首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have determined the nucleotide sequence of both genomic and complementary DNA (cDNA) for the gene encoding the glycolytic enzyme phosphoglycerate kinase from the ciliated protozoan Tetrahymena thermophila. The amino acid sequence for the enzyme has also been derived from the cDNA sequence. The gene contains an open reading frame of 1260 nucleotides encoding 420 amino acids. Coding sequence in genomic DNA is interrupted by two introns at positions corresponding to introns 3 and 4 in mammalian phosphoglycerate kinase genes. The derived amino acid sequence was used to prepare a phylogeny by aligning the Tetrahymena sequence with 25 other phosphoglycerate kinase amino acid sequences. The Tetrahymena sequence is a typical eukaryotic sequence. There is recognizable and clear homology across species that cover nearly the complete range of life forms. The phylogenetic reconstruction of these sequences generally supports the conclusions that have been reached using rRNA sequences.Offprint requests to: R.E. Pearlman  相似文献   

2.
We have cloned, sequenced, and characterized cDNA of actins from five ciliate species of three different classes of the phylum Ciliophora: Karyorelictea (Loxodes striatus), Heterotrichea (Blepharisma japonicum, Blepharisma musculus), and Litostomatea (Didinium nasutum, Dileptus margaritifer). Loxodes striatus uses UGA as the stop codon and has numerous in-frame UAA and UAG, which are translated into glutamine. The other four species use UAA as the stop codon and have no in-frame UAG nor UGA. The putative amino acid sequences of the newly determined actin genes were found to be highly divergent as expected from previous findings of other ciliate actins. These sequences were also highly divergent from other ciliate actins, indicating that actin genes are highly diverse even within the phylum Ciliophora. Phylogenetic analysis showed high evolutionary rate of ciliate actins. Our results suggest that the evolutionary rate was accelerated because of the differences in molecular interactions.  相似文献   

3.
Representatives of all classes of Ciliophora have been studied for the detection and investigation of both prokaryotic and eukaryotic (not algal) endo- (EnS) and ectosymbionts (EcS). Different methods including transmission electron microscopy (TEM) and fluorescence in situ hybridisation (FISH) have been used. Apparently, the capability of keeping symbionts varies among the different ciliate groups as it generally is the case in different protist taxa. Most of the prokaryotic EnSs detected belong to Alphaproteobacteria. Holospora or Holospora-like infectious bacteria of this group were found in representatives of Heterotrichea, Armophorea, Phyllopharyngea, Prostomatea and mainly of Oligohymenophorea. Bacteria associated with bacteriophages were found in species of Heterotrichea and Oligohymenophorea. This holds true also for bacteria with R-bodies. A quite rare type of EnS - motile bacteria - was found in ciliates of the same two classes as well, either in the cytoplasm (Heterotrichea) or in the macronucleus and its perinuclear space (Oligohymenophorea). EcSs are more common in Heterotrichea, Armophorea and Plagiopylea, but were never found in other groups. Among the eukaryotic EnSs of ciliates, very few representatives of Microsporidia and Trypanosomatidae were recorded. In conclusion, heterotrichs and oligohymenophoreans are the most promising groups of Ciliophora for the investigation of symbiosis.  相似文献   

4.
Z Yi  LA Katz  W Song 《PloS one》2012,7(7):e40635
The current understanding of ciliate phylogeny is mainly based on analyses of a single gene, the small subunit ribosomal RNA (SSU-rDNA). However, phylogenetic trees based on single gene sequence are not reliable estimators of species trees, and SSU-rDNA genealogies are not useful for resolution of some branches within Ciliophora. Since congruence between multiple loci is the best tool to determine evolutionary history, we assessed the usefulness of alpha-tubulin gene, a protein-coding gene that is frequently sequenced, for ciliate phylogeny. Here, we generate alpha-tubulin gene sequences of 12 genera and 30 species within the order Euplotida, one of the most frequently encountered ciliate clades with numerous apparently cosmopolitan species, as well as four genera within its putative sister order Discocephalida. Analyses of the resulting data reveal that: 1) the alpha-tubulin gene is suitable phylogenetic marker for euplotids at the family level, since both nucleotide and amino acid phylogenies recover all monophyletic euplotid families as defined by both morphological criteria and SSU-rDNA trees; however, alpha-tubulin gene is not a good marker for defining species, order and subclass; 2) for seven out of nine euplotid species for which paralogs are detected, gene duplication appears recent as paralogs are monophyletic; 3) the order Euplotida is non-monophyletic, and the family Uronychiidae with sequences from four genera, is non-monophyletic; and 4) there is more genetic diversity within the family Euplotidae than is evident from dargyrome (geometrical pattern of dorsal "silverline system" in ciliates) patterns, habit and SSU-rDNA phylogeny, which indicates the urgent need for taxonomic revision in this area.  相似文献   

5.
The symbiotic protists of the lower termite have been regarded as a model of early-branched eukaryotes because of their simple cellular systems and morphological features. However, cultivation of these symbiotic protists is very difficult. For this reason, these interesting protists have not been well characterized in terms of their molecular biology. In research on these organisms which have not yet been cultivated, we developed a method for retrieving specific genes from a small number of cells, through micromanipulation without axenic cultivation, and we obtained EF-1 alpha and alpha-tubulin genes from members of the Hypermastigida--the parabasalid protist Trichonympha agilis and the oxymonad protists Pyrsonympha grandis and Dinenympha exilis--from the termite Reticulitermes speratus gut community. Results of phylogenetic analysis of the amino acid sequences of both proteins, EF-1 alpha and alpha-tubulin, indicate that the hypermastigid, parabasalid, and oxymonad protists do not share a close common ancestor. In addition, although the EF-1 alpha phylogeny indicates that these two groups of protists branched at an early stage of eukaryotic evolution, the alpha-tubulin phylogeny indicates that these protists can be assigned to two diversified clades. As shown in a recent investigation of alpha-tubulin phylogeny, eukaryotic organisms can be divided into three classes: an animal--parabasalids clade, a plant--protists clade, and the diplomonads. In this study, we show that parabasalids, including hypermastigids, can be classified as belonging to the animal--parabasalids clade and the early-branching eukaryote oxymonads can be classified as belonging to the plant--protists clade. Our findings suggest that these protists have a cellular microtubule system that has diverged considerably, and it seems that such divergence of the microtubule system occurred in the earliest stage of eukaryotic evolution.  相似文献   

6.
克隆得到2种缘毛类纤毛虫——钟形钟虫(Vorticella campanula)和螅状独缩虫(Carchesium polypinum)的胞质Hsp70基因部分序列,长度均为438bp,编码146个氨基酸。以细菌为外类群,利用最大似然法和邻接法构建包括其他5种纤毛虫在内的共26个物种的Hsp70基因氨基酸序列系统发育树,其拓扑结构显示:V.campanula和C.polypinum聚在一起,并与另2种寡膜纲的嗜热四膜虫(Tetrahymena thermophila)及草履虫(Paramecium tetraurelia)聚为姊妹枝,提示了缘毛类纤毛虫为单系,且隶属于寡膜纲的系统发育地位。  相似文献   

7.
The ciliate subclass Haptoria is a diverse taxon that includes most of the free-living predators in the class Litostomatea. Phylogenetic study of this group was initially conducted using a single molecular marker small-subunit ribosomal RNA (SSU rRNA genes). Multi-gene analysis has been limited because very few other sequences were available. We performed phylogenetic analyses of Haptoria incorporating new SSU rRNA gene sequences from several debated members of the taxon, in particular, the first molecular data from Cyclotrichium. We also provided nine large-subunit ribosomal RNA (LSU rRNA) gene sequences and 10 alpha-tubulin sequences from diverse haptorians, and two possible relatives of controversial haptorians (Plagiopylea, Prostomatea). Phylogenies inferred from the different molecules showed the following: (i) Cyclotrichium and Paraspathidium were clearly separated from the haptorids and even from class Litostomatea, rejecting their high-level taxonomic assignments based on morphology. Both genera branch instead with the classes Plagiopylea, Prostomatea and Oligohymenophora. This raises the possibility that the well-known but phylogenetically problematic cyclotrichiids Mesodinium and Myrionecta may also have affinities here, rather than with litostomes; (ii) the transfer of Trachelotractus to Litostomatea is supported, especially by the analyses of SSU rRNA and LSU rRNA genes, however, Trachelotractus and Chaenea (more uncertainly) generally form the two deepest lineages within litostomes; and (iii) phylogenies of the new molecular markers are consistent with SSU rRNA gene information in recovering order Pleurostomatida as monophyletic. However, Pleurostomatida branches cladistically within order Haptorida, as does subclass Trichostomatia (on the basis of SSU rRNA phylogenies). Our results suggest that the class-level taxonomy of ciliates is still not resolved, and also that a systematic revision of litostomes is required, beginning at high taxonomic levels (taxa currently ranked as subclasses and orders).  相似文献   

8.
Deviant genetic codes reported in ciliates share the same feature: one (UGA) or two (UAR) of the three canonical stop codons are translated into one particular amino acid. In many genera, such as Oxytricha, Paramecium, and Tetrahymena, UAR codons are translated into glutamine. UGA is translated into cysteine in Euplotes or into tryptophan in Colpoda inflata and Blepharisma americanum. Here, we show that three peritrich species (Vorticella microstoma, Opisthonecta henneguyi, and Opisthonecta matiensis) translate UAA into glutamate and that at least UAA in O. matiensis is decoded through a mutant suppressor-like tRNA. This kind of genetic code has never been reported for any living organism. Phylogenetic analysis with alpha-tubulin sequences corroborates that peritrichs, peniculines (Paramecium), and hymenostomates (Tetrahymena) form a monophyletic group (class Oligohymenophorea). The differential translation (glu/gln) of UAR codons, the monophyly of the Oligohymenophorea, and the common evolutionary origin of glutamate and glutamine suggest that deviant genetic codes of present-day oligohymenophoreans could have the same origin.  相似文献   

9.
The genome of Chinese hamster ovary (CHO) cells contains a complex family of approximately 16 alpha-tubulin genes, many of which may be pseudogenes. We present here the complete cDNA sequences of three expressed alpha-tubulin genes; one of these genes has been identified only in CHO cells. The noncoding regions of these three CHO alpha-tubulin genes differed significantly, but their coding regions were highly conserved. Nevertheless, we observed differences in the predicted amino acid sequences for the three genes. A comparison of the CHO alpha-tubulin sequences with all of the sequences available for mammals allowed assignment of the alpha-tubulin genes to three classes. The proteins encoded by the members of two of these classes showed no class-specific amino acids among the mammalian species examined. The gene belonging to the third class encoded an isoprotein which was clearly distinct, and members of this class may play a unique role in vivo. Sequencing of the three alpha-tubulin genes was also undertaken in CMR795, a colcemid-resistant clonal CHO cell line which has previously been shown to have structural and functional alterations in its tubulin proteins. We found differences in the tubulin nucleotide sequence compared with the parental line; however, no differences in the alpha-tubulin proteins encoded in the two cell lines were observed.  相似文献   

10.
We determined partial ND4 gene sequences of mitochondrial DNA from 15 heterorhabditid nematode isolates, representing 5 species collected from different regions of the world, by using polymerase chain reaction (PCR) and direct-sequencing of PCR products. Aligned nucleotide as well as amino acid sequences were used to differentiate nematode species by comparing sequence divergence and to infer phylogeny of the nematodes by using maximum parsimony and likelihood methods. Robustness of our phylogenetic trees was checked by bootstrap tests. The 15 nematode isolates can be divided into 7 haplotypes based on DNA sequences. On a larger scale, the sequence divergence revealed 4 distinct groups corresponding to 4 described species. No sequence divergence was detected from 5 isolates of Heterorhabditis bacteriophora or between Heterorhabditis marelatus to Heterorhabditis hepialius. Our sequence data yielded phylogenetic trees with identical topologies when different tree-building methods were used. Most relationships were also confirmed by using amino acid sequences in maximum parsimony analysis. Our molecular phylogeny of Heterorhabditis species support an existing taxonomy that is based largely on morphology and the sequence divergence of the ND4 gene permits species identification.  相似文献   

11.
The genes encoding alpha- and beta-tubulins have been widely sampled in most major fungal phyla and they are useful tools for fungal phylogeny. Here, we report the first isolation of alpha-tubulin sequences from arbuscular mycorrhizal fungi (AMF). In parallel, AMF beta-tubulins were sampled and analysed to identify the presence of paralogs of this gene. The AMF alpha-tubulin amino acid phylogeny was congruent with the results previously reported for AMF beta-tubulins and showed that AMF tubulins group together at a basal position in the fungal clade and showed high sequence similarities with members of the Chytridiomycota. This is in contrast with phylogenies for other regions of the AMF genome. The amount and nature of substitutions are consistent with an ancient divergence of both orthologs and paralogs of AMF tubulins. At the amino acid level, however, AMF tubulins have hardly evolved from those of the chytrids. This is remarkable given that these two groups are ancient and the monophyletic Glomeromycota probably diverged from basal fungal ancestors at least 500 million years ago. The specific primers we designed for the AMF tubulins, together with the high molecular variation we found among the AMF species we analysed, make AMF tubulin sequences potentially useful for AMF identification purposes.  相似文献   

12.
The molecular phylogeny of parabasalids has mainly been inferred from small subunit (SSU) rRNA sequences and has conflicted substantially with systematics based on morphological and ultrastructural characters. This raises the important question, how congruent are protein and SSU rRNA trees? New sequences from seven diverse parabasalids (six trichomonads and one hypermastigid) were added to data sets of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase, alpha-tubulin and beta-tubulin and used to construct phylogenetic trees. The GAPDH tree was well resolved and identical in topology to the SSU rRNA tree. This both validates the rRNA tree and suggests that GAPDH should be a valuable tool in further phylogenetic studies of parabasalids. In particular, the GAPDH tree confirmed the polyphyly of Monocercomonadidae and Trichomonadidae and the basal position of Trichonympha agilis among parabasalids. Moreover, GAPDH strengthened the hypothesis of secondary loss of cytoskeletal structures in Monocercomonadidae such as Monocercomonas and Hypotrichomonas. In contrast to GAPDH, the enolase and both tubulin trees are poorly resolved and rather uninformative about parabasalian phylogeny, although two of these trees also identify T. agilis as representing the basal-most lineage of parabasalids. Although all four protein genes show multiple gene duplications (for 3-6 of the seven taxa examined), most duplications appear to be relatively recent (i.e., species-specific) and not a problem for phylogeny reconstruction. Only for enolase are there more ancient duplications that may confound phylogenetic interpretation.  相似文献   

13.
The mitochondrial cytochrome c oxidase subunit 1 (COI) gene of ciliates was first successfully sequenced in species of the genera Tetrahymena and Paramecium (Class Oligohymenophorea). The sequence of the COI gene is extremely divergent from other eukaryotes and includes an insert, which is over 300 nucleotides long. In this study, we designed a primer pair that successfully amplified the COI gene of ciliates from five different classes: Heterotrichea, Spirotrichea, Oligohymenophorea, Nassophorea and Colpodea. These classes represent the diversity of the phylum Ciliophora very well, since they are widely distributed on the ciliate small subunit rRNA tree. The amplified region is approximately 850 nucleotides long and corresponds to the general barcoding region; it also includes the insert region. In this study, 58 new COI sequences from over 38 species in 13 orders are analysed and compared, and distance trees are constructed. While the COI gene shows high divergence within ciliates, the insert region, which is present in all classes, is even more divergent. Genetic distances calculated with and without the insert region remain in the same range at the intraspecific level, but they differ considerably at or above genus level. This suggests that the entire barcoding region is under similar selective constraints and that the evolutionary rate of the ciliate COI is extremely high and shows unequal rate variation. Although many problems still remain regarding standardization of barcoding methods in ciliates, the development of a universal or almost universal primer combination for the Phylum Ciliophora represents important progress. As shown in four examples, the resolution of COI at the intraspecific level is much greater than that of any nuclear genes and shows great potential to (1) identify species based on molecular data if a reliable database exists, and (2) resolve the relationships of closely related ciliate taxa and uncover cryptic species.  相似文献   

14.
Gao, S., Strüder‐Kypke, M.C., Al‐Rasheid, K.A.S., Lin, X. & Song, W. (2010). Molecular phylogeny of three ambiguous ciliate genera: Kentrophoros, Trachelolophos and Trachelotractus (Alveolata, Ciliophora).—Zoologica Scripta, 39, 305–313. Very few molecular studies on the phylogeny of the karyorelictean ciliates have been carried out because data of this highly ambiguous group are extremely scarce. In the present study, we sequenced the small subunit ribosomal RNA genes of three morphospecies representing two karyorelictean genera, Kentrophoros, Trachelolophos, and one haptorid, Trachelotractus, isolated from the South and East China Seas. The phylogenetic trees constructed using Bayesian inference, maximum likelihood, maximum parsimony and neighbor‐joining methods yielded essentially similar topologies. The class Karyorelictea is depicted as a monophyletic clade, closely related to the class Heterotrichea. The generic concept of the family Trachelocercidae is confirmed by the clustering of Trachelolophos and Tracheloraphis with high bootstrap support; nevertheless, the order Loxodida is paraphyletic. The transfer of the morphotype Trachelocerca entzi Kahl, 1927 to the class Litostomatea and into the new haptorid genus Trachelotractus, as suggested by previous researchers based on morphological studies, is consistently supported by our molecular analyses. In addition, the poorly known species Parduczia orbis occupies a well‐supported position basal to the Geleia clade, justifying the separation of these genera from one another.  相似文献   

15.
16.
The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of free-living and endocommensal species. However, their traditional morphology-based classification conflicts with 18S rRNA gene phylogenies indicating (1) a deep bifurcation of the Litostomatea into Rhynchostomatia and Haptoria+Trichostomatia, and (2) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea. To test whether 18S rRNA molecules provide a suitable proxy for litostomatean evolutionary history, we used eighteen new ITS1-5.8S rRNA-ITS2 region sequences from various free-living litostomatean orders. These single- and multiple-locus analyses are in agreement with previous 18S rRNA gene phylogenies, supporting that both 18S rRNA gene and ITS region sequences are effective tools for resolving phylogenetic relationships among the litostomateans. Despite insertions, deletions and mutational saturations in the ITS region, the present study shows that ITS1 and ITS2 molecules can be used to infer phylogenetic relationships not only at species level but also at higher taxonomic ranks when their secondary structure information is utilized to aid alignment.  相似文献   

17.
The complete amino acid sequence of yeast phosphoglycerate kinase.   总被引:4,自引:1,他引:3       下载免费PDF全文
The complete amino acid sequence of yeast phosphoglycerate kinase, comprising 415 residues, was determined. The sequence of residues 1-173 was deduced mainly from nucleotide sequence analysis of a series of overlapping fragments derived from the relevant portion of a 2.95-kilobase endonuclease-HindIII-digest fragment containing the yeast phosphoglycerate kinase gene. The sequence of residues 174-415 was deduced mainly from amino acid sequence analysis of three CNBr-cleavage fragments, and from peptides derived from these fragments after digestion by a number of proteolytic enzymes. Cleavage at the two tryptophan residues with o-iodosobenzoic acid was also used to isolate fragments suitable for amino acid sequence analysis. Determination of the complete sequence now allows a detailed interpretation of the existing high-resolution X-ray-crystallographic structure. The sequence -Ile-Ile-Gly-Gly-Gly- occurs twice in distant parts of the linear sequence (residues 232-236 and 367-371). Both these regions contribute to the nucleoside phosphate-binding site. A comparison of the sequence of yeast phosphoglycerate kinase reported here with the sequences of phosphoglycerate kinase from horse muscle and human erythrocytes shows that the yeast enzyme is 64% identical with the mammalian enzymes. The yeast has strikingly fewer methionine, cysteine and tryptophan residues.  相似文献   

18.
The Zymomonas mobilis gene encoding phosphoglycerate kinase (EC 2.7.3.2), pgk, has been cloned into Escherichia coli and sequenced. It consists of 336 amino acids, including the N-terminal methionine, with a molecular weight of 41,384. This promoterless gene is located 225 base pairs downstream from the gap gene and is part of the gap operon. Previous studies have shown that the specific activities of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase do not change coordinately in Z. mobilis, although the two enzymes appear to be under the control of a common promoter. The translated amino acid sequence for the Z. mobilis phosphoglycerate kinase is less conserved than those of eucaryotic genes. A comparison of known sequences for phosphoglycerate kinase revealed a high degree of conservation of structure with 102 amino acid positions being retained by all. In general, the amino acid positions at the boundaries of beta-sheet and alpha-helical regions and those connecting these regions were more highly conserved than the amino acid positions within regions of secondary structure.  相似文献   

19.
Cloning and sequencing of a murine cDNA with the entire coding region of 2,3-bisphosphoglycerate mutase is reported, as a prerequisite for further expression studies of this erythroid specific enzyme in Friend mouse erythroleukemia cells. A comparison between species of the deduced amino acid sequences of these proteins shows 20 substitutions between mouse and human and 21 between mouse and rabbit: none of these substitutions are in positions assumed to be in the active site. Amino acid alignment with the other related enzymes, the phosphoglycerate mutases, in combination with crystallographic data from yeast phosphoglycerate mutase, gives some insight into the structure/function correlation for this protein family. Amino acid residues which are most likely critical for either 2,3-bisphosphoglycerate mutase or phosphoglycerate mutase function are pointed out. Concerning the phylogenetic analysis, phosphoglycerate mutases B and M from mammalians appear to have diverged with the yeast enzyme from a common ancestor, before the emergence of the 2,3-bisphosphoglycerate mutases.  相似文献   

20.
The molecular phylogenetics of decapod crustaceans has been based on sequence data from a limited number of genes. These have included rapidly evolving mitochondrial genes, which are most appropriate for studies of closely related species, and slowly evolving nuclear ribosomal RNA genes, which have been most useful for resolution of deep branches within the Decapoda. Here we examine the utility of the nuclear gene that encodes arginine kinase for phylogenetic reconstruction at intermediate levels (relationships among genera and families) within the decapod infraorder Brachyura (the true crabs). Analyses based on arginine kinase sequences were compared and combined with those for the mitochondrial cytochrome oxidase I gene. All of the genera in our taxon sample were resolved with high support with arginine kinase data alone. However, some of these genera were grouped into clades that are in conflict with recognized brachyuran families. A phylogeny based on cytochrome oxidase I was consistent with the arginine kinase phylogeny, but with weaker support. A recently proposed measure of phylogenetic informativeness indicated that arginine kinase was generally more informative than cytochrome oxidase I for relationships above the level of genus. Combined analysis of data from both genes provided strong support for clades that are in conflict with current assignments of genera to the families Epialtidae, Mithracidae, Pisidae, and Portunidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号