated (serines Ser‐25, Ser‐81, Ser‐101 and Ser‐118). Our findings show that PPV CP can be concurrently phosphorylated and O‐GlcNAcylated at nearby residues. However, an analysis using a differential proteomics strategy based on iTRAQ (isobaric tags for relative and absolute quantitation) showed a significant enhancement of phosphorylation at Ser‐25 in virions recovered from O‐GlcNAcylation‐deficient plants, suggesting that crosstalk between O‐GlcNAcylation and phosphorylation in PPV CP takes place. Although the preclusion of phosphorylation at the four identified phosphotarget sites only had a limited impact on viral infection, the mimicking of phosphorylation prevents PPV infection in Prunus persica and weakens infection in Nicotiana benthamiana and other herbaceous hosts, prompting the emergence of potentially compensatory second mutations. We postulate that the joint action of phosphorylation and O‐GlcNAcylation in the N‐proximal segment of CP allows a fine‐tuning of protein stability, providing the amount of CP required in each step of viral infection.  相似文献   

19.
Histatin‐5 (Hst‐5, DSHAKRHHGYKRKFHEKHHSHRGY) is a member of a histidine‐rich peptide family secreted by major salivary glands, exhibiting high fungicidal activity against Candida albicans. In the present work, we demonstrate the 3D structure of the head‐to‐tail cyclic variant of Hst‐5 in TFE solution determined using NMR spectroscopy and molecular dynamics simulations. The cyclic histatin‐5 reveals a helix‐loop‐helix motif with α‐helices at positions Ala4‐His7 and Lys11‐Ser20. Both helical segments are arranged relative to each other at an angle of ca. 142°. The head‐to‐tail cyclization increases amphipathicity of the peptide, this, however, does not affect its antimicrobial potency. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.
One chiral L ‐valine (L ‐Val) was inserted into the C‐terminal position of achiral peptide segments constructed from α‐aminoisobutyric acid (Aib) and α,β‐dehydrophenylalanine (ΔZPhe) residues. The IR, 1H NMR and CD spectra indicated that the dominant conformations of the pentapeptide Boc‐Aib‐ΔPhe‐(Aib)2‐L ‐Val‐NH‐Bn (3) and the hexapeptide Boc‐Aib‐ΔPhe‐(Aib)3‐L ‐Val‐NH‐Bn (4) in solution were both right‐handed (P) 310‐helical structures. X‐ray crystallographic analyses of 3 and 4 revealed that only a right‐handed (P) 310‐helical structure was present in their crystalline states. The conformation of 4 was also studied by molecular‐mechanics calculations. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号