首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 432 毫秒
1.
In order to verify the effect of social behavior and geographical isolation on the genetic structure of the Himalayan marmot (Marmota himalayana) population, we examined the genetic diversity of Himalayan marmots alongside the Qinghai–Tibet Railway using microsatellite markers. Eight microsatellite loci were used to examine 120 animals of 4 populations: Ulan (U), Delhi (D), Tuotuohe (T) and Ando (A). The results show that: (1) Himalayan marmots alongside the Qinghai–Tibet Railway are highly genetically diversified. The allele number (Na), effective allele number (Ne), observed heterozygosity (Ho), Nei’s expected heterozygosity (He) and polymorphism information content (PIC) of the total Himalayan marmot population were 4.75, 3.0332, 0.6990, 0.6672, 0.6102, respectively. (2) Himalayan marmots may be able to avoid inbreeding by a mechanism that will prevent the genetic diversity reduction caused by their social lifestyle. Heterozygote excess was observed at most loci. The inbreeding coefficients within the subpopulation (FIS), in the total population (FIT), the differentiation index of population (FST), and the gene flow (Nm) were ?0.2265, ?0.0477, 0.1458, and 1.4646, respectively. (3) The genetic differentiation of the Himalayan marmot population was in accordance with Wright’s “isolation by distance” theory. The Mantel test indicates that the correlation between genetic distance and geographic distance was significant (P < 0.05, r = 0.698). (4) Each of the four geographical populations had moderate differentiation. Both geographic distance and isolation could affect the population genetic structure of the Himalayan marmot. The maximum gene flow (3.5915), the smallest genetic differentiation index (0.0651), the lowest genetic distance (0.0700) and the highest genetic identity (0.9526) were all between the Ulan population and Delhi populations. (5) The cluster analysis, based on Nei’s standard genetic distance, showed that the populations of Delhi and Ulan were first merged in a cluster, and then Tuotuohe population was merged in the clustering. The Ando population was the last element in the clustering.  相似文献   

2.
To understand levels of population differentiation in Pallas’s squirrel (Callosciurus erythraeus) in fragmented habitats, we collected 83 samples from three patches of artificial forest in Hongya County, Sichuan Province, China. Sample numbers from each patch were as follows: 16 from Hanwang (HW), 27 from Muchansi (MCS) and 40 from Yanyandong (YYD). The mitochondrial DNA control region was sequenced and 18 haplotypes were observed. Our results showed that haplotype diversities of the three C. erythraeus populations were similar (0.771, 0.791 and 0.733). Fixation indices (Fst) of pairwise populations were between 0.21 and 0.31, and the estimated gene flow (Nm) was between 1 and 2. Analysis of molecular variance (AMOVA) showed that most molecular variation occurred within populations (74.82%); variances among populations were small but there was significant genetic differentiation. In addition, the neighbour-joining (NJ) tree showed three clades in the phylogenetic tree for population genetic structure. This was confirmed by the median-joining haplotype network. Furthermore, analysis of isolation by distance (IBD) showed that genetic differentiation among the three populations was positively related to geographical distance. However, tests of neutrality and the observed mismatch distribution of pairwise differences between sequences indicated that C. erythraeus populations were relatively stable in the past.  相似文献   

3.
Guo Z M  Wang Y  Ran J G  Guo C  Li B  Zhang M W  Song P F 《农业工程》2011,31(1):71-77
To understand levels of population differentiation in Pallas’s squirrel (Callosciurus erythraeus) in fragmented habitats, we collected 83 samples from three patches of artificial forest in Hongya County, Sichuan Province, China. Sample numbers from each patch were as follows: 16 from Hanwang (HW), 27 from Muchansi (MCS) and 40 from Yanyandong (YYD). The mitochondrial DNA control region was sequenced and 18 haplotypes were observed. Our results showed that haplotype diversities of the three C. erythraeus populations were similar (0.771, 0.791 and 0.733). Fixation indices (Fst) of pairwise populations were between 0.21 and 0.31, and the estimated gene flow (Nm) was between 1 and 2. Analysis of molecular variance (AMOVA) showed that most molecular variation occurred within populations (74.82%); variances among populations were small but there was significant genetic differentiation. In addition, the neighbour-joining (NJ) tree showed three clades in the phylogenetic tree for population genetic structure. This was confirmed by the median-joining haplotype network. Furthermore, analysis of isolation by distance (IBD) showed that genetic differentiation among the three populations was positively related to geographical distance. However, tests of neutrality and the observed mismatch distribution of pairwise differences between sequences indicated that C. erythraeus populations were relatively stable in the past.  相似文献   

4.
Hucho taimen are listed as endangered in China. The population size has declined recently, prompting an increase in the level of listing from grade three in 2002 to grade five in 2006. We analyzed the genetic diversity of wild populations using 17 microsatellite markers to establish a scientific basis for conservation of this species. We collected tissue samples from four populations in the Heilongjiang River basin: Huma River (HM), Hutou (HT), Haiqing (HQ), and Zhuaji (ZJ). A total of 21 loci were amplified, 18 of which were polymorphic. The number of alleles per locus ranged from 2 to 9 (mean: 4.1905). There were 13 highly polymorphic loci and 5 moderately polymorphic loci. Analysis of five genetic diversity parameters (Na, Ne, Ho, He, and PIC) suggested moderate levels of diversity within the populations. The populations were ranked HT > HQ > ZJ > HM, but the differences in diversity were not statistically significant (P > 0.05). A comparison of variation among all four populations suggested Hardy–Weinberg disequilibrium at 20% of the loci. Genetic differentiation (Fst) was 0.0644 and the gene flow among populations was estimated at 3.36 individuals per generation. The majority of diversity (93.88%) occurred among individuals within a population. In contrast, relatively little (6.12%) of the genetic diversity was distributed between the populations. An analysis of genetic differentiation and genetic distance between pairs of populations revealed that both parameters were higher in comparisons of the HM population to the HT, HQ, and ZJ populations than among the three latter populations. This suggests that the HM population has a distinct genetic structure. We hypothesize that habitat degradation and excessive fishing, not low genetic diversity, has caused the decline in H. taimen populations. However, this species should be protected from further declines in genetic diversity.  相似文献   

5.
Random amplified polymerphic DNA(RAPD)method was applied to assessg enetic variation and population structure of Thahctrum petalotdeum L(Ranunoulaceae),Two hundred and forty-six individuals from 11 populations of the species were investigated by RAPD profiles Twenty selected RAPD primers generated 125 bands.in which 120 were polymorphic Ther esults revealed a high level of genetic variation(ercentage of polymorphIc bands(PPB was 96%.Nei’s gene diversity(りwas 03502 and shannon’s information index(I) was 0.5199 at the species level) The differentiation among the populations was high(Gst=0.3511)in this species.Result of analyzing of molecularvariance(AMOVA)showedthat38.88%of genetic variance was found among the populations Positive correlation withr r=01945(P=00002)was found between genetic distance and geographic distance amongpo pulations Two populations distributed in the drainage basin of YanELz River affined genedcally and formed one clada and the rest nine populations formed the other clade in both unweighted pair-group method using arithmetic average(UPGMA)trees made by two different method different methods. It was yen/clear that these two populations were very special, andmust be closely related in history, despite the fact that they now share quite weak link to the restpopulations through gene communication.  相似文献   

6.
Hucho taimen are listed as endangered in China. The population size has declined recently, prompting an increase in the level of listing from grade three in 2002 to grade five in 2006. We analyzed the genetic diversity of wild populations using 17 microsatellite markers to establish a scientific basis for conservation of this species. We collected tissue samples from four populations in the Heilongjiang River basin: Huma River (HM), Hutou (HT), Haiqing (HQ), and Zhuaji (ZJ). A total of 21 loci were amplified, 18 of which were polymorphic. The number of alleles per locus ranged from 2 to 9 (mean: 4.1905). There were 13 highly polymorphic loci and 5 moderately polymorphic loci. Analysis of five genetic diversity parameters (Na, Ne, Ho, He, and PIC) suggested moderate levels of diversity within the populations. The populations were ranked HT > HQ > ZJ > HM, but the differences in diversity were not statistically significant (P > 0.05). A comparison of variation among all four populations suggested Hardy–Weinberg disequilibrium at 20% of the loci. Genetic differentiation (Fst) was 0.0644 and the gene flow among populations was estimated at 3.36 individuals per generation. The majority of diversity (93.88%) occurred among individuals within a population. In contrast, relatively little (6.12%) of the genetic diversity was distributed between the populations. An analysis of genetic differentiation and genetic distance between pairs of populations revealed that both parameters were higher in comparisons of the HM population to the HT, HQ, and ZJ populations than among the three latter populations. This suggests that the HM population has a distinct genetic structure. We hypothesize that habitat degradation and excessive fishing, not low genetic diversity, has caused the decline in H. taimen populations. However, this species should be protected from further declines in genetic diversity.  相似文献   

7.
Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P 〈 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P 〈 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P 〈 0.001), as well as 72.59% variation within populations (P 〈 0.001). Molecular variation within populations was significantly different among 16 populations.  相似文献   

8.
This study was performed to explore the genetic diversity and genetic structure of red-spotted tokay geckos(Gekko gecko) from 23 different geographical areas in Thailand, Lao PDR and Cambodia. The mitochondrial tRNAGln/tRNA-Met/partial NADH dehydrogenase subunit 2 from 166 specimens was amplified and sequenced. A total of 54 different haplotypes were found. Highly significant genetic differences occurred between populations from different localities. The haplotype network revealed six major haplogroups(G1 to G6) belonging to different clades(clade A–E). Clade D and clade E were newly observed in this study. Haplogroup G4(clade D) was a sympatric population with haplogroup G1(clade B). The populations from northern Thailand were divided into two distinct haplogroups separated by mountain range. Genetic structure and genetic differentiation of the tokay in Southeast Asia was related to the geographical region sampled, spatial distance and natural barriers. Our results indicate that red-spotted tokay geckos from mainland Southeast Asia are cryptically diverse. Morphological comparisons, in addition to an intensive genetic investigation covering the whole species range, are needed to clarify the systematic and population structure of this species group.  相似文献   

9.
The clonal diversity of Clintonia udensis Trautv.et Mey.was detected by ISSR markers among 16 populations,and its correlation with ecological factors was analyzed as well in this work.Results showed that individuals(clonal ramets)per genotype were 1.12 and 1.149 at population and species levels,respectively,and that the 16 populations were all multiclonal.The detected genotypes were localized,without exception,within populations but demonstrated relatively high clonal differentiation among populations.The clonal diversity of the studied populations was high,with the average Simpson's index of 0.975,while the genets showed a clonal architecture of"guerilla".The population genetic diversities revealed by genet were consistent with those by ramet,further confirming their genetic differentiation among populations.And its genotype diversity within populations probably resulted largely from the frequent seedling regeneration and self-compatibility.In addition,the correlation analysis further revealed that,among the ecological factors,Simpson's index of C.udensis had a significant positive correlation(P<0.05)with pH values in the soil but not others.  相似文献   

10.
The genetic diversity of Stipa grandis P.Smirn and its relationship with the climatic variables were studied using the RAPD technique for 90 genes from five natural populations sampled in the Xilingol steppe, China. Sixteen oligonucleotides screened from 100 random primers were used to amplify 310 trackable RAPD loci, which were all polymorphic. By analyzing the RAPD data using POPGENE software, different geographic S. grandis populations were studied, which indicated a high level of genetic diversity, and the maximum variation was observed within the populations with a 28% variation observed among the populations. Using Pearson correlation analysis, significant (P < 0.05) or highly significant (P < 0.01) relationships were found between gene diversity indexes and temperature factors (≥10°C cumulative temperature in a year, annual mean temperature and mean temperature in January). Mantel's tests showed that there was no significant correlation between Nei's unbiased genetic distance and the geographic distance of S. grandis populations (r = 0.184, P = 0.261). However, there were significant or highly significant correlations between Nei's genetic distance and the several climatic divergences in pairwise S. grandis populations. All results indicated that natural selection resulting from variations in water and temperature was responsible for the adaptive eco-geographical differentiation indicated by the RAPD markers of different S. grandis populations, and that immigration and gene drift did not play an important role in affecting the differentiation of S. grandis populations.  相似文献   

11.
In the present study,the genetic diversity of one selected strain(Pujiang No.1),two domesticated populations(GA and HX)and four wild populations(LZ,YN,SS and JL)of blunt snout bream(Megalobrama amblycephala)was analyzed using 17microsatellite markers.The results showed that an average of 4.88-7.65 number of alleles(A);an average of 3.20-5.33 effective alleles(Ne);average observed heterozygosity(Ho)of 0.6985-0.9044;average expected heterozygosity(He)of 0.6501-0.7805;and the average polymorphism information content(PIC)at 0.5706-0.7226.Pairwise FST value between populations ranged from0.0307-0.1451,and Nei’s standard genetic distance between populations was 0.0938-0.4524.The expected heterozygosities in the domesticated populations(GA and HX)were significantly lower than those found in three wild populations(LZ,SS and JL),but no difference was detected when compared with the wild YN population.Likewise,no difference was found between the four wild populations or two domesticated populations.The expected heterozygosity in Pujiang No.1 was higher than the two domesticated populations and lower than the four wild populations.Regarding pairwise FST value between populations,permutation test P-values were significant between the GA,HX and PJ populations,but not between the four wild populations.These results showed that the expected heterozygosity in the selected strain of blunt snout bream,after seven generations of selective breeding,was lower than that of wild populations,but this strain retains higher levels of genetic diversity than domesticated populations.The genetic differences and differentiation amongst wild populations,domesticated populations and the genetically improved strain of blunt snout bream will provide important conservation criteria and guide the utilization of germplasm resources.  相似文献   

12.
采用不连续聚丙烯酰胺凝胶电泳技术研究了纵坑切梢小蠹(Tomicus piniperda L.)4个自然种群的9个同工酶基因座。4个种群均在Es-1、Es-2、Es-4、Mdh-1、Mdh-2及AAT-1基因座上存在遗传多态现象。路南长湖、楚雄、蒙自3种群间的遗传距离为0.0036~0.0173, 平均值为0.0105, 表明其遗传结构基本相似。丽江种群与上述3种群之间的遗传距离为0.1421~0.2035, 平均值为0.1765,表明丽江种群与上述三种群已有了遗传分化。丽江种群近交系数较大,近亲繁殖程度较高。种群遗传结构的差异可能与不同蠹害程度之间存在一定的内在联系。 Abstract: Using uncontinued polycrylamide gel electrophoresis, comparative studies of isozymes between the four geographical populations of Tomicus piniperda L. in Yunnan province were carried out in this paper. Among 9 loci, loci Es-1、Es-2 、Es-4、Mdh-1、Mdh-2 and AAT-1 exhibited the genetic polymorphs. The Nei's genetic distance (D) among Lunan's, Chuxiong's and Mengzi's populations was 0.0036 and 0.0173 with an average of 0.0105, indicating the similar genetic structure among them. The genetic distance between Lijiang population and other three populations was 0.1421~0.2035 with 0.1765 on average, which implied a certain degree of genetic differentiation between them. Investigation indicated the forest damages by the beetle were high in Lunan, Chuxiong and Mengzi, and was low in other population in Lijiang; whereas inbreeding coefficient was bigger and inbreeding degree was higher in Lijiang, but all low in other three districts. It is so proposed that the differentiation of population in genetic structure is related to the damage levels of Tomicus piniperda L.  相似文献   

13.
The Stipa grandis steppe in the Inner Mongolia Autonomous Region occupies an area of 2798081 hm2. On the basis of the genetic variation, it was found that its adaptability to the environmental conditions under grazing pressure was significant. Using the Inter-Simple Sequence Repeat (ISSR) procedure, the changes to the genetic diversity of the Stipa grandis population under different grazing pressures were observed. Plant samples were collected from a series of grazing gradients of the Stipa grandis steppe in Dalinuoer National Nature Reserve in the Inner Mongolia (located at 116°38′–116°41′E and 43°25′–43°27′N.), which has the following vegetation types in abundance: Leymus chinensis is the constructive species; the dominant species include Stipa grandis, Cleistogenes squarrosa, and Artemisia frigida; the companion species is Potentilla acaulis and others. According to the grazing pressure, the following four grazing gradients were identified from the dwellings of the herdsmen to the enclosure site: (1) no grazing (CK enclosure site); (2) light grazing (LG); (3) moderate grazing (MG); (4) heavy grazing (HG). Young leaves of each Stipa grandis were collected during the growing season. The results showed that the Stipa grandis showed abundant genetic diversity despite the fact that certain polymorphic loci were lost; at the same time, new polymorphic loci emerged when grazing pressure increased; a total of 10 primers were used, and 74 bands were produced in total, of which 65 bands were polymorphic; the total percentage of polymorphism was 89%; the percentage of polymorphic loci of the Stipa grandis population decreased with the increase of grazing pressure; the percentage of polymorphic loci was 62.2% in the no-grazing (CK) population, 64.9% in the light-grazing (LG) population, 58.1% in the moderate-grazing (MG) population, and 56.8% in the heavy-grazing (HG) population; the genetic diversity of the population in the descending order using the Shannon's information index is as follows: (1) light grazing (0.3486); (2) no grazing (0.3339); (3) moderate grazing (0.3249); (4) heavy grazing (0.2735) with the same distributional pattern as the Nei's genetic diversity index. The test showed the following: As the grazing pressures increased, the change of genetic diversity decreased; the genetic differentiation coefficient among the population (Gst) was 0.1984, which showed the presence of small partial genetic diversity (19.8%) among populations; gene flow (Nm*) between primers varied from 0.9806 to 3.4463, and the mean gene flow (Nm*) was 2.0202; the UPGMA cluster figure that was constructed on the basis of the genetic distance matrix showed four populations that became genetically closer at each step: (1) The first group was the moderate-grazing (MG) population and the heavy- grazing (HG) population; (2) The second group consisted of the no-grazing (CK) population and the light-grazing (LG) population; (3) The two groups gathered together.  相似文献   

14.
Shan D  Zhao M L  Han B  Han G D 《农业工程》2006,26(10):3175-3182
The Stipa grandis steppe in the Inner Mongolia Autonomous Region occupies an area of 2798081 hm2. On the basis of the genetic variation, it was found that its adaptability to the environmental conditions under grazing pressure was significant. Using the Inter-Simple Sequence Repeat (ISSR) procedure, the changes to the genetic diversity of the Stipa grandis population under different grazing pressures were observed. Plant samples were collected from a series of grazing gradients of the Stipa grandis steppe in Dalinuoer National Nature Reserve in the Inner Mongolia (located at 116°38′–116°41′E and 43°25′–43°27′N.), which has the following vegetation types in abundance: Leymus chinensis is the constructive species; the dominant species include Stipa grandis, Cleistogenes squarrosa, and Artemisia frigida; the companion species is Potentilla acaulis and others. According to the grazing pressure, the following four grazing gradients were identified from the dwellings of the herdsmen to the enclosure site: (1) no grazing (CK enclosure site); (2) light grazing (LG); (3) moderate grazing (MG); (4) heavy grazing (HG). Young leaves of each Stipa grandis were collected during the growing season. The results showed that the Stipa grandis showed abundant genetic diversity despite the fact that certain polymorphic loci were lost; at the same time, new polymorphic loci emerged when grazing pressure increased; a total of 10 primers were used, and 74 bands were produced in total, of which 65 bands were polymorphic; the total percentage of polymorphism was 89%; the percentage of polymorphic loci of the Stipa grandis population decreased with the increase of grazing pressure; the percentage of polymorphic loci was 62.2% in the no-grazing (CK) population, 64.9% in the light-grazing (LG) population, 58.1% in the moderate-grazing (MG) population, and 56.8% in the heavy-grazing (HG) population; the genetic diversity of the population in the descending order using the Shannon's information index is as follows: (1) light grazing (0.3486); (2) no grazing (0.3339); (3) moderate grazing (0.3249); (4) heavy grazing (0.2735) with the same distributional pattern as the Nei's genetic diversity index. The test showed the following: As the grazing pressures increased, the change of genetic diversity decreased; the genetic differentiation coefficient among the population (Gst) was 0.1984, which showed the presence of small partial genetic diversity (19.8%) among populations; gene flow (Nm*) between primers varied from 0.9806 to 3.4463, and the mean gene flow (Nm*) was 2.0202; the UPGMA cluster figure that was constructed on the basis of the genetic distance matrix showed four populations that became genetically closer at each step: (1) The first group was the moderate-grazing (MG) population and the heavy- grazing (HG) population; (2) The second group consisted of the no-grazing (CK) population and the light-grazing (LG) population; (3) The two groups gathered together.  相似文献   

15.
Genetic structure and differentiation of Reaumuria soongorica (Pall.) Maxim population from the desert of Fukang, Xinjiang, were assessed by means of random amplified polymorphic DNA (RAPD) markers. High genetic diversity and differentiation were revealed in the population of R. soongorica by 15 random primers. One hundred and thirty-six individuals from seven subpopulations were sampled in the study. Seventy-one loci have been detected, and among them 69 were polymorphic. The mean proportion of polymorphic loci (PPB) was 97.18%. The analyses of Shannon information index (0.307 5), Nei抯 gene diversity (0.312 7) and GST (0.312 0) indicated that there were more genetic variations within the subpopu-lations than those among the subpopulations. The results of AMOVA analysis showed that 61.58% of the genetic variations existed within subpopulations, and 38.02% among the subpopulations. The gene flow among the subpopulations of R. soongorica (Nm = 1.102 8) was much less than that of the common anemophytes (Nm = 5.24), so genetic differentiation among the subpopulations occurred to some extent. Additionally, through the use of clustering and the correlation analyses, we found that the genetic struc-ture of natural population of R. soongorica was related to some ecological factors (soil factors mainly) of the oasis-desert transition zone. The genetic diversity level of R. soongorica had negative correlation with the content of total soil P and Cl- significantly (P<0.05). On the contrary, it had significant positive correlation with CO32- (P<0.05), showing that the distribution of the individuals of R. soongorica in the sampled areas correlates with certain soluble salt. Furthermore, the genetic diversity of the natural population of R. soongorica increased with the decreasing of the content of soil organic matters, water, total N and total P in soil. The paper concluded that the microenvironment ecological factors played an important role in the adaptive evolution of R. soongorica population.  相似文献   

16.
Rosa rugosa Thunb. is one of the dominant and important shrub species in estuary dunes and shingle beaches of northern China. However, its area of distribution, the number of populations, and the size of each population have decreased rapidly in the past two decades because of habitat degradation and loss. Random amplified polymorphic DNA markers were used to determine the genetic diversity of four remaining large natural populations of R. rugosa and to discuss an effective conservation strategy for this endangered species in China. High genetic variations were detected in R. rugosa populations in China. The mean percentage of polymorphic loci (P%) within four local populations was 57.99%, with the P% of the total population being 75.30%. Mean Shannon's information index (H0) was 0.2826, whereas total Ho was 0.3513. The genetic differentiation among populations was 0.1878, which indicates that most genetic diversity occurs within populations. Population Tumenjiang (TMJ) showed the highest genetic diversity (P% = 66.27%; H0 = 0.3117) and contained two exclusive bands. Population Changshandao (CSD) showed higher genetic diversity (P% =59.04%; H0 = 0.3065). Populations TMJ and CSD contained 95.33% and 99.33%, respectively, of loci with moderate to high frequency (P〉0.05) of the total population. These results indicate that populations TMJ and CSD should be given priority for in situ conservation and regarded as seed or propagule sources for ex situ conservation. The results of the present study also suggest that R. rugosa in China has become endangered as a result of human actions rather than genetic depression of populations; thus, human interference should be absolutely forbidden in R. rugosa habitats.  相似文献   

17.
Variations in the trnK region of chloroplast DNA were investigated in the present study using polymerase chain reactionrestriction fragment length polymorphism to detect the genetic structure and to infer the possible glacial refugia of Ginkgo biloba L. in China. In total, 220 individuals from 12 populations in China and three populations outside China were analyzed, representing the largest number of populations studied by molecular markers to date. Nineteen haplotypes were produced and haplotype A was found in all populations. Populations in south-western China, including WC, JF, PX, and SP, contained 14 of the 19 haplotypes and their genetic diversity ranged from 0.771 4 to 0.867 6. The TM population from China also showed a high genetic diversity (H = 0.848 5). Most of the genetic variation existed within populations and the differentiation among populations was low (GsT = 0.2). According to haplotype distribution and the historical record, we suggest that populations of G. biloba have been subjected to extensive human impact, which has compounded our attempt to infer glacial refugia for Ginkgo. Nevertheless, the present results suggest that the center of genetic diversity of Ginkgo is mainly in south-western China and in situ conservation is needed to protect and preserve the genetic resources.  相似文献   

18.
Genetic diversity and phylogenetic relationships among 568 individuals of two red jungle fowl subspe- cies (Gallus gallus spadiceus in China and Gallus gallus gallus in Thailand) and 14 Chinese domestic chicken breeds were evaluated with 29 microstaellite loci, the genetic variability within population and genetic differentiation among population were estimated, and then genetic diversity and phylogenetic relationships were analyzed among red jungle fowls and Chinese domestic fowls. A total of 286 alleles were detected in 16 population with 29 microsatellite markers and the average number of the alleles observed in 29 microsatellite loci was 9.86±6.36. The overall expected heterozygosity of all population was 0.6708±0.0251, and the number of population deviated from Hardy-Weinberg equilibrium per locus ranged from 0 to 7. In the whole population, the average of genetic differentiation among population, measured as FST value, was 16.7% (P<0.001), and all loci contributed significantly (P<0.001) to this differentiation. It can also be seen that the deficit of heterozygotes was very high (0.015) (P<0.01). Reynolds' distance values varied between 0.036 (Xiaoshan chicken-Luyuan chicken pair) and 0.330 (G. gallus gallus-Gushi chicken pair). The Nm value ranged from 0.533 (between G. gallus gallus and Gushi chicken) to 5.833 (between Xiaoshan chicken and Luyuan chicken). An unrooted consensus tree was constructed using the neighbour-joining method and the Reynolds' genetic distance. The heavy-body sized chicken breeds, Luyuan chicken, Xiaoshan chicken, Beijing Fatty chicken, Henan Game chicken, Huainan Partridge and Langshan chicken formed one branch, and it had a close genetic relationship between Xiaoshan chicken-Luyuan chicken pair and Chahua chicken-Tibetan chicken pair. Chahua chicken and Tibetan chicken had closer genetic relationship with these two subspecies of red jungle fowl than other domestic chicken breeds. G. gallus spadiceus showed closer phylogenetic relationship with Chinese domestic chicken breeds than G. gallus gallus. All 29 microstaellite loci in this study showed high levels of polymorphism and significant genetic differentiation was observed among two subspecies of red jungle fowl and 14 Chinese domestic chicken breeds. The evolutional dendrogram is as follows: evolutional breeds→primitive breeds (Chahua chicken and Tibetan)→red jungle fowl in China (G. gallus spadiceus)→red jungle fowl in Thailand (G. gallus gallus). The results supported the theory that the domestic fowls might originate from different subspecies of red jungle fowl and Chinese domestic fowls had independent origin.  相似文献   

19.
Zhao N X  Gao Y B  Wang J L  Ren A Z  Xu H 《农业工程》2006,26(5):1312-1318
The genetic diversity of Stipa grandis P.Smirn and its relationship with the climatic variables were studied using the RAPD technique for 90 genes from five natural populations sampled in the Xilingol steppe, China. Sixteen oligonucleotides screened from 100 random primers were used to amplify 310 trackable RAPD loci, which were all polymorphic. By analyzing the RAPD data using POPGENE software, different geographic S. grandis populations were studied, which indicated a high level of genetic diversity, and the maximum variation was observed within the populations with a 28% variation observed among the populations. Using Pearson correlation analysis, significant (P < 0.05) or highly significant (P < 0.01) relationships were found between gene diversity indexes and temperature factors (≥10C cumulative temperature in a year, annual mean temperature and mean temperature in January). Mantel's tests showed that there was no significant correlation between Nei's unbiased genetic distance and the geographic distance of S. grandis populations (r = 0.184, P = 0.261). However, there were significant or highly significant correlations between Nei's genetic distance and the several climatic divergences in pairwise S. grandis populations. All results indicated that natural selection resulting from variations in water and temperature was responsible for the adaptive eco-geographical differentiation indicated by the RAPD markers of different S. grandis populations, and that immigration and gene drift did not play an important role in affecting the differentiation of S. grandis populations.  相似文献   

20.
The genetic variation and clonal diversity of two divergent types (grey-green and yellow-green) of clonal populations of Leymus chinensis Tzvel at 14 loci were compared. Total gene diversity (HT) and the coefficient of genetic differentiation (GST) were all higher for the yellow-green type (HT = 0.270; GST =0.186) than for the grey-green type (HT = 0.250; GST = 0.157) of L. chinensis. Rare alleles usually occurred as heterozygotes rather than homozygotes and significant deviations from Hardy-Weinberg equilibrium were found only at a few loci. This indicated that these two types of populations were mainly out-crossing. Clonal diversity, evenness of clones, and mean clone size were not significantly different between the two types. We found that differences between the clone size and genetic variation of the yellow-green type of populations occurred with different climate and habitat population groups. However, for the grey-green type of populations, these genetic variations decreased under conditions of different climate and habitat population groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号