首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive apoptotic oocyte reduction occurs during fetal ovarian development. The regulatory pathways responsible for oocyte selection to programmed cell death are, however, poorly understood. The aim of this study was to investigate the potential involvement of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5 and decoy receptors TRAIL-R3/DcR1 and TRAIL-R4/DcR2 in the apoptotic process characterizing human fetal and adult ovaries. For this purpose, in situ hybridization and immunohistochemistry were applied to human fetal and adult ovarian samples to study the mRNA and protein expression of TRAIL pathway components, and a human granulosa cell tumor-derived cell line (KGN) was used to elucidate functional effects of TRAIL on apoptosis. TRAIL was expressed in human fetal ovary from the 11th week until term. The pro-apoptotic TRAIL-R2/DR5 and the anti-apoptotic TRAIL-R4/DcR2 were also expressed in human ovaries throughout the fetal period. Among the different ovarian cell types, these TRAIL pathway components were mainly localized in the oocytes, and their expression increased towards term. Expression of TRAIL-R1/DR4 and TRAIL-R3/DcR1 was negligible in all of the fetal ovaries studied. Adult ovaries expressed TRAIL, TRAIL-R2/DR5, TRAIL-R3/DcR1 and TRAIL-R4/DcR2 in granulosa cells and oocytes of small primary/secondary follicles as well as in granulosa and theca cells of more developed antral follicles. In KGN cells, TRAIL efficiently induced apoptosis in a dose-dependent manner, and this was blocked by a caspase inhibitor. The results indicate a role of the TRAIL pathway components in the regulation of granulosa cell apoptosis in in vitro and suggest that these factors may have a role in regulating ovarian apoptosis also in vivo.  相似文献   

2.
Small cell lung cancer cell lines were resistant to FasL and TRAIL-induced apoptosis, which could be explained by an absence of Fas and TRAIL-R1 mRNA expression and a deficiency of surface TRAIL-R2 protein. In addition, caspase-8 expression was absent, whereas FADD, FLIP and caspases-3, -7, -9 and -10 could be detected. Analysis of SCLC tumors revealed reduced levels of Fas, TRAIL-R1 and caspase-8 mRNA compared to non-small cell lung cancer (NSCLC) tumors. Methylation-specific PCR demonstrated methylation of CpG islands of the Fas, TRAIL-R1 and caspase-8 genes in SCLC cell lines and tumor samples, whereas NSCLC samples were not methylated. Cotreatment of SCLC cells with the demethylating agent 5'-aza-2-deoxycytidine and IFNgamma partially restored Fas, TRAIL-R1 and caspase-8 expression and increased sensitivity to FasL and TRAIL-induced death. These results suggest that SCLC cells are highly resistant to apoptosis mediated by death receptors and that this resistance can be reduced by a combination of demethylation and treatment with IFNgamma.  相似文献   

3.
4.
Acceleration of human neutrophil apoptosis by TRAIL   总被引:15,自引:0,他引:15  
Neutrophil granulocytes have a short lifespan, with their survival limited by a constitutive program of apoptosis. Acceleration of neutrophil apoptosis following ligation of the Fas death receptor is well-documented and TNF-alpha also has a transient proapoptotic effect. We have studied the role of the death receptor ligand TRAIL in human neutrophils. We identified the presence of mRNAs for TRAIL, TRAIL-R2, and TRAIL-R3, and cell surface expression of TRAIL-R2 and -R3 in neutrophil populations. Neutrophil apoptosis is specifically accelerated by exposure to a leucine zipper-tagged form of TRAIL, which mimics cell surface TRAIL. Using blocking Abs to TRAIL receptors, specifically TRAIL-R2, and a TRAIL-R1:FcR fusion protein, we have excluded a role for TRAIL in regulating constitutive neutrophil apoptosis. No additional proapoptotic effect of leucine zipper TRAIL was identified following TRAIL treatment of neutrophils in the presence of gliotoxin, an inhibitor of NF-kappaB, suggesting TRAIL does not activate NF-kappaB in human neutrophils. TRAIL treatment of human neutrophils did not induce a chemotactic response. The susceptibility of neutrophils to TRAIL-mediated apoptosis suggests a role for TRAIL in the regulation of inflammation and may provide a mechanism for clearance of neutrophils from sites of inflammation.  相似文献   

5.
Human mast cells undergo TRAIL-induced apoptosis   总被引:5,自引:0,他引:5  
Mast cells (MC), supposedly long-lived cells, play a key role in allergy and are important contributors to other inflammatory conditions in which they undergo hyperplasia. In humans, stem cell factor (SCF) is the main regulator of MC growth, differentiation, and survival. Although human MC numbers may also be regulated by apoptotic cell death, there have been no reports concerning the role of the extrinsic apoptotic pathway mediated by death receptors in these cells. We examined expression and function of death receptors for Fas ligand and TRAIL in human MC. Although the MC leukemia cell line HMC-1 and human lung-derived MC expressed both Fas and TRAIL-R, MC lines derived from cord blood (CBMC) expressed only TRAIL-R. Activation of TRAIL-R resulted in caspase 3-dependent apoptosis of CBMC and HMC-1. IgE-dependent activation of CBMC increased their susceptibility to TRAIL-mediated apoptosis. Results suggest that TRAIL-mediated apoptosis may be a mechanism of regulating MC survival in vivo and, potentially, for down-regulating MC hyperplasia in pathologic conditions.  相似文献   

6.
BACKGROUND: Most tumors express death receptors and their activation represents a potential selective approach in cancer treatment. The most promising candidate for tumor selective death receptor-activation is tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L, which activates the death receptors TRAIL-R1 and TRAIL-R2, and induces apoptosis preferentially in tumor cells but not in normal tissues. However, many cancer cells are not or only moderately sensitive towards TRAIL and require cotreatment with irradiation or chemotherapy to yield a therapeutically reasonable apoptotic response. Because chemotherapy can have a broad range of unwanted side effects, more specific means for sensitizing tumor cells for TRAIL are desirable. The expression of the cellular FLICE-like inhibitory protein (cFLIP) is regarded as a major cause of TRAIL resistance. We therefore analyzed the usefulness of targeting FLIP to sensitize tumor cells for TRAIL-induced apoptosis. MATERIALS AND METHODS: To selectively interfere with expression of cFLIP short double-stranded RNA oligonucleotides (small interfering RNAs [siRNAs]) were introduced in the human cell lines SV80 and KB by electroporation. Effects of siRNA on FLIP expression were analyzed by Western blotting and RNase protection assay and correlated with TRAIL sensitivity upon stimulation with recombinant soluble TRAIL and TRAIL-R1- and TRAIL-R2-specific agonistic antibodies. RESULTS: FLIP expression can be inhibited by RNA interference using siRNAs, evident from reduced levels of FLIP-mRNA and FLIP protein. Inhibition of cFLIP expression sensitizes cells for apoptosis induction by TRAIL and other death ligands. In accordance with the presumed function of FLIP as an inhibitor of death receptor-induced caspase-8 activation, down-regulation of FLIP by siRNAs enhanced TRAIL-induced caspase-8 activation. CONCLUSION: Inhibition of FLIP expression was sufficient to sensitize tumor cells for TRAIL-induced apoptosis. The combination of TRAIL and FLIP-targeting siRNA could therefore be a useful strategy to attack cancer cells, which are resistant to TRAIL alone.  相似文献   

7.
On the TRAIL to apoptosis   总被引:12,自引:0,他引:12  
  相似文献   

8.
Protein-based therapeutic approaches targeting death receptors   总被引:6,自引:0,他引:6  
Death receptors (DRs) are a growing family of transmembrane proteins that can detect the presence of specific extracellular death signals and rapidly trigger cellular destruction by apoptosis. Eight human DRs (Fas, TNF-R1, TRAMP, TRAIL-R1, TRAIL-R2, DR-6, EDA-R and NGF-R) have been identified. The best studied to date is Fas (CD95). Expression and signaling by Fas and its ligand (FasL, CD95L) is a tightly regulated process essential for key physiological functions in a variety of organs, including the maintenance of immune homeostasis. Recently, strong evidence has shown that dysregulation of Fas expression and/or signaling contributes to the pathogenesis of tissue destructive diseases such as graft-versus-host disease, toxic epidermal necrolysis, multiple sclerosis and stroke. With these new developments, strategies for modulating the function of Fas signaling have emerged and provided novel protein-based therapeutic possibilities that will be discussed herein. Selective triggering of DR-mediated apoptosis in cancer cells is an emerging approach that is being intensely investigated as a mode of cancer therapy. Local administration of Fas agonists, and more promisingly, systemic use of soluble recombinant forms of TRAIL have shown efficacy in preclinical models of the disease. Developments in this field that may have important clinical implications for the treatment of cancer are reviewed.  相似文献   

9.
TRAIL (APO-2L) is a newly identified member of the TNF family and induces apoptosis in cancer cells without affecting most non-neoplastic cells, both in vitro and in vivo. Our study focused on the expression and function of TRAIL and its receptors in renal cell carcinoma (RCC) cell lines of all major histological types. Here, we demonstrate that all RCC cell lines express TRAIL as well as the death-inducing receptors TRAIL-R1 (DR4) and TRAIL-R2 (Killer/DR5). Exposure to TRAIL induced apoptosis in 10 of 16 RCC cell lines. Remarkably, five of six TRAIL-resistant RCC cell lines exhibited high levels of TRAIL expression. Topotecan, a novel topoisomerase I inhibitor, induced upregulation of TRAIL-R2 as well as downregulation of TRAIL. Neutralization of TRAIL with recombinant soluble TRAIL-R1-Fc and TRAIL-R2-Fc failed to inhibit topotecan-induced apoptosis indicating that topotecan-induced cell death can occur in a TRAIL-independent fashion. However, exposure to topotecan resulted in an enhancement of TRAIL-induced apoptosis in all primarily TRAIL-resistant RCC cell lines. This synergistic effect of cotreatment with Topotecan and TRAIL may provide the basis for a new therapeutic approach to induce apoptosis in otherwise unresponsive RCC.  相似文献   

10.
Deletion of T cells due to apoptosis induction is a regulatory mechanism in the human immune system that may be impaired in autoimmune diseases such as multiple sclerosis (MS). Involvement of the apoptosis-mediating CD95/CD95 ligand system in MS has been demonstrated. Here, we report that (auto)antigen-specific human T cells are not killed in vitro by soluble TNF-related apoptosis-inducing ligand (TRAIL) although expressing death-inducing receptors, TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2. Apoptosis was assessed by caspase activation and DNA fragmentation, receptor expression was detected by RT - PCR and flow cytometry. The (auto)antigen-specific T cells were also resistant to specific TRAIL-R1/TRAIL-R2-directed induction of apoptosis, indicating that coexpression of the truncated TRAIL-R3 and TRAIL-R4 in these T cells is not responsible for the observed resistance. Upon stimulation, levels of death-inducing TRAIL receptors decreased whereas TRAIL was up-regulated on the cell surface. In contrast to CD95, the role of TRAIL receptors in MS might not involve regulation of T cell vulnerability.  相似文献   

11.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in tumor but not normal cells, thus providing therapeutic possibilities for human cancers. However, it is not fully clear how widespread TRAIL receptors are, or how TRAIL signaling is modulated in normal cells. We characterized cell surface expression of TRAIL receptors in normal healthy donor peripheral blood and report that each of the TRAIL receptors are characteristically expressed on restricted cell populations. TRAIL-R1 is distinctively expressed on B-lymphocytes, TRAIL-R2 on monocytes, TRAIL-R3 on neutrophils and most impressively, CD8+ lymphocytes and NKT lymphocytes but not CD4+ lymphocytes express TRAIL-R4.  相似文献   

12.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis through two receptors, TRAIL-R1 (also known as death receptor 4) and TRAIL-R2 (also known as death receptor 5), that are members of the TNF receptor superfamily of death domain-containing receptors. We show that human adenovirus type 5 encodes three proteins, named RID (previously named E3-10.4K/14.5K), E3-14.7K, and E1B-19K, that independently inhibit TRAIL-induced apoptosis of infected human cells. This conclusion was derived from studies using wild-type adenovirus, adenovirus replication-competent mutants that lack one or more of the RID, E3-14.7K, and E1B-19K genes, and adenovirus E1-minus replication-defective vectors that express all E3 genes, RID plus E3-14.7K only, RID only, or E3-14.7K only. RID inhibits TRAIL-induced apoptosis when cells are sensitized to TRAIL either by adenovirus infection or treatment with cycloheximide. RID induces the internalization of TRAIL-R1 from the cell surface, as shown by flow cytometry and indirect immunofluorescence for TRAIL-R1. TRAIL-R1 was internalized in distinct vesicles which are very likely to be endosomes and lysosomes. TRAIL-R1 is degraded, as indicated by the disappearance of the TRAIL-R1 immunofluorescence signal. Degradation was inhibited by bafilomycin A1, a drug that prevents acidification of vesicles and the sorting of receptors from late endosomes to lysosomes, implying that degradation occurs in lysosomes. RID was also shown previously to internalize and degrade another death domain receptor, Fas, and to prevent apoptosis through Fas and the TNF receptor. RID was shown previously to force the internalization and degradation of the epidermal growth factor receptor. E1B-19K was shown previously to block apoptosis through Fas, and both E1B-19K and E3-14.7K were found to prevent apoptosis through the TNF receptor. These findings suggest that the receptors for TRAIL, Fas ligand, and TNF play a role in limiting virus infections. The ability of adenovirus to inhibit killing through these receptors may prolong acute and persistent infections.  相似文献   

13.
The majority of humans infected with Helicobacter pylori maintain a lifelong infection with strains bearing the cag pathogenicity island (PAI). H. pylori inhibits T cell responses and evades immunity so the mechanism by which infection impairs responsiveness was investigated. H. pylori caused apoptotic T cell death, whereas Campylobacter jejuni did not. The induction of apoptosis by H. pylori was blocked by an anti-Fas Ab (ZB4) or a caspase 8 inhibitor. In addition, a T cell line with the Fas rendered nonfunctional by a frame shift mutation was resistant to H. pylori-induced death. H. pylori strains bearing the cag PAI preferentially induced the expression of Fas ligand (FasL) on T cells and T cell death, whereas isogenic mutants lacking these genes did not. Inhibiting protein synthesis blocked FasL expression and apoptosis of T cells. Preventing the cleavage of FasL with a metalloproteinase inhibitor increased H. pylori-mediated killing. Thus, H. pylori induced apoptosis in Fas-bearing T cells through the induction of FasL expression. Moreover, this effect was linked to bacterial products encoded by the cag PAI, suggesting that persistent infection with this strain may be favored through the negative selection of T cells encountering specific H. pylori Ags.  相似文献   

14.
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor super-family and signals via two death receptors, TRAIL-R1 and TRAIL-R2, and two decoy receptors, TRAIL-R3 and TRAIL-R4, differently expressed in normal and cancer cells. TRAIL is mainly studied for its capacity to induce apoptosis preferentially in cancer cells. TRAIL is expressed in a variety of human tissues, in particular in the lymphoid system, suggesting a strong physiological role in the innate immunity. This review will focus on TRAIL gene structure and regulation, protein folding, tissue expression and molecular signalling. Finally, the potential use of TRAIL as anticancer treatment alone or in combination therapy as well as the use of drugs which signal via TRAIL and its receptors will be analyzed.  相似文献   

15.
Tumor necrosis factor-related apoptosis-inducing ligand receptor 3 (TRAIL-R3) is a decoy receptor for TRAIL, a member of the tumor necrosis factor family. In several cell types decoy receptors inhibit TRAIL-induced apoptosis by binding TRAIL and thus preventing its binding to proapoptotic TRAIL receptors. We studied the regulation of TRAIL-R3 gene expression in breast tumor cells treated with the genotoxic drug doxorubicin (DXR). The breast tumor cell line MCF-7 (p53 wild type) responded to DXR with a marked elevation of TRAIL-R3 expression at the mRNA, total protein, and cell surface levels. In contrast, in EVSA-T cells (p53 mutant) DXR did not induce increased expression of TRAIL-R3. In MCF-7 cells overexpressing the human papillomavirus protein E6, which causes p53 degradation, DXR-induced TRAIL-R3 expression was notably reduced. Furthermore, in MCF-7 cells overexpressing a temperature-sensitive p53 mutant (Val135), shifting the cultures to the permissive temperature was sufficient to induce the expression of TRAIL-R3. We also cloned and characterized a p53 consensus element located within the first intron of the human TRAIL-R3 gene. This element binds p53 and confers responsiveness to genotoxic damage to constructs of the TRAIL-R3 promoter in transient transfection experiments. Our results indicate that genotoxic treatments such as DXR, frequently used in cancer therapy, may also induce genes such as TRAIL-R3 that potentially have antiapoptotic actions and thus interfere with the TRAIL signaling system. This is particularly important in view of the proposed use of TRAIL in antitumor therapy.  相似文献   

16.
Induction of apoptosis in cells by TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is believed to be regulated by expression of two death-inducing and two inhibitory (decoy) receptors on the cell surface. In previous studies we found no correlation between expression of decoy receptors and susceptibility of human melanoma cells to TRAIL-induced apoptosis. In view of this, we studied the localization of the receptors in melanoma cells by confocal microscopy to better understand their function. We show that the death receptors TRAIL-R1 and R2 are located in the trans-Golgi network, whereas the inhibitory receptors TRAIL-R3 and -R4 are located in the nucleus. After exposure to TRAIL, TRAIL-R1 and -R2 are internalized into endosomes, whereas TRAIL-R3 and -R4 undergo relocation from the nucleus to the cytoplasm and cell membranes. This movement of decoy receptors was dependent on signals from TRAIL-R1 and -R2, as shown by blocking experiments with Abs to TRAIL-R1 and -R2. The location of TRAIL-R1, -R3, and -R4 in melanoma cells transfected with cDNA for these receptors was similar to that in nontransfected cells. Transfection of TRAIL-R3 and -R4 increased resistance of the melanoma lines to TRAIL-induced apoptosis even in melanoma lines that naturally expressed these receptors. These results indicate that abnormalities in "decoy" receptor location or function may contribute to sensitivity of melanoma to TRAIL-induced apoptosis and suggest that further studies are needed on the functional significance of their nuclear location and TRAIL-induced movement within cells.  相似文献   

17.
Although cisplatin derivatives are first line chemotherapeutic agents for the treatment of ovarian epithelial cancer, chemoresistance is a major therapeutic problem. Although the cytotoxic effect of these agents are believed to be mediated through the induction of apoptosis, the role of the Fas/FasL system in chemoresistance in human ovarian epithelial cancer is not fully understood. In the present study, we have used cultures of established cell lines of cisplatin-sensitive human ovarian epithelial tumours (OV2008 and A2780-s) and their resistant variants (C13* and A2780-cp, respectively) to assess the role ofFas/FasL system in the chemo-responsiveness of ovarian cancer cells to cisplatin. Cisplatin was effective in inducing the expression of cell-associated Fas and FasL, soluble FasL and apoptosis in concentration and time-dependent fashion in both cisplatin-sensitive cell lines (OV2008 and A2780-s). In contrast, while cisplatin was effective in increasing cell-associated Fas protein content in C13*, it failed to up-regulate FasL (cell-associated and soluble forms) and induce apoptosis, irrespective of concentration and duration of cisplatin treatment. Concentrated spent media from OV2008 cultures after cisplatin treatment were effective in inducing apoptosis in C13* cells which was partly inhibited by the antagonistic Fas monoclonal antibody (mAb) suggesting that the soluble FasL present in the spent media was biologically active. In the resistant A2780-cp cells, neither Fas nor FasL up-regulation were evident in the presence of the chemotherapeutic agent and apoptosis remained low compared to its sensitive counterpart. Activation of the Fas signalling pathway, by addition to the cultures an agonistic Fas mAb, was equally effective in inducing apoptosis in the cisplatin-sensitive (OV2008) and -resistant variant C13*, although these responses were of lower magnitude compared to that observed with cisplatin in the chemosensitive cells. A significant interaction between cisplatin and agonistic Fas mAb was observed in the apoptotic response in OV2008 and C13* when cultured in the presence of both agents. Immunohistochemistry of human ovarian epithelial carcinomas reveals the presence of Fas in low abundance in proliferatively active cells but in high levels in quiescent ones. Although the expression pattern of FasL in the tumour was similar to that of Fas, the protein content was considerably lower. Taken together, these data suggest that the dysregulation of the Fas/FasL system may be an important determinant in cisplatin resistance in ovarian epithelial cancer cells. Our results are also supportive of the notion that combined immuno- and chemo-therapy (i.e., agonistic Fas mAb plus cisplatin) may provide added benefits in the treatment of both chemo-sensitive and -resistant ovarian tumours.  相似文献   

18.
19.
Tissue distribution of the death ligand TRAIL and its receptors.   总被引:14,自引:0,他引:14  
Recombinant human (rh) TNF-related apoptosis-inducing ligand (TRAIL) harbors potential as an anticancer agent. RhTRAIL induces apoptosis via the TRAIL receptors TRAIL-R1 and TRAIL-R2 in tumors and is non-toxic to nonhuman primates. Because limited data are available about TRAIL receptor distribution, we performed an immunohistochemical (IHC) analysis of the expression of TRAIL-R1, TRAIL-R2, the anti-apoptotic TRAIL receptor TRAIL-R3, and TRAIL in normal human and chimpanzee tissues. In humans, hepatocytes stained positive for TRAIL and TRAIL receptors and bile duct epithelium for TRAIL, TRAIL-R1, and TRAIL-R3. In brains, neurons expressed TRAIL-R1, TRAIL-R2, TRAIL-R3 but no TRAIL. In kidneys, TRAIL-R3 was negative, tubuli contorti expressed TRAIL-R1, TRAIL-R2, and TRAIL, and cells in Henle's loop expressed only TRAIL-R2. Heart myocytes showed positivity for all proteins studied. In colon, TRAIL-R1, TRAIL-R2, and TRAIL were present. Germ and Leydig cells were positive for all proteins studied. Endothelium in liver, heart, kidney, and testis lacked TRAIL-R1 and TRAIL-R2. In alveolar septa and bronchial epithelium TRAIL-R2 was expressed, brain vascular endothelium expressed TRAIL-R2 and TRAIL-R3, and in heart vascular endothelium only TRAIL-R3 was present. Only a few differences were observed between human and chimpanzee liver, brain, and kidney. In contrast to human, chimpanzee bile duct epithelium lacked TRAIL, TRAIL-R1, and TRAIL-R3, lung and colon showed no TRAIL or its receptors, TRAIL-R3 was absent in germ and Leydig cells, and vascular endothelium showed only TRAIL-R2 expression in the brain. In conclusion, comparable expression of TRAIL and TRAIL receptors was observed in human and chimpanzee tissues. Lack of liver toxicity in chimpanzees after rhTRAIL administration despite TRAIL-R1 and TRAIL-R2 expression is reassuring for rhTRAIL application in humans.  相似文献   

20.
Apoptosis-inducing ligands such as Fas ligand (FasL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) have been found to play an important role in cell regulation. Different malignant tumors show an altered expression of these ligands and their respective receptors compared to normal tissues. The purpose of this study was therefore to investigate expression of TRAIL, FasL, and its receptor Fas on protein and mRNA levels in breast carcinomas (n=40), fibroadenomas (n=7), and normal breast tissues (n=5). Immunohistochemical reaction demonstrated that FasL was strongly expressed in breast cancer tissues (34/40) while only one fibroadenoma and one normal breast tissue reacted weakly positive for FasL. All fibroadenomas and normal breast tissues as well as the majority of breast cancer tissues expressed Fas on protein level. Quantitative RT-PCR analysis detected high expression of FasL mRNA in breast cancer tissues and fibroadenomas, whereas fibroadenomas showed the highest Fas mRNA copy numbers, followed by breast cancer tissues and normal breast tissues (P<0.05). Compared to FasL expression, TRAIL could be detected in less breast cancer tissues on protein level (21/40) and was found in only one fibroadenoma and none of the normal breast tissues. Thus, it can be concluded that malignant breast tumors show an altered expression of the two apoptosis-inducing ligands FasL and TRAIL. Accepted: 4 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号