首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gos G  Wright SI 《Molecular ecology》2008,17(23):4953-4962
We examined patterns of nucleotide diversity at a genomic region containing two linked candidate disease resistance (NBS-LRR) genes in seven populations of the outcrossing plant Arabidopsis lyrata. In comparison with two adjacent control genes and neutral reference genes across the genome, the NBS-LRR genes exhibited elevated nonsynonymous variation and a large number of major-effect polymorphisms causing early stop codons and/or frameshift mutations. In contrast, analysis of synonymous diversity provided no evidence that the region was subject to long-term balancing selection or recent selective sweeps in any of the seven populations surveyed. Also in contrast with earlier surveys of one of these R genes, there was no evidence that the resistance genes or the major-effect mutations were subject to elevated differentiation between populations. We suggest that conditional neutrality in the absence of the corresponding pathogen, rather than long-term balancing selection or local adaptation, may in some circumstances be a significant cause of elevated functional polymorphism at R genes. In contrast with the R genes, analysis of diversity and differentiation at the flanking FERONIA locus showed high population divergence, suggesting local adaptation on this locus controlling male-female signalling during fertilization.  相似文献   

2.
As human populations dispersed throughout the world, they were subjected to new selective forces, which must have led to local adaptation via natural selection and hence altered patterns of genetic variation. Yet, there are very few examples known in which such local selection has clearly influenced human genetic variation. A potential approach for detecting local selection is to screen random loci across the genome; those loci that exhibit unusually large genetic distances between human populations are then potential markers of genomic regions under local selection. We investigated this approach by genotyping 332 short tandem repeat (STR) loci in Africans and Europeans and calculating the genetic differentiation for each locus. Patterns of genetic diversity at these loci were consistent with greater variation in Africa and with local selection operating on populations as they moved out of Africa. For 11 loci exhibiting the largest genetic differences, we genotyped an additional STR locus located nearby; the genetic distances for these nearby loci were significantly larger than average. These genomic regions therefore reproducibly exhibit larger genetic distances between populations than the "average" genomic region, consistent with local selection. Our results demonstrate that genome scans are a promising means of identifying candidate regions that have been subjected to local selection.  相似文献   

3.
Mitochondrial DNA has been heavily utilized in phylogeography studies for several decades. However, underlying patterns of demography and phylogeography may be misrepresented due to coalescence stochasticity, selection, variation in mutation rates and cultural hitchhiking (linkage of genetic variation to culturally‐transmitted traits affecting fitness). Cultural hitchhiking has been suggested as an explanation for low genetic diversity in species with strong social structures, counteracting even high mobility, abundance and limited barriers to dispersal. One such species is the sperm whale, which shows very limited phylogeographic structure and low mtDNA diversity despite a worldwide distribution and large population. Here, we use analyses of 175 globally distributed mitogenomes and three nuclear genomes to evaluate hypotheses of a population bottleneck/expansion vs. a selective sweep due to cultural hitchhiking or selection on mtDNA as the mechanism contributing to low worldwide mitochondrial diversity in sperm whales. In contrast to mtDNA control region (CR) data, mitogenome haplotypes are largely ocean‐specific, with only one of 80 shared between the Atlantic and Pacific. Demographic analyses of nuclear genomes suggest low mtDNA diversity is consistent with a global reduction in population size that ended approximately 125,000 years ago, correlated with the Eemian interglacial. Phylogeographic analysis suggests that extant sperm whales descend from maternal lineages endemic to the Pacific during the period of reduced abundance and have subsequently colonized the Atlantic several times. Results highlight the apparent impact of past climate change, and suggest selection and hitchhiking are not the sole processes responsible for low mtDNA diversity in this highly social species.  相似文献   

4.
Natural selection is expected to leave an imprint on the neutral polymorphisms at the adjacent genomic regions of a selected gene. While directional selection tends to reduce within-population genetic diversity and increase among-population differentiation, the reverse is expected under balancing selection. To identify targets of natural selection in the three-spined stickleback ( Gasterosteus aculeatus ) genome, 103 microsatellite and two indel markers including expressed sequence tags (EST) and quantitative trait loci (QTL)-associated loci, were genotyped in four freshwater and three marine populations. The results indicated that a high proportion of loci (14.7%) might be affected by balancing selection and a lower proportion (2.8%) by directional selection. The strongest signatures of directional selection were detected in a microsatellite locus and two indel markers located in the intronic regions of the Eda-gene coding for the number of lateral plates. Yet, other microsatellite loci previously found to be informative in QTL-mapping studies revealed no signatures of selection. Two novel microsatellite loci ( Stn12 and Stn90 ) located in chromosomes I and VIII, respectively, showed signals of directional selection and might be linked to genomic regions containing gene(s) important for adaptive divergence. Although the coverage of the total genomic content was relatively low, the predominance of balancing selection signals is in agreement with the contention that balancing, rather than directional selection is the predominant mode of selection in the wild.  相似文献   

5.
Loci with higher levels of population differentiation than the neutral expectation are traditionally interpreted as evidence of ongoing selection that varies in space. This article emphasizes an alternative explanation that has been largely overlooked to date: in species subdivided into large subpopulations, enhanced differentiation can also be the signature left by the fixation of an unconditionally favorable mutation on its chromosomal neighborhood. This is because the hitchhiking effect is expected to diminish as the favorable mutation spreads from the deme in which it originated to other demes. To discriminate among the two alternative scenarios one needs to investigate how genetic structure varies along the chromosomal region of the locus. Local hitchhiking is shown to generate a single sharp peak of differentiation centered on the adaptive polymorphism and the standard signature of a selective sweep only in those subpopulations in which the allele is favored. Global hitchhiking produces two domes of differentiation on either side of the fixed advantageous mutation and signatures of a selective sweep in every subpopulation, albeit of different magnitude. Investigating population differentiation around a locus that strongly differentiates two otherwise genetically similar populations of the marine mussel Mytilus edulis, plausible evidence for the global hitchhiking hypothesis has been obtained. Global hitchhiking is a neglected phenomenon that might prove to be important in species with large population sizes such as many marine invertebrates.  相似文献   

6.
Waxy maize was first reported in China in 1909 and is mainly used in food production in Asia. The evidence for strong domestication selection in the Waxy locus of rice and a selective sweep around its genomic region make us to wonder whether there has been similar selection in Waxy in glutinous maize. To address this issue, DNA sequences of Waxy, three flanking genes and an unlinked gene (Adh1) of 30 accessions sampled from Chinese waxy maize accessions, including representative landraces and inbred lines, were determined in this study. Sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed in the Waxy locus in Chinese waxy maize but not in nonglutinous maize; comparison with the unlinked gene confirmed that this pattern was different to Waxy. Sequence analysis across a 143 kb genomic segment centered on the Waxy locus revealed patterns consistent with a selective sweep in the upstream region of Waxy. The selective sweep detected based on current limited genomic sequences exceeded over 50 kb, indicating strong selection in this or a bigger region. However, No sweep effect was detected in the repetitive downstream region of Waxy. Phylogenetic analysis indicated that Chinese waxy maize was domesticated from the cultivated flint maize (Zea mays ssp. mays) that was introduced from the new world. At least two independent deletions in exon 7 (30 bp) and 10 (15 bp) were identified in the Chinese accessions respectively. These findings demonstrate a similar pattern of domestication selection in the Waxy genomic region in both glutinous maize and rice, suggesting that this pattern in the rise of glutinous phenotype is likely in other cereal crops.  相似文献   

7.
An understanding of the determinants of trait variation and the selective forces acting on it in natural populations would give insights into the process of evolution. The combination of long-term studies of individuals living in the wild and better genomic resources for nonmodel organisms makes achieving this goal feasible. This article reports the development of a complete linkage map in a pedigree of free-living Soay sheep on St. Kilda and its application to mapping the loci responsible for three morphological polymorphisms for which the maintenance of variation demands explanation. The map was derived from 251 microsatellite and four allozyme markers and covers 3350 cM (approximately 90% of the sheep genome) at approximately 15-cM intervals. Marker order was consistent with the published sheep map with the exception of one region on chromosome 1 and one on chromosome 12. Coat color maps to chromosome 2 where a strong candidate gene, tyrosinase-related protein 1 (TYRP1), has also been mapped. Coat pattern maps to chromosome 13, close to the candidate locus Agouti. Horn type maps to chromosome 10, a location similar to that previously identified in domestic sheep. These findings represent an advance in the dissection of the genetic diversity in the wild and provide the foundation for QTL analyses in the study population.  相似文献   

8.
Kim Y  Maruki T 《Genetics》2011,189(1):213-226
A central problem in population genetics is to detect and analyze positive natural selection by which beneficial mutations are driven to fixation. The hitchhiking effect of a rapidly spreading beneficial mutation, which results in local removal of standing genetic variation, allows such an analysis using DNA sequence polymorphism. However, the current mathematical theory that predicts the pattern of genetic hitchhiking relies on the assumption that a beneficial mutation increases to a high frequency in a single random-mating population, which is certainly violated in reality. Individuals in natural populations are distributed over a geographic space. The spread of a beneficial allele can be delayed by limited migration of individuals over the space and its hitchhiking effect can also be affected. To study this effect of geographic structure on genetic hitchhiking, we analyze a simple model of directional selection in a subdivided population. In contrast to previous studies on hitchhiking in subdivided populations, we mainly investigate the range of sufficiently high migration rates that would homogenize genetic variation at neutral loci. We provide a heuristic mathematical analysis that describes how the genealogical structure at a neutral locus linked to the locus under selection is expected to change in a population divided into two demes. Our results indicate that the overall strength of genetic hitchhiking--the degree to which expected heterozygosity decreases--is diminished by population subdivision, mainly because opportunity for the breakdown of hitchhiking by recombination increases as the spread of the beneficial mutation across demes is delayed when migration rate is much smaller than the strength of selection. Furthermore, the amount of genetic variation after a selective sweep is expected to be unequal over demes: a greater reduction in expected heterozygosity occurs in the subpopulation from which the beneficial mutation originates than in its neighboring subpopulations. This raises a possibility of detecting a "hidden" geographic structure of population by carefully analyzing the pattern of a selective sweep.  相似文献   

9.
One of the main questions in evolutionary and conservation biology is how geographical and environmental features of the landscape shape neutral and adaptive genetic variation in natural populations. The identification of genomic polymorphisms that account for adaptive variation can aid in finding candidate loci for local adaptation. Consequently, a comparison of spatial patterns in neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection at the landscape scale. Many amphibians breed in wetlands, which differ in environmental conditions and in the degree of isolation, enhancing the potential for local adaptation. We used microsatellite markers to measure genetic differentiation among 17 local populations of Rana arvalis breeding in a network of wetlands. We found that locus RC08604 deviated from neutral expectations, suggesting that it is a good candidate for directional selection. We used a genetic network analysis to show that the allele distribution in this locus is correlated with habitat characteristics, whereas this was not the case at neutral markers that displayed a different allele distribution and population network in the study area. The graph approach illustrated the genomic heterogeneity (neutral loci vs. the candidate locus for directional selection) of gene exchange and genetic divergence among populations under directional selection. Limited gene flow between wetlands was only observed at the candidate genomic region under directional selection. RC08604 is partially located inside an up‐regulated thyroid‐hormone receptor (TRβ) gene coordinating the expression of other genes during metamorphosis and appears to be linked with variation in larval life‐history traits found among R. arvalis populations. We suggest that directional selection on genes coding larval life‐history traits is strong enough to maintain the divergence in these genomic regions, reducing the effective recombination of locally adapted alleles but not in other regions of the genome. Integrating this knowledge into conservation plans at the landscape scale will improve the design of management strategies to preserve adaptive genetic diversity in wetland networks.  相似文献   

10.
We investigated DNA sequence diversity for loci on chromosomes 1 and 2 in six natural populations of Arabidopsis lyrata and tested for the role of natural selection in structuring genomewide patterns of variability, specifically examining the effects of recombination rate on levels of silent polymorphism. In contrast with theoretical predictions from models of genetic hitchhiking, maximum-likelihood-based analyses of diversity and divergence do not suggest reduction of diversity in the region of suppressed recombination near the centromere of chromosome 1, except in a single population from Russia, in which the pericentromeric region may have undergone a local selective sweep or demographic process that reduced variability. We discuss various possibilities that might explain why nucleotide diversity in most A. lyrata populations is not related to recombination rate, including genic recombination hotspots, and low gene density in the low recombination rate region.  相似文献   

11.
The prediction that selection affects the genome in a locus-specific way also affecting flanking neutral variation, known as genetic hitchhiking, enables the use of polymorphic markers in noncoding regions to detect the footprints of selection. However, as the strength of the selective footprint on a locus depends on the distance from the selected site and will decay with time due to recombination, the utilization of polymorphic markers closely linked to coding regions of the genome should increase the probability of detecting the footprints of selection as more gene-containing regions are covered. The occurrence of highly polymorphic microsatellites in the untranslated regions of expressed sequence tags (ESTs) is a potentially useful source of gene-associated polymorphisms which has thus far not been utilized for genome screens in natural populations. In this study, we searched for the genetic signatures of divergent selection by screening 95 genomic and EST-derived mini- and microsatellites in eight natural Atlantic salmon, Salmo salar L., populations from different spatial scales inhabiting contrasting natural environments (salt-, brackish, and freshwater habitat). Altogether, we identified nine EST-associated microsatellites, which exhibited highly significant deviations from the neutral expectations using different statistical methods at various spatial scales and showed similar trends in separate population samples from different environments (salt-, brackish, and freshwater habitats) and sea areas (Barents vs. White Sea). We consider these ESTs as the best candidate loci affected by divergent selection, and hence, they serve as promising genes associated with adaptive divergence in Atlantic salmon. Our results demonstrate that EST-linked microsatellite genome scans provide an efficient strategy for discovering functional polymorphisms, especially in nonmodel organisms.  相似文献   

12.
Nosema is a microsporidian parasite of the honeybee, which infects the epithelial cells of the gut. In Denmark, honeybee colonies have been selectively bred for the absence of Nosema over decades, resulting in a breeding line that is tolerant toward Nosema infections. As the tolerance toward the Nosema infection is a result of artificial selection, we screened chromosome 14 for a selective sweep with microsatellite markers, where a major quantitative trait locus (QTL) had been identified to be involved in the reduction in Nosema spores in the honeybees. By comparing the genetic variability of 10 colonies of the selected honeybee strain with a population sample from 22 unselected colonies, a selective sweep was revealed within the previously identified QTL region. The genetic variability of the swept loci was not only reduced in relation to the flanking markers on chromosome 14 within the selected strain but also significantly reduced compared with the same region in the unselected honeybees. This confirmed the results of the previous QTL mapping for reduced Nosema infections. The success of the selective breeding may have driven the selective sweep found in our study.  相似文献   

13.
DuMont VB  Aquadro CF 《Genetics》2005,171(2):639-653
To identify genomic regions affected by the rapid fixation of beneficial mutations (selective sweeps), we performed a scan of microsatellite variability across the Notch locus region of Drosophila melanogaster. Nine microsatellites spanning 60 kb of the X chromosome were surveyed for variation in one African and three non-African populations of this species. The microsatellites identified an approximately 14-kb window for which we observed relatively low levels of variability and/or a skew in the frequency spectrum toward rare alleles, patterns predicted at regions linked to a selective sweep. DNA sequence polymorphism data were subsequently collected within this 14-kb region for three of the D. melanogaster populations. The sequence data strongly support the initial microsatellite findings; in the non-African populations there is evidence of a recent selective sweep downstream of the Notch locus near or within the open reading frames CG18508 and Fcp3C. In addition, we observe a significant McDonald-Kreitman test result suggesting too many amino acid fixations species wide, presumably due to positive selection, at the unannotated open reading frame CG18508. Thus, we observe within this small genomic region evidence for both recent (skew toward rare alleles in non-African populations) and recurring (amino acid evolution at CG18508) episodes of positive selection.  相似文献   

14.
F Depaulis  L Brazier  M Veuille 《Genetics》1999,152(3):1017-1024
The hitchhiking model of population genetics predicts that an allele favored by Darwinian selection can replace haplotypes from the same locus previously established at a neutral mutation-drift equilibrium. This process, known as "selective sweep," was studied by comparing molecular variation between the polymorphic In(2L)t inversion and the standard chromosome. Sequence variation was recorded at the Suppressor of Hairless (Su[H]) gene in an African population of Drosophila melanogaster. We found 47 nucleotide polymorphisms among 20 sequences of 1.2 kb. Neutrality tests were nonsignificant at the nucleotide level. However, these sites were strongly associated, because 290 out of 741 observed pairwise combinations between them were in significant linkage disequilibrium. We found only seven haplotypes, two occurring in the 9 In(2L)t chromosomes, and five in the 11 standard chromosomes, with no shared haplotype. Two haplotypes, one in each chromosome arrangement, made up two-thirds of the sample. This low haplotype diversity departed from neutrality in a haplotype test. This pattern supports a selective sweep hypothesis for the Su(H) chromosome region.  相似文献   

15.
Chevin LM  Billiard S  Hospital F 《Genetics》2008,180(1):301-316
The neutral polymorphism pattern in the vicinity of a selective sweep can be altered by both stochastic and deterministic factors. Here, we focus on the impact of another selective sweep in the region of influence of a first one. We study the signature left on neutral polymorphism by positive selection at two closely linked loci, when both beneficial mutations reach fixation. We show that, depending on the timing of selective sweeps and on their selection coefficients, the two hitchhiking effects can interfere with each other, leading to less reduction in heterozygosity than a single selective sweep of the same magnitude and more importantly to an excess of intermediate-frequency variants relative to neutrality under some parameter values. This pattern can be sustained and potentially alter the detection of positive selection, including by provoking spurious detection of balancing selection. In situations where positive selection is suspected a priori at several closely linked loci, the polymorphism pattern in the region may also be informative about their selective histories.  相似文献   

16.
Shi MM  Michalski SG  Chen XY  Durka W 《PloS one》2011,6(6):e21302

Background

The distribution of genetic diversity among plant populations growing along elevational gradients can be affected by neutral as well as selective processes. Molecular markers used to study these patterns usually target neutral processes only, but may also be affected by selection. In this study, the effects of elevation and successional stage on genetic diversity of a dominant tree species were investigated controlling for neutrality of the microsatellite loci used.

Methodology/Principal Findings

Diversity and differentiation among 24 populations of Castanopsis eyrei from different elevations (251–920 m) and successional stages were analysed by eight microsatellite loci. We found that one of the loci (Ccu97H18) strongly deviated from a neutral model of differentiation among populations due to either divergent selection or hitchhiking with an unknown selected locus. The analysis showed that C. eyrei populations had a high level of genetic diversity within populations (AR = 7.6, HE = 0.82). Genetic variation increased with elevation for both the putatively selected locus Ccu97H18 and the neutral loci. At locus Ccu97H18 one allele was dominant at low elevations, which was replaced at higher elevations by an increasing number of other alleles. The level of genetic differentiation at neutral loci was similar to that of other Fagaceae species (FST = 0.032,  = 0.15). Population differentiation followed a model of isolation by distance but additionally, strongly significant isolation by elevation was found, both for neutral loci and the putatively selected locus.

Conclusions/Significance

The results indicate higher gene flow among similar elevational levels than across different elevational levels and suggest a selective influence of elevation on the distribution of genetic diversity in C. eyrei. The study underlines the importance to check the selective neutrality of marker loci in analyses of population structure.  相似文献   

17.
Haudry A  Zha HG  Stift M  Mable BK 《Molecular ecology》2012,21(5):1130-1142
A breakdown of self‐incompatibility (SI) followed by a shift to selfing is commonly observed in the evolution of flowering plants. Both are expected to reduce the levels of heterozygosity and genetic diversity. However, breakdown of SI should most strongly affect the region of the SI locus (S‐locus) because of the relaxation of balancing selection that operates on a functional S‐locus, and a potential selective sweep. In contrast, a transition to selfing should affect the whole genome. We set out to disentangle the effects of breakdown of SI and transition to selfing on the level and distribution of genetic diversity in North American populations of Arabidopsis lyrata. Specifically, we compared sequence diversity of loci linked and unlinked to the S‐locus for populations ranging from complete selfing to fully outcrossing. Regardless of linkage to the S‐locus, heterozygosity and genetic diversity increased with population outcrossing rate. High heterozygosity of self‐compatible individuals in outcrossing populations suggests that SI is not the only factor preventing the evolution of self‐fertilization in those populations. There was a strong loss of diversity in selfing populations, which was more pronounced at the S‐locus. In addition, selfing populations showed an accumulation of derived mutations at the S‐locus. Our results provide evidence that beyond the genome‐wide consequences of the population bottleneck associated with the shift to selfing, the S‐locus of A. lyrata shows a specific signal either reflecting the relaxation of balancing selection or positive selection.  相似文献   

18.
When selection is strong and beneficial alleles have a single origin, local reductions in genetic diversity are expected. However, when beneficial alleles have multiple origins or were segregating in the population prior to a change in selection regime, the impact on genetic diversity may be less clear. We describe an example of such a "soft" selective sweep in the malaria parasite Plasmodium falciparum that involves adaptive genome rearrangements. Amplification in copy number of genome regions containing the pfmdr1 gene on chromosome 5 confer resistance to mefloquine and spread rapidly in the 1990s. Using flanking microsatellite data and real-time polymerase chain reaction determination of copy number, we show that 5-15 independent amplification events have occurred in parasites on the Thailand/Burma border. The amplified genome regions (amplicons) range in size from 14.7 to 49 kb and contain 2-11 genes, with 2-4 copies arranged in tandem. To examine the impact of drug selection on flanking variation, we genotyped 48 microsatellites on chromosome 5 in 326 parasites from a single Thai location. Diversity was reduced in a 170- to 250-kb (10-15 cM) region of chromosomes containing multiple copies of pfmdr1, consistent with hitchhiking resulting from the rapid recent spread of selected chromosomes. However, diversity immediately flanking pfmdr1 is reduced by only 42% on chromosomes bearing multiple amplicons relative to chromosomes carrying a single copy. We highlight 2 features of these results: 1) All amplicon break points occur in monomeric A/T tracts (9-45 bp). Given the abundance of these tracts in P. falciparum, we expect that duplications will occur frequently at multiple genomic locations and have been underestimated as drivers of phenotypic evolution in this pathogen. 2) The signature left by the spread of amplified genome segments is broad, but results in only limited reduction in diversity. If such "soft" sweeps are common in nature, statistical methods based on diversity reduction may be inefficient at detecting evidence for selection in genome-wide marker screens. This may be particularly likely when mutation rate is high, as appears to be the case for gene duplications, and in pathogen populations where effective population sizes are typically very large.  相似文献   

19.
Burke JM  Knapp SJ  Rieseberg LH 《Genetics》2005,171(4):1933-1940
We mapped quantitative trait loci (QTL) controlling differences in seed oil content and composition between cultivated and wild sunflower and used the results, along with those of a previous study of domestication-related QTL, to guide a genome-wide analysis of genetic variation for evidence of past selection. The effects of the seed oil QTL were almost exclusively in the expected direction with respect to the parental phenotypes. A major, oil-related QTL cluster mapped near a cluster of domestication-related QTL on linkage group six (LG06), the majority of which have previously been shown to have effects that are inconsistent with the parental phenotypes. To test the hypothesis that this region was the target of a past selective sweep, perhaps resulting in the fixation of the antagonistic domestication-related QTL, we analyzed simple sequence repeat (SSR) diversity from 102 markers dispersed throughout the sunflower genome. Our results indicate that LG06 was most likely the target of multiple selective sweeps during the postdomestication era. Strong directional selection in concert with genetic hitchhiking therefore offers a possible explanation for the occurrence of numerous domestication-related QTL with apparently maladaptive phenotypic effects.  相似文献   

20.
D. J. Begun  C. F. Aquadro 《Genetics》1991,129(4):1147-1158
We have estimated DNA sequence variation and differentiation within and between Drosophila melanogaster and its sibling species, Drosophila simulans, using six-cutter restriction site variation at yellow-achaete (y-ac), phosphogluconate dehydrogenase (Pgd), and period (per). These three gene regions are of varying distance from the telomere of the X chromosome and range from very low to moderate rates of recombination in D. melanogaster. According to Tajima's test of neutrality, the Pgd region has been influenced by balancing selection in D. melanogaster. This is consistent with previous data suggesting the allozyme polymorphism at this locus is visible to selection. The Hudson, Kreitman, Aguadé test of neutrality reveals a significant departure from neutrality for the y-ac region compared to the per or rosy regions in D. simulans. There is also a significant departure for the y-ac region compared to the Adh 5' flanking region in D. melanogaster. In both species the departure appears to be due to reduced variation at y-ac compared to that expected from divergence between D. simulans and D. melanogaster. We conclude that recent hitchhiking associated with the selective fixation of one or more advantageous mutants in the y-ac region is the best explanation for reduced variation at y-ac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号