首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary A novel approach to the production of a human glucagon in E. coli is described. The 29 amino acids of human glucagon and pentapeptide linker containing enzyme processing site were fused at the amino terminus to a 57 residue N-terminal portion of the human tumor necrosis factor-alpha (hTNF-). The fusion protein was expressed in the E. coli cytoplasm at levels up to 30% of the total cell protein. Precipitation of the fusion protein near its isoelectric point, specific enterokinase cleavage at the linker site and subsequent HPLC purification makes this approach suitable for the production of glucagon as well as other relatively small peptides with therapeutic interests.  相似文献   

2.
Summary A 1,820bp full-length clone encoding for a new human protein was isolated from a gt11 placental cDNA library using anti-human hexokinase antibodies. The cDNA complete sequence includes a 12 by 5 noncoding region, a single open reading frame encoding a protein of 55 KDa (HP-10) and a 177 by non-coding with two putative polyadenylation signals upstream of 3poly(A)tail. The deduced amino acid sequence reveals a sequence of 492 amino acids that contains a stretch of 7 glutamic acid from position 169 and one potential glycosylation site at position 274. Although antibodies against hexokinase recognize the fusion protein and antibodies against the fusion protein recognize hexokinase, HP-10 is not human hexokinase, by a number of criteria including the alignment of determined amino acid sequences.In searching for a possible functional role of HP-10 its cDNA was inserted into a procaryotic vector which allows the expression of the non-fused protein. Bacteria expressing the HP-10 encoded protein were isolated and found to have a dramatic increase in endogenous phosphorylated proteins. Since HP-10 does not have a protein kinase activity per se it should be considered a new regulatory phosphorylation protein which is active in E. coli Abbreviations HK Hexokinase (EC 2.7.1.1)  相似文献   

3.
Recombinant glucagon was expressed inEscherichia coli as a fusion protein including the glucagon sequence therein as previously reported [Ishizakiet al. (1992).Appl. Microbiol. Biotechnol.36, 483–486]. We developed a large-scale method for the isolation and purification of recombinant glucagon. After cell disruption, the resultant pellets were solubilized with 2 M guanidine-HCl, to whichStaphylococcus aureus V8 protease had been added, and were digested into intermediates composed of 53- and 60-residue peptides containing the glucagon moiety. After the digestion came to an end, the solution was desalted, and the remaining V8 protease was allowed to resume digestion of the intermediates into glucagon, followed by partial purification by S-Sepharose and Sephacryl S-100 chromatographies. The glucagon obtained was found to be not less than 99.5% pure by analytical HPLC. One liter of culture produced about 180 mg of pure glucagon. The amino acid composition and the sequence agreed well with the theoretical values. Radioreceptor assay gave an affinity constant similar to that of pancreatic glucagon, and similar activities in cAMP production and glycogenolysis were also observed. Thus, the recombinant glucagon was confirmed to be biochemically identical with pancreatic glucagon.  相似文献   

4.
Summary Examination of glucagon structure-activity relationships and their use for the development of glucagon antagonists (inhibitors) have been hampered until recently by the lack of high purity of semisynthetic glucagon analogs and inadequate study of full dose-response curves for these analogs in sensitive bioassay systems. Recently a number of highly purified glucagon fragments and semi-synthetic analogs have been prepared and their full dose-response activities examined over a wide concentration range using the hepatic membrane adenylate cyclase assay, the hepatic membrane receptor binding assay, and glycogenolytic activity in isolated rat hepatocytes. The results of these studies have enabled us to identify and dissociate the structural (and in some cases conformational) features of glucagon important for binding from those most responsible for biological activity (transduction). Key findings in these studies were the observation that: (1) the C-terminal region of glucagon is primarily of importance for hormone binding to receptors; (2) glucagon1–21 and glucagon1–6 have low potency, but are essentially fully active glucagon derivatives; and (3) highly purified glucagon2–29 ([1-des-histidine]-glucagon), [1-N-carbamoylhistidine]-glucagon and [1-N-carbamoylhistidine, 12-N-carbamoyllysine]-glucagon are all partial agonists.These and other findings led us to synthesize several semisynthetic analogs of glucagon which were found to possess no intrinsic biological activity in the hepatic adenylate cyclase assay system, but which could block the effect of glucagon (competitive inhibitors) in activating adenylate cyclase in this system. Two of these highly purified analogs [1-des-histidine] [2-N-trinitrophenylserine, 12-homoarginine]-glucagon and [1-N-trinitrophenylhistidine, 12-homoarginine]-glucagon were quite potent glucagon antagonists (inhibitors) with pA2 values of 7.41 and 8.16 respectively. The latter compound has also been demonstrated to decrease dramatically blood glucose levels of diabetic animals in vivo. These results demonstrate that glucagon is a major contributor to the hyperglycemia of diabetic animals.Examination of the known and calculated conformational properties of glucagon provide insight into the structural and conformational properties of glucagon and its analogs most responsible for its biological activity. Consideration of these features and the mechanism of glucagon action at the membrane receptor level provide a framework for further developing glucagon analogs for theoretical and therapeutic applications.  相似文献   

5.
Simple procedures have been devised for purifying recombinant human interleukin-2 (hIL-2), which was expressed inEscherichia coli using sequences of glucagon molecules and enterokinase cleavage site as an N-terminus fusion partner. The insoluble aggregates of recombinant fusion protein produced inE. coli cytoplasm were easily dissolved by simple alkaline pH shift (8→12→8). Following enterokinase cleavage, the recombinant hIL-2 was finally purified by one-step reversed-phase HPLC with high purity. The ease and high efficiency of this simple purification process seem to mainly result from the role of used glucagon fusion partner, which could be applied to the production of other therapeutically important proteins.  相似文献   

6.
Human arylamine N-acetyltransferase 1 (NAT1) has been overexpressed in E. coli as a mutant dihydrofolic acid reductase (DHFR) fusion protein with a thrombin sensitive linker. An initial DEAE anion-exchange chromatography resulted in partial purification of the fusion protein. The fusion protein was cleaved with thrombin, and human rNAT1 was purified with a second DEAE column. A total of 8 mg of human rNAT1 from 2 l of cell culture was purified to homogeneity with this methodology. Arylamine substrate specificities were determined for human rNAT1 and hamster rNAT2. With both NATs, the second order rate constants (kcat/Kmb) for p-aminobenzoic acid (PABA) and 2-aminofluorene (2-AF) were several thousand-fold higher than those for procainamide (PA), consistent with the expected substrate specificities of the enzymes. However, p-aminosalicylic acid (PAS), previously reported to be a human NAT1 and hamster NAT2 selective substrate, exhibits 20-fold higher specificity for hamster rNAT2 (k cat/Kmb3410 M-1 s-1 ) than for human rNAT1 (kcat/Kmb 169.4 M-1 s-1 ). p-aminobenzoylglutamic acid (pABglu) was acetylated 10-fold more efficiently by human rNAT1 than by hamster rNAT2. Inhibition studies of human rNAT1 and hamster rNAT2 revealed that folic acid and methotrexate (MTX) are competitive inhibitors of both the unacetylated and acetylated forms of the enzymes, with KI values in 50–300 range. Dihydrofolic acid (DHF) was a much poorer inhibitor of human rNAT1 than of hamster rNAT2. The combined results demonstrate that human rNAT1 and hamster rNAT2 have similar but distinct kinetic properties with certain substrates, and suggest that folic acid, at least in the non-polyglutamate form, may not have an effect on human NAT1 activity in vivo.  相似文献   

7.
Purified human glucocerebrosidase isolated from placenta was modified with [14C]-iodoacetic acid without reduction and digested with both protease-V8 at pH 4.0 followed by-chymotrypsin at pH 7.5. The majority of radioactivity was found in a peptide that contained the [14C]-carboxymethylated-cysteine identified as CM-Cys18. Direct sequencing of the N-terminus of the intact labeled protein confirmed the modification of Cys18. For identification of disulfide bond-containing peptides, another portion of glucocerebrosidase was alkylated with nonlabeled iodoacetic acid and then digested with protease V8 and-chymotrypsin as before. Twenty-eight HPLC fragments were collected. These purified peaks were then reduced with-mercaptoethanol followed by S-carboxymethylation with [14C]-iodoacetic acid. Three peptides among these 28 peptides generated two radioactive daughter peptides. These peptides were sequenced and the position of the radioactive CM-cysteines identified. The locations of these disulfides are Cys4-Cys16, Cys23-Cys342, and Cys126-Cys248. Attempts to reproduce the free sulfhydryl labeling experiments using the glucocerebrosidase isolated from Ceredase proved unsuccessful. No label was incorporated by this enzyme prior to reduction. This result suggests that the form of the protein used in the clinic differs from the native protein.  相似文献   

8.
The G-protein-mediated coupling of a glucagon receptor to ATP-dependent K channels—KATP—has been studied in insulin-secreting cells using the patch clamp technique. In excised outside-out patches, KATP channel activity was inhibited by low concentrations of glucagon (IC50 = 2.4 nm); the inhibitory effect vanished at concentrations greater than 50 nm. In cell-attached patches, inhibition by bath-applied glucagon was seen most often, although stimulation was observed in a few cases. A dual action of the hormone is proposed to resolve these apparently divergent results. In excised inside-out patches, KATP channel activity was inhibited by addition of subunits purified from either erythrocyte or retina (IC50 = 50 pm and 1 nm, respectively). Subsequent exposure of the patch to i or o reversed this effect. In excised inside-out patches, increasing Mg2+ in the bath stimulated the channel activity between 0 and 0.5 mm, but blocked it at higher concentrations (IC50 = 2.55 mm). In most cases (70%), GTP had a stimulatory effect at concentrations up to 100 m. However, in three cases, similar GTP levels had clear inhibitory effects. In excised inside-out patches, cholera toxin (CTX) caused channel inhibition. Although the effect could not be reversed by removal of the toxin, the activity was restored by subsequent addition of purified i or o . These results are compatible with a model whereby channel inhibition by activated G S -coupled receptors occurs, at least in part, via association of the subunits of G S with i / o subunits and deactivation of the i / o -dependent stimulatory pathway. On the basis of this hypothesis, a model is developed to describe the effects of G proteins on the KATP channel, as well as to account for the concentration-dependent stimulation and inhibition of KATP channel by Mg2+. An interpretation of the ability of glucagon to potentiate, but not initiate, insulin release is also given in terms of this model and the effects of ATP on KATP channels.This work was supported by grant DCB-89 19368 from the National Science Foundation and a research grant (W-P 880513) from the American Diabetes Association to B.R.The authors would like to thank Dr. A.E. Boyd, III for supplying the RINm5F and HIT cells, Drs. J. Codina and L. Birnbaumer for supplying the G protein and subunits from erythrocyte, Dr. R.A. Cerione for supplying the G protein subunit from retina, and Mrs. Satoko Hagiwara for preparing and maintaining the cell cultures.  相似文献   

9.
Synthesis of two recombinant proteins (human glucagon and human growth hormone) was investigated in fed-batch cultures at high cell concentrations of recombinant Escherichia coli. The glucose-limited growth was achieved without accumulation of metabolic by-products and hence the cellular environment is presumed invariable during growth and recombinant protein synthesis. Via exponential feeding in the two-phase fed-batch operation, the specific cell growth rate was successfully controlled at the desired rates and the fed-batch mode employed is considered appropriate for examining the correlation between the specific growth rate and the efficiency of recombinant product formation in the recombinant E. coli strains. The two recombinant proteins were expressed as fusion proteins and the concentration in the culture broth was increased to 15 g fusion growth hormone l−1 and 7 g fusion glucagon l−1. The fusion growth hormone was initially expressed as soluble protein but seemed to be gradually aggregated into inclusion bodies as the expression level increased, whereas the synthesized fusion glucagon existed as a cytoplasmic soluble protein during the whole induction period. The stressful conditions of cultivation employed (i.e. high-cell-density cultivation at low growth rate) may induce the increased production of various host-derived chaperones and thereby enhance the folding efficiency of synthesized heterologous proteins. The synthesis of the recombinant fusion proteins was strongly growth-dependent and more efficient at a higher specific growth rate. The mechanism linking specific growth rate with recombinant protein productivity is likely to be related to the change in cellular ribosomal content. Received: 27 May 1997 / Received last revision: 31 October 1997 / Accepted: 21 November 1997  相似文献   

10.
Glucagon was expressed inEscherichia coli as a fusion protein including the glucagon sequence [Ishizakiet al. (1992),Appl. Microbiol. Biotechnol.36, 483–486]. The high-level expression of a protein inE. coli often results in an insoluble aggregate called an inclusion body containing a fusion protein. In our previous report [Yoshikawaet al. (1992),J. Protein Chem. 11, 517–525], we solubilized this inclusion body by using guanidinium chloride. However, the existence of denaturant caused problems such as a low proteolytic activity for transforming the fusion protein into glucagon and complicated purification methods. We tried to improve the method to enable large-scale purification. At alkaline pH, the inclusion body could be solubilized to a high concentration and cleaved by amino acid-specific endopeptidases. By utilizing isoelectric precipitations as a new economical purification method for glucagon from intermediates, the glucagon obtained was shown to be over 99.5% pure by analytical RP-HPLC. The yield was almost equal that of our previous method, and the glucagon produced was chemically and biochemically equivalent to natural glucagon.  相似文献   

11.
Lou PH  Gustavsson N  Wang Y  Radda GK  Han W 《PloS one》2011,6(10):e26671

Background

Secretion of insulin and glucagon is triggered by elevated intracellular calcium levels. Although the precise mechanism by which the calcium signal is coupled to insulin and glucagon granule exocytosis is unclear, synaptotagmin-7 has been shown to be a positive regulator of calcium-dependent insulin and glucagon secretion, and may function as a calcium sensor for insulin and glucagon granule exocytosis. Deletion of synaptotagmin-7 leads to impaired glucose-stimulated insulin secretion and nearly abolished Ca2+-dependent glucagon secretion in mice. Under non-stressed resting state, however, synaptotagmin-7 KO mice exhibit normal insulin level but severely reduced glucagon level.

Methodology/Principal Findings

We studied energy expenditure and metabolism in synaptotagmin-7 KO and control mice using indirect calorimetry and biochemical techniques. Synaptotagmin-7 KO mice had lower body weight and body fat content, and exhibited higher oxygen consumption and basal metabolic rate. Respiratory exchange ratio (RER) was lower in synaptotagmin-7 KO mice, suggesting an increased use of lipid in their energy production. Consistent with lower RER, gene expression profiles suggest enhanced lipolysis and increased capacity for fatty acid transport and oxidation in synaptotagmin-7 KO mice. Furthermore, expression of uncoupling protein 3 (UCP3) in skeletal muscle was approximately doubled in the KO mice compared with control mice.

Conclusions

These results show that the lean phenotype in synaptotagmin-7 KO mice was mostly attributed to increased lipolysis and energy expenditure, and suggest that reduced glucagon level may have broad influence on the overall metabolism in the mouse model.  相似文献   

12.
The expression of a recombinant fusion protein including Staphylococcus aureus V8 protease was studied by using Escherichia coli as the host strain. When the mature V8 protease was expressed as a fusion protein with a truncated E. coli \-galactosidase (\-gal97S4D), we could not obtain a sufficient amount of the enzyme because of the toxicity resulting from the expressed protease activity. Synthesis of V8 protease was increased by constructing a sandwich-type fusion protein consisting of \-gal197S4D, a V8 protease derivative with the 56 C-terminal amino acids deleted (V856) and a truncated aminoglycoside-3'-phosphotransferase. This fusion protein was successfully produced as inactive inclusion bodies. To release the V856 protease from the fusion protein, we developed a novel processing method using an endogeneous E. coli OmpT protease, which can recognize the dibasic amino acid residues located in the linker peptides of the fusion protein. After solubilizing the inclusion bodies with urea, the V856 protein was automatically released from the fusion protein by the OmpT protease, which was coprecipitated with the inclusion bodies. The V856 protease thus obtained showed the same enzymatic activity as that of the native V8 protease. We demonstrate in this study that the N-terminal prepro sequence and the C-terminal repeated sequence of this enzyme are not necessary for its enzymatic activity and protein folding.  相似文献   

13.
Our previous study indicated that tryptamine induces a dose-related incresae in plasma glucagon levels of mice and that this effect is mediated by the peripheral serotonin2 (5-HT2) receptor. The present paper further investigated the involvement of serotonergic and catecholaminergic systems in hyperglucagonemia elicited by tryptamine. An inhibitor of 5-HT synthesis, p-chlorophenylalanine, did not affect tryptamine-induced increases in plasma glucagon levels. Tryptamine-induced hyperglucagonemia was not inhibited by adrenalectomy or by an inhibition of catecholamine synthesis by -methyl-p-tyrosine. These findings indicate that tryptamine-induced hyperglucagonemia is elicited by its direct activation of 5-HT2 receptors and is not mediated by levels of endogenous 5-HT and catecholamines. The results further suggest that the peripheral 5-HT2 receptor has a possible role in the release of glucagon.  相似文献   

14.
A DNA fragment encoding a 12-amino acid (aa) HIV-1 Tat transduction peptide fused to a 90-aa murine rotavirus NSP4 enterotoxin protein (Tat-NSP490) was transferred to Solanum tuberosum by Agrobacterium tumefaciens-mediated transformation. The fusion gene was detected in the genomic DNA of transformed plant leaf tissues by PCR DNA amplification. The Tat-NSP490 fusion protein was identified in transformed tuber extracts by immunoblot analysis using anti-NSP490 and anti-Tat as the primary antibodies. Enzyme-linked immunosorbent assay results showed that the Tat-NSP490 fusion protein made up to 0.0015% of the total soluble tuber protein. The synthesis of Tat-NSP490 fusion protein in transformed potato tuber tissues demonstrates the feasibility of plant cell delivery of the HIV-1 Tat transduction domain as a carrier for non-specific targeting of fused antigens to the mucosal immune system.Abbreviations APC Antigen-presenting cells - BA Benzyladenine - BSA Bovine serum albumin - CT Cholera toxin - CTB Cholera toxin B subunit - CTL Cytotoxic T lymphocytes - 2,4-D 2,4-Dichlorophenoxyacetic acid - ELISA Enzyme-linked immunosorbent assay - HIV-1 Human immunodeficiency virus type 1 - MHC Major histocompatibility complex - IAA Indole-3-acetic acid - NAA -Naphthaleneacetic acid - NPT II Neomycin phosphotransferase II - NSP4 Rotavirus enterotoxin non-structural protein - PBS Phosphate-buffered saline - PBST Phosphate-buffered saline containing 0.05% Tween-20 - PTD Protein transduction domain Communicated by W.A. Parrott  相似文献   

15.
Myristoyl CoA:protein N-myristoyltransferase catalyzes the addition of myristate to the amino-terminal glycine residue of a number of eukaryotic proteins.Escherichia coli transformed with human NMT expression construct produced high levels of N-myristoyltransferase. Using the combination of ammonium sulfate precipitation, chromatography on SP-Sepharose fast flow and fast protein liquid chromatography on Mono-S, the enzyme was purified more than 100 fold with 40% yield. The hNMT fusion protein exhibited an apparent molecular weight of 53 kDa on SDS-polyacrylamide gel electrophoresis. Upon cleavage by the Enterokinase [(Asp)4-Lys], the hNMT exhibited an apparent molecular mass of 49 kDa without loss of catalytic activity. The hNMT activity could be greatly activated severalfold with the use of Tris, SDS, ethanol and acetonitrile. The catalytic activity of hNMT was potently inhibited in a concentration dependent manner by NIP711 a bovine brain NMT inhibitory protein with a half maximal inhibition of 31.0 nM. TheE. coli expressed hNMT was homogeneous and showed enzyme activity.Abbreviations NMT N-myristoyl CoA:protein N-myristoyltransferase - NIP71 71 kDa heat stable membrane bound N-myristoyltransferase inhibitor protein - hNMT human NMT - DTNB N-5,5dithiobis (2-nitrobenzoic acid) - FPLC fast protein liquid chromatography - IPTG isopropyl -D-thiogalactopyranoside - cDNA complementarydeoxyribonucleic acid - SDS sodium dodecyl sulfate - PMSF phenylmethylsulfonyl fluoride  相似文献   

16.
Asparagine-linked oligosaccharides present on hen egg-yolk immunoglobulin, termed IgY, were liberated from the protein by hydrazinolysis. AfterN-acetylation, the oligosaccharides were labelled with a UV-absorbing compound,p-aminobenzoic acid ethyl ester (ABEE). The ABEE-derivatized oligosaccharides were fractionated by anion exchange, normal phase and reversed phase HPLC, and their structures were determined by a combination of sugar composition analysis, methylation analysis, negative ion FAB-MS, 500 MHz1H-NMR and sequential exoglycosidase digestions. IgY contained monoglucosylated oligomannose type oligosaccharides with structures of Glc1-3Man7–9-GlcNAc-GlcNAc, oligomannose type oligosaccharides with the size range of Man5–9GlcNAc-GlcNAc, and biantennary complex type oligosaccharides with core region structure of Man1-6(±GlcNAc1-4)(Man1-3)Man1-4GlcNAc1-4(±Fuc1-6)GlcNAc. The glucosylated oligosaccharides, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, have not previously been reported in mature glycoproteins from any source.Abbreviations IgG, IgM, IgD, IgE, and IgA immunoglobulin G, M, D, E, and A, respectively - IgY egg-yolk antibody - ABEE p-aminobenzoic acid ethyl ester - HPLC high performance liquid chromatography - FAB-MS fast atom bombardment mass spectrometry - Hex hexose - HexNAc N-acetylhexosamine - hCG human chorionic gonadotropsin  相似文献   

17.
Accumulation of proline in response to NH4Cl was studied indetached leaves of rice (Oryza sativa cv. Taichung Native1). Increasing concentrations of NH4Cl from 50 to 200mMprogressively increased proline content and this was correlated with theincrease in ammonium content. Proline accumulation induced by NH4Clwas related to proteolysis, an increase in ornithine--aminotransferaseactivity, a decrease in proline dehydrogenase activity, and a decrease inproline utilisation and could not be explained by NH4Cl-inducedmodification in 1-pyrroline-5-carboxylate reductase activity.The content of glutamic acid was decreased by NH4Cl, whereas theincrease in arginine and ornithine contents was found to be associated with theincrease in proline content in NH4Cl-treated detached rice leaves.  相似文献   

18.
A synthetic gene encoding spinach acyl carrier protein I (ACP-I) was fused to a gene encoding the Fc-binding portion of staphylococcal protein A. This gene fusion, under the control of the PR promoter, was expressed at high levels in Escherichia coli producing a 42 kDa fusion protein. This fusion protein was phosphopantethenylated in E. coli. In vitro the ACP portion of the fusion protein was able to participate in acyl ACP synthetase reactions, plant malonyl-CoA:ACP transacylase (MCT) reactions, and plant fatty acid synthetase (FAS) reactions. Inhibitory effects of high ACP concentrations on in vitro plant FAS were observed with the unfused ACP-1 but not with the fusion protein. As with unfused ACP-I, the fusion protein was a poor substrate for E. coli FAS reactions. When injected into rabbits, the fusion protein was also able to generate antiserum to spinach ACP-I.  相似文献   

19.
Summary The effects of epinephrine, glucagon and vasoactive intestinal polypeptide on chloride secretion by chloride cell-containing isolated opercular membranes from the seawater-adapted euryhaline teleost, the tilapiaSarotherodon mossambicus, have been examined. Epinephrine inhibits chloride secretion, measured as the short-circuit current (I sc), via -receptors, in a dose-dependent fashion. The minimum effective dose is 10–9 M, ED50 equals 2×10–7 M and maximal inhibition at 10–5 M is nearly 80%. Inhibition of phosphodiesterase by isobutylmethylxanthine (IBMX; 10–4 M), does not alterI sc in untreated tissues, but it completely reverses the epinephrine inhibition ofI sc, suggesting that hormones which modulate cAMP in chloride cells may alter chloride secretion. Glucagon and vasoactive intestinal polypeptide also stimulateI sc in epinephrine-inhibited tissues, an effect potentiated by IBMX. The effect of glucagon is dose-dependent with a minimum effective dose of 10–9 M, ED50 equal to 8×10–8 M and a maximum stimulation of 72% at 10–5 M.Analysis of the effects of epinephrine and IBMX onI sc and tissue conductance suggests that these agents act antagonistically on a nonconductive transport mechanism. It is proposed that IBMX and hormones which increase intracellular cAMP levels stimulate chloride secretion in epinephrine-inhibited tissues by stimulating a neutral sodium chloride cellular entry-step mechanism.Abbreviations ED 50 effective dose causing half-maximal inhibition or stimulation - IBMX isobutylmethylxanthine - VIP vasoactive intestinal polypeptide  相似文献   

20.
Summary The time course for the synthesis of glutamic acid and by-products from glucose was investigated using immobilized cell reactor of the bacterium C.glutamicum. Lactic acid, succinic acid, alanine acid and aspartic acid were formed early in the fermentation and during the active growth phase, whereas gluconic acid, -ketoglutaric acid and proline were produced late and during the active phase of glutamic acid synthesis. Oxygen transfer rate in fermentation broth had a pronounced effect on the nature and quantities of fermentation products. In continuous fermentation and at OTR of 102.5 mMO2/l.h., formation of by-products greatly decreased and up to 58.5 g/l of glutamic acid were produced with a conversion efficiency of 74.6% of the theoretical value and volumetric productivity of 6.2 g/l.h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号