首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The anti-apoptosis protein, survivin, promotes cell survival and mitosis. Recent studies have demonstrated that survivin is expressed in normal gastric mucosa. Using an in vitro model, we examined whether survivin plays a role in the cytoprotection produced in gastric mucosa by mild irritant ethanol (ETOH) against subsequent exposure to concentrated ETOH. Pre-treatment of rat gastric epithelial cells with 1% ETOH reduced cell death, in response to subsequent incubation with 5% ETOH, by 94% (P < 0.005). This pre-treatment also resulted in increased total and phosphorylated survivin protein levels by 180% (P < 0.0001) and 540% (P < 0.0002), respectively, which required the p34(cdc2) cell cycle-dependent kinase. The cytoprotective effect was abrogated upon siRNA knockdown of survivin protein levels. Further, overexpression of exogenous survivin resulted in significant cytoprotection by 62% (P < 0.02) in the absence of any pre-treatment. We further examined the in vivo relevance of these findings. In fasted rats, administration of 20% ETOH, which we found to be 93% (P < 0.0001) cytoprotective against 50% ETOH challenge, resulted in increased total and phosphorylated survivin protein levels by 234% (P < 0.001) and 214% (P < 0.02), respectively. Administration of 20% ETOH resulted in increased gastric p34(cdc2) activity by 146% (P < 0.01). Inhibition of p34(cdc2) by the potent inhibitor, roscovitine, abolished the increased survivin levels in response to pre-administration of 20% ETOH and reduced the cytoprotection against 50% ETOH challenge by 59% (P < 0.01). These results indicate that survivin is a key mediator of cytoprotection against ETOH-induced gastric injury, acting at the epithelial cell level, by a mechanism that is dependent, in part, on p34(cdc2).  相似文献   

2.
Recent evidence suggests that prostanoids are an important participant in the pathobiology of gastric adenocarcinoma, but the location and identity of cells in tumor-adjacent gastric mucosa able to synthesize and/or bind specific prostanoids is not clear. Using probes for cyclooxygenase 1 and 2 mRNA and protein as well as for the EP family of PGE(2) receptors, we sought to define the biology of prostanoids in adjacent human gastric mucosa at the site of tumor invasion.In mucosa adjacent to an invasive gastric adenocarcinoma, expression of cyclooxygenase was prominent, with COX 1 primarily in mucosal T lymphocytes surrounding nests of tumor cells. Densitometry showed these tumor-adjacent cells had substantial levels of COX 1 immunoreactive protein (relative intensity, 3.2). Cyclooxygenase 2 was newly expressed among these cells as well, but was limited in number (<25% of cyclooxygenase-positive T lymphocytes) in tumor-adjacent mucosa. Further, CD3(+) mononuclear cells, adjacent to tumor, strongly expressed prostanoid receptor EP(4) (relative intensity, 8.0), but cells with this receptor were not evident in the tumor itself. In contrast, normal gastric mucosa showed a consistent and structured expression of cyclooxygenase and PGE(2) receptor immunoreactive protein among mucosal cells. Cyclooxygenase 1 and PGE(2) receptor EP(4) were expressed on mucosal CD3(+) T lymphocytes in the lumenal (upper) third of gastric mucosa; and prostanoid receptors EP(2), EP(3) and EP(4), on gastric epithelia lining gastric pits. In situ hybridization with COX cDNAs confirmed these findings, and neither COX 2-specific mRNA nor protein was detected in normal gastric tissue. Our studies suggest that synthetic machinery and receptors for PGE(2), prominently expressed by T lymphocytes in gastric mucosa at the boundary of normal mucosa with tumor cells, may play a central role in prostanoid-driven tumorigenesis of this tissue.  相似文献   

3.
BACKGROUND: Several studies have shown a link between gastrin and gastric cancer, both in humans and animals, especially infected with Helicobacter pylori (H. pylori). However, the exact role of hypergastrinemia in gastric carcinogenesis remains still undetermined. The aim of the present study was to evaluate the interaction between gastrin, cyclooxygenase-2 (COX-2), hepatocyte growth factor (HGF) and apoptosis-related proteins (Bax, Bcl-2, caspase-3, survivin) in cultured gastric epithelial cancer cells. MATERIAL AND METHODS: In the present study, gastric cultured cancer cells (KATO III cells) were exposed to increasing concentrations of gastrin (1-1000 nM). Cells incubated with culture medium alone, without added gastrin, served as controls. Using RT-PCR and Western blot, we examined the mRNA and protein expression for COX-2, HGF and apoptosis-related proteins (Bax, Bcl-2, caspase-3 and survivin). In addition, the gene expression of gastrin and gastrin receptor (CCK-2) as well as the release of gastrin in culture medium in the unstimulated cells were examined by RT-PCR and RIA, respectively. The apoptosis rate in cells was measured by flow cytometric analysis. RESULTS: The present study shows that the gastric cultured epithelial cells exhibit the expression of gastrin and CCK-2 receptors and release of gastrin into the culture medium. The epithelial gastric cancer cells incubated with gastrin showed a concentration-dependent increase of COX-2 and HGF expression. Although no significant changes in apoptosis rate were observed, the exposure of these cells was associated with a dose-dependent increase in the expression of antiapoptotic proteins Bcl-2 and survivin. CONCLUSIONS: This study demonstrates that 1) gastrin stimulates the gene and protein expression of COX-2 and HGF in human cultured gastric cancer cells and 2) gastrin shows antiapoptotic activity through the upregulation of Bcl-2 and survivin.  相似文献   

4.
5.
6.
The epithelial cells of stomach are continuously exposed to various toxic agents that may cause mucosal injury. The epithelial lining is rapidly replaced by cells that migrate from the proliferative zone of the gastric gland, to maintain the integrity of the gastric mucosa. Thus, cell migration is an essential part of the early process of gastric mucosal repair. After various forms of gastric injury, mucosal integrity is reestablished by the rapid migration of epithelial cells. However, the cellular mechanisms of the restitution remain unclear to date. In this report, we will review the role of cellular migration in the repair process of gastric epithelial cells in culture. It has been reported that hepatocyte growth factor (HGF) has the potency of acceleration of cellular repair process. In this review, we also report that HGF plays a leading role in the mucosal repair after damage by using a novel cell culture model.  相似文献   

7.
Helicobacter pylori (Hp) infection is associated with gastric inflammation and ulceration. The pathways of tissue damage in Hp-infected subjects are complex, but evidence indicates that T cell-derived cytokines enhance the synthesis of matrix metalloproteinases (MMP) that contribute to mucosal ulceration and epithelial damage. In this study, we have examined the role of the T cell cytokine IL-21 in Hp-infected gastric mucosa and evaluated whether IL-21 regulates MMP production by gastric epithelial cells. We show that IL-21 is constitutively expressed in gastric mucosa and is more abundant in biopsy specimens and purified mucosal CD3(+) T cells from Hp-infected patients compared with normal patients and disease controls. We also demonstrate that IL-21R is expressed by primary gastric epithelial cells, as well as by the gastric epithelial cell lines AGS and MKN28. Consistently, AGS cells respond to IL-21 by increasing production of MMP-2 and MMP-9, but not MMP-1, MMP-3, MMP-7, or tissue inhibitors of MMP. Analysis of signaling pathways leading to MMP production reveals that IL-21 enhances NF-kappaB but not MAPK activation, and inhibition of NF-kappaB activation reduces IL-21-induced MMP-2 and MMP-9 production. Finally, we show that treatment of Hp-infected gastric explants with anti-IL-21 reduces epithelial cell-derived MMP-2 and MMP-9 production. These data indicate that IL-21 is overexpressed in Hp-infected gastric mucosa where it could contribute to increased epithelial gelatinase production.  相似文献   

8.
In vivo studies on rats have demonstrated that considerable amounts of iodide are transported from the bloodstream into the gastric lumen. The mechanisms for and functional significance of this transport are poorly understood. Active (driven by Na(+)/K(+)-ATPase) iodide transport into thyroid follicular cells is mediated by the sodium-iodide symporter (NIS), which is also abundantly expressed in gastric mucosa. We aimed to further investigate the iodide transport in gastric mucosa and the possible role of NIS in this transport process. Iodide transport in rat gastric mucosa was studied in vitro in an Ussing chamber system using (125)I as a marker. The system allows measurements in both directions over a mucosal specimen. A considerable transport of iodide (from the serosal to the mucosal side) was established across the gastric mucosa, whereas in the opposite direction (mucosa to serosa), iodide transport was negligible. Sodium perchlorate (NaClO(4)), a competitive inhibitor of NIS, and ouabain, an inhibitor of the Na(+)/K(+)-ATPase, both attenuated gastric iodide transport from the serosal to the mucosal side. To investigate a possible neuroendocrine regulation of the iodide transport identified to occur from the serosal to the mucosal side of the stomach, thyroid-stimulating hormone (TSH), thyrotropin-releasing hormone (TRH), vasoactive intestinal peptide (VIP), histamine, or nitric oxide donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) was added. None of these substances influenced the iodide transport. We conclude that iodide is actively transported into the gastric lumen and that this transport is at least partly mediated by NIS. Additional investigations are needed to understand the regulation and significance of this transport.  相似文献   

9.
10.
11.
12.
Portal hypertensive (PHT) gastric mucosa has increased susceptibility to injury and impaired mucosal healing. Because our previous study showed that ulcer-induced activation of mitogen-activated protein (MAP) kinase (ERK) plays a pivotal role in gastric mucosal healing, we investigated whether ERK activation is altered in PHT gastric mucosa following alcohol injury. We studied ERK2 phosphorylation and activity and expression of MAP kinase phosphatase-1 (MKP-1) in gastric mucosa of PHT and sham-operated (SO) normal rats both at baseline and following alcohol injury. In SO gastric mucosa, ERK2 phosphorylation and activity were significantly increased time-dependently following alcohol injury: by 221% and 137%, respectively at 24 h vs. baseline. In contrast, in PHT gastric mucosa following alcohol injury, neither ERK2 phosphorylation nor activity was increased versus baseline. In PHT gastric mucosa, MKP-1 mRNA and protein expression were increased at baseline versus SO rats and were increased further following alcohol injury with values higher by 20%-40% at each study time versus SO rats. Because ERK2 is crucial for mucosal healing, reduced ERK2 activation resulting from the overexpression of MKP-1 might be the basis for the impaired mucosal healing in PHT gastric mucosa.  相似文献   

13.
14.
15.
16.
BACKGROUND AND AIMS: In the human stomach expression of TNF-related apoptosis inducing ligand (TRAIL) and its receptors and the modulatory role of Helicobacter pylori are not well described. Therefore, we investigated the effect of H. pylori on the expression of TRAIL, FasL and their receptors (TRAIL-R1-R4, Fas) in gastric epithelial cells and examined their role in apoptosis. MATERIALS AND METHODS: mRNA and protein expression of TRAIL, FasL and their receptors were analyzed in human gastric epithelial cells using RT-PCR, Western blot, and immunohistochemistry. Gastric epithelial cells were incubated with FasL, TRAIL and/or H. pylori, and effects on expression, cell viability and epithelial apoptosis were monitored. Apoptosis was analyzed by histone ELISA, DAPI staining and immunohistochemistry. RESULTS: TRAIL, FasL and their receptor subtypes were expressed in human gastric mucosa, gastric epithelial cell primary cultures and gastric cancer cells. TRAIL, FasL and H. pylori caused a time- and concentration-dependent induction of DNA fragmentation in gastric cancer cells with synergistic effects. In addition, H. pylori caused a selective up-regulation of TRAIL, TRAIL-R1 and Fas mRNA and protein expression in gastric cancer cells. CONCLUSIONS: Next to FasL and Fas, TRAIL and all of its receptor subtypes are expressed in the human stomach and differentially modulated by H. pylori. TRAIL, FasL and H. pylori show complex interaction mediating apoptosis in human gastric epithelial cells. These findings might be important for the understanding of gastric epithelial cell kinetics in patients with H. pylori infection.  相似文献   

17.
Gastrin promotes gastric mucosal growth, and hypergastrinemia induces gastric mucosal hypertrophy. Recently, it has been reported that gastrin induces cyclooxygenase-2 (COX-2) in human gastric and colorectal cancer cell lines. However, whether COX-2 is involved in gastrin-induced gastric mucosal growth in vivo is unknown. We investigated the role of COX-2 in gastrin-induced gastric mucosal hypertrophy using gastrin transgenic mice. Hypergastrinemic mice [mice with mutated gastrin under the control of the beta-actin promoter (ACT-GAS mice)] received the COX-2 inhibitor celecoxib (0, 200, or 500 mg/kg of diet) from 5 wk of age and were killed at 16 or 24 wk. Some ACT-GAS mice received celecoxib from 16 wk and were killed at 24 wk. Eighty-week-old ACT-GAS mice without celecoxib treatment were also examined. The thickness of the gastric mucosa, cell populations, COX-2 expression, and PGE(2) levels were evaluated. All ACT-GAS mice showed gastric mucosal hypertrophy, and four of six 80-wk-old ACT-GAS mice developed gastric cancer. COX-2 was expressed in interstitial cells of the hypertrophic gastric mucosa and gastric cancers. Moreover, PGE(2) levels in the gastric mucosa of ACT-GAS mice were significantly higher than those of normal mice. With treatment with celecoxib, PGE(2) levels, the gastric mucosal thickness, and the number of total gastric cells per gastric gland of ACT-GAS mice were significantly decreased. The decrease in gastric mucosal thickness was caused by a reduction of foveolar hyperplasia. The thickness of glandules and the number of Ki67-positive cells were not significantly changed. In conclusion, COX-2 contributes to gastrin-induced mucosal hypertrophy of the stomach.  相似文献   

18.
Janus kinase 3 (Jak3) is a nonreceptor tyrosine kinase expressed in both hematopoietic and nonhematopoietic cells. Previously, we characterized the functions of Jak3 in cytoskeletal remodeling, epithelial wound healing, and mucosal homeostasis. However, the role of Jak3 in mucosal differentiation and inflammatory bowel disease was not known. In this report, we characterize the role of Jak3 in mucosal differentiation, basal colonic inflammation, and predisposition toward colitis. Using the Jak3 knock-out (KO) mouse model, we show that Jak3 is expressed in colonic mucosa of mice, and the loss of mucosal expression of Jak3 resulted in reduced expression of differentiation markers for the cells of both enterocytic and secretory lineages. Jak3 KO mice showed reduced expression of colonic villin, carbonic anhydrase, secretory mucin muc2, and increased basal colonic inflammation reflected by increased levels of pro-inflammatory cytokines IL-6 and IL-17A in colon along with increased colonic myeloperoxidase activity. The inflammations in KO mice were associated with shortening of colon length, reduced cecum length, decreased crypt heights, and increased severity toward dextran sulfate sodium-induced colitis. In differentiated human colonic epithelial cells, Jak3 redistributed to basolateral surfaces and interacted with adherens junction (AJ) protein β-catenin. Jak3 expression in these cells was essential for AJ localization of β-catenin and maintenance of epithelial barrier functions. Collectively, these results demonstrate the essential role of Jak3 in the colon where it facilitated mucosal differentiation by promoting the expression of differentiation markers and enhanced colonic barrier functions through AJ localization of β-catenin.  相似文献   

19.
20.
Basic fibroblast growth factor (bFGF or FGF-2) is a pleiotropic growth factor that promotes growth of mesenchymal and epithelial cells, stimulates angiogenesis and neuroprotection. Moreover, exogenous bFGF by stimulating angiogenesis promotes healing of gastroduodenal ulcers and cardiac and brain injury. All these actions were demonstrated in regard to 18 kDa bFGF isoform that is secreted by cells via an ER/Golgi-independent pathway and activates FGF receptors. However in some transformed and stressed cells and in some tissues (e.g. brain) the single copy bFGF gene encodes multiple gene products: 18 kDa and also higher molecular weight (HMW) bFGF isoforms: ∼21 and ∼22 kDa in rodents, and ∼22, ∼23 and ∼24 kDa in humans. The biologic roles of these HMW bFGF isoforms in vivo remain unknown. In this study we demonstrated that in normal, uninjured gastric mucosa, bFGF is almost exclusively expressed as 18 kDa isoform translated through a classical AUG (methionine) codon. In contrast, in injured gastric mucosa of rat, bFGF gene is preferentially translated to HMW bFGF isoforms through alternative CUG (leucine) initiation codon. Gastric mucosal injury caused in rats a significant increase in bFGF mRNA at 8 and 24 h vs. normal mucosa and a significant increase in bFGF protein at 24–72 h, mainly due to increased expression of ∼21 and ∼22 kDa HMW bFGF isoforms. This is first demonstration that gastric mucosal injury and repair triggers local activation of bFGF gene with preferential translation of HMW bFGF isoforms through a non-canonical CUG codon. This study uncovered CUG-initiated HMW bFGF translation as a novel regulatory mechanism operating in vivo during gastric injury repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号