首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Though often overlooked, small wetlands in an upland matrix can support diverse plant communities that increase both local and regional species richness. Here we characterize the full range of wetland vegetation within an upland forest landscape and compare the diversity and composition of different wetland plant communities. In an old-growth forest reserve in southern Quebec, Canada, we sampled wet habitats including lakeshores, permanent and seasonal ponds, swamps, glades, and streamsides. We used clustering, indicator species analysis, and nonmetric multidimensional scaling ordination to identify and compare vegetation types. The wetlands contained 280 species of vascular plants, 45% of the reserve's flora, in only 1.1% of its area. Local diversity averaged 24 ± 0.7 species per 7 m(2), much higher than in the surrounding upland forests. Plant communities sorted into five types, whose strongest indicator species were Osmunda regalis, Glyceria striata, O. cinnamomea, Deparia acrostichoides, and Matteuccia struthiopteris, respectively. Both local species richness and compositional variation among sites differed among the vegetation types. By combining species representative of the region's major wetlands with species from the upland forest matrix, the plant assemblages of these wetlands make disproportionately important contributions to landscape-level diversity.  相似文献   

2.
Island biogeography of temporary wetland carabid beetle communities   总被引:4,自引:0,他引:4  
Aim The study tests if island biogeography is applicable to invertebrate communities of habitat islands in the agricultural landscape that are not fragments of formerly larger habitats. Location Thirty temporary wetlands in the agricultural landscape of northeast Germany. Methods The composition and species richness of carabid beetle communities was analysed. Habitat area, isolation, the density of temporary wetlands in the landscape, land‐use intensity and the maximum duration of flooding were recorded as independent variables. Overall species richness and wetland species richness were studied in independent regression analyses. The community composition was analysed by means of a Canonical Correspondence Analysis (CCA). A partial CCA was used to analyse the effect of the distance to the edge of the field after removing impacts of other independent variables. Results The area of the habitats and various measures of isolation (mean distances = 81–240 m) did not influence species richness or wetland species richness. The community composition was mainly determined by the land‐use intensity, habitat area did not have significant effects, and the distance to the edge of the field was the only effective isolation parameter. Short‐winged species were more often affected by the distance to the edge of the field than full‐winged species. Main conclusion There is evidence that the distances between the wetlands do not provide an effective barrier to the species dispersal and, therefore, metapopulation structures including subpopulations of multiple temporary wetlands might counteract local area effects on subpopulations. Short‐winged species, however, might be more affected by isolation than full‐winged species. As carabid beetle community structure in most early successional habitats is similar, these results may be representative of many agricultural landscape habitats. Nature conservancy concepts that aim to increase habitat area and habitat connectivity have successfully been applied to fragmented late‐successional habitats. The present study indicates that such concepts do not necessarily result in higher diversity or larger populations in early successional habitats.  相似文献   

3.
Avian Use of Wetlands in Reclaimed Minelands in Southwestern Indiana   总被引:1,自引:0,他引:1  
We studied the use of mineland wetlands by birds and the relationship between avian communities and wetland characteristics. Data were collected from 20 wetlands in Pike County, Indiana, and included wetland size, depth, water conductivity and salinity, aquatic macroinvertebrate abundance, vegetation, and bird use. Principal component analysis showed that physical variables could be explained by two principal component scores and that wetlands could be grouped on the basis of size and conductivity. Principal component analysis could not reduce vegetation variables to fewer principal component scores, meaning that wetland vegetation characteristics were independent of one another and did not show any trend. Most wetlands had low invertebrate density, and wetlands with higher invertebrate density had low invertebrate diversity. Wetlands with similar habitat characteristics (physical, vegetative, and invertebrate) did not necessarily show similarities in bird assemblages. Bird similarity index values ranged from 0 to 59%, implying that each wetland has its own bird community. Stepwise multiple regression analysis (α= 0.05) relating bird use and habitat characteristics showed that bird species richness increased with the species richness of submergent vegetation and was correlated negatively with the species richness of emergent vegetation. There was no significant relationship between bird species richness or bird species diversity and wetland size. The number of species within different avian guilds correlated with different habitat characteristics. The species richness of submergent plants was a factor that correlated positively with the number of species of several guilds (dabblers, wading birds, and plunge divers). Wetland age was not a factor that determined bird use.  相似文献   

4.
5.
Drainage is a major disturbance affecting wetlands, as drains lower water tables and convert lentic habitats to lotic ones. Consequently, invertebrate communities in drained wetlands are likely to differ from those in unimpacted wetlands. This study investigated the effect of hydrological restoration on invertebrate communities in small drains in a New Zealand fen. Invertebrates were collected over 4 summers from 10 drains within the wetland, one of which was blocked as part of a restoration program. The sampling protocol thus represented a Before‐After Control‐Impact experiment. Invertebrate community composition varied over the 4 years, but variability was greatest in the manipulated drain before and after it was blocked. Relative abundance of the amphipod Paraleptamphopus decreased after blockage, whereas those of the midges Chironomus zelandicus and Tanypodinae increased. Relative abundances of these taxa in control sites were unchanged. Hydraulic restoration thus had a demonstrable impact on the invertebrate communities. The invertebrate community of the blocked drain was compared to that of natural wetlands in undisturbed catchments. Similarity was very low prior to drain blockage, but increased following drain blockage. Invertebrate communities in the restored drain were more similar to those of low pH wetlands than high pH wetlands. Given the goal of restoring the communities to those similar to natural conditions, this was a beneficial result. These results, coupled with studies that showed a decline in the cover of alien pasture grasses around the blocked drain, suggest that drain blockage represents a cost‐effective way of restoring wetland plant and aquatic invertebrate communities, especially where connectivity allows for the natural recruitment of these organisms into restored areas.  相似文献   

6.
Many wetlands have been constructed in West Virginia as mitigation for a variety of human disturbances, but no comprehensive evaluation on their success has been conducted. Macroinvertebrates are extremely valuable components of functioning wetland ecosystems. As such, benthic and water column invertebrate communities were chosen as surrogates for wetland function in the evaluation of 11 mitigation and 4 reference wetlands in West Virginia. Mitigation wetlands ranged in age from 4 to 21 years old. Overall familial richness, diversity, density and biomass were similar between mitigation and reference wetlands (p > 0.05). Within open water habitats, total benthic invertebrate density was higher in reference wetlands, but mass of common taxa from water column samples was higher in mitigation wetlands (p < 0.05) Planorbidae density from benthic samples in emergent habitats was higher in reference than mitigated wetlands. Benthic Oligochaeta density was higher across open water habitats in mitigation wetlands. All other benthic taxa were similar between wetland types. Among the most common water column orders, Isopoda density was higher in reference wetlands, but Physidae density was higher in mitigation wetlands. Within mitigation wetlands, emergent areas contained higher richness and diversity than open areas. These data indicate that mitigation and reference wetlands generally support similar invertebrate assemblages, especially among benthic populations. The few observed differences are likely attributable to differences in vegetative community composition and structure. Mitigation wetlands currently support abundant and productive invertebrate communities, and as such, provide quality habitat for wetland dependent wildlife species, especially waterbirds and anurans.  相似文献   

7.
Abstract. Clonal plants play important roles in maintaining wetland ecosystems in China. By analysing 108 wetland quadrats distributed throughout China, we evaluated (1) the importance of clonal growth forms in different Chinese wetlands, (2) how the abundance of clonal plants is related to climatic and geographical conditions, and (3) how plant species diversity is related to the abundance of clonal plants. Significant differences in clonal plant importance values were found between different regions of China. Clonal plants were more important in wetland ecosystems located towards the West and North and at higher elevations and, accordingly, experiencing a colder and drier climate. Plant species diversity showed a significant inverse correlation with the importance value of ‘guerilla’‐type plants in most of the wetland regions. However, we found no significant correlation between plant species diversity and importance values of ‘phalanx’‐type plants. In most Chinese wetlands, plant species diversity decreased with increasing importance of guerilla plants and also with an increase of the entire guild of clonal plants. In wetlands with low species richness, however, plant species diversity increased with increasing importance of guerilla plants and of all clonal plants together, suggesting that in these disturbed habitats clonal growth may facilitate the establishment of other, non‐clonal wetland plants.  相似文献   

8.
1. Habitat loss is a major driver of biodiversity decline worldwide. Temporary waterbodies are especially vulnerable because they are sensitive both to human impact and to climatic variations. Pond‐breeding amphibians are often dependent on temporary waterbodies for their reproduction, and hence are sensitive to loss of temporary ponds. 2. Here we present the results of a 5‐year study regarding the use of temporary aquatic habitats by amphibians in a hydrologically modified area of Eastern Europe (Romania). The annual number of aquatic habitats varied between 30 and ~120. Each aquatic habitat was characterised by a number of variables such as: ‘type’ (pond, drainage ditch and archaeological ditch), ‘hydroperiod’ (number of weeks the ponds were filled in a given year), ‘depth’ (cm), ‘area’ (m2) and the density of predatory insects (‘predation’). The turnover rate for each amphibian species for each wetland was calculated based on the pond occupancy. 3. Eight amphibian species were recorded from the aquatic habitats. Hydroperiod was the most important variable, positively influencing wetland use by amphibians and their reproductive success. Most species preferred drainage ditches for reproduction, and the reproductive success was highest in this habitat type every year. For most of the species, the local extinction rate was higher than the colonisation rate in the first 4 years, but the situation reversed in the last year of the study when wetland use by amphibians sharply increased because of high rainfall. 4. This study confirms the importance for amphibians of maintaining and managing aquatic habitat diversity at small spatial scales. Man‐made aquatic habitats such as drainage ditches may be important habitats for amphibians, and this should be considered in restoration activities.  相似文献   

9.
10.
Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30‐day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30‐day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.  相似文献   

11.
12.
The seed germination niche partly determines adaptation, ecological breadth and geographic range in plant species. In temperate wetlands, environmental temperature is the chief regulator of germination timing, but the ecological significance of high and low temperatures during dormancy break and germination is still poorly understood. Our aim was to characterize the temperature dimension of the germination niche in mountain base-rich fens, determining (1) the effect of different temperatures on dormancy break and germination, and (2) whether different germination strategies may be identified at the species level. We conducted laboratory germination experiments with seeds of 15 species from these habitats, collected in 18 fen sites in the Cantabrian Mountains (Spain) for two consecutive years. In all the species, the seeds were totally or conditionally dormant at dispersal and stratification produced a significant increase of germination. In most cases, there was not an obligatory requirement for cold temperatures during dormancy break, since warm stratification promoted germination as well. Although the optimal germination thermoperiod was generally high (30/20 °C), most species could also germinate at lower temperatures after cold-stratification. We also identified a group of species associated to cold-water springs that germinated only at low temperatures. Our results demonstrate that dormancy break in mountain base-rich fens does not obligatorily depend on cold temperatures during overwintering. Furthermore, germination at cool temperatures may be more widespread in wetland habitats than previously thought. The existence of two distinctive germination strategies, ‘warm’ and ‘cool’, can potentially give rise to divergent species responses to climate change.  相似文献   

13.
The European eel (Anguilla anguilla, L.) was historically widely distributed throughout the United Kingdom, in coastal waters, lakes, rivers and wetlands. Recruitment has declined in recent decades and the species is now listed as ‘Critically Endangered’ on the International Union for Conservation of Nature and Natural Resources (IUCN) Red List. Management of suitable wetland habitats may contribute to species recovery; however, little is known about the stocks in these areas. In this study, yellow (adult stage?>?300 mm) eels were sampled in ditches in five marshes bordering the Thames Estuary in England, UK. Ecological variables, including ditch characteristics, invertebrate abundance and water quality parameters were measured. Habitat features were also observed and recorded, including access, land use and water management regimes. Eels were found in all marshes, but at varying catch-per-unit-effort (CPUE). There were no significant correlations between CPUE and the ecological variables, except ditch width. However, a significant difference in CPUE was found between two of the marshes, which may be explained by variations in local habitat management. Mean lengths showed a high proportion of females and mean body condition of four of the marshes was also found to be greater than in three rivers in the same region. These findings suggest that the marshes are potentially favourable eel habitats and that factors influencing habitat quality, such as land use and water management, may affect eel abundance, production of females and body condition. Effective management of such wetlands may therefore contribute to the conservation of European eel.  相似文献   

14.
Canadian wetlands: Environmental gradients and classification   总被引:1,自引:1,他引:0  
S. C. Zoltai  D. H. Vitt 《Plant Ecology》1995,118(1-2):131-137
The Canadian Wetland Classification System is based on manifestations of ecological processes in natural wetland ecosystems. It is hierarchical in structure and designed to allow identification at the broadest levels (class, form, type) by non-experts in different disciplines. The various levels are based on broad physiognomy and hydrology (classes); surface morphology (forms); and vegetation physiognomy (types). For more detailed studies, appropriate characterization and subdivisions can be applied. For ecological studies the wetlands can be further characterized by their chemical environment, each with distinctive indicator species, acidity, alkalinity, and base cation content. For peatlands, both chemical and vegetational differences indicate that the primary division should be acidic, Sphagnum-dominated bogs and poor fens on one hand and circumneutral to alkaline, brown moss-dominated rich fens on the other. Non peat-forming wetlands (marshes, swamps) lack the well developed bryophyte ground layer of the fens and bogs, and are subject to severe seasonal water level fluctuations. The Canadian Wetland Classification System has been successfully used in Arctic, Subarctic, Boreal and Temperate regions of Canada.  相似文献   

15.
Replication is usually regarded as an integral part of biological sampling, yet the cost of extensive within-wetland replication prohibits its use in broad-scale monitoring of trends in aquatic invertebrate biodiversity. In this paper, we report results of testing an alternative protocol, whereby only two samples are collected from a wetland per monitoring event and then analysed using ordination to detect any changes in invertebrate biodiversity over time. Simulated data suggested ordination of combined data from the two samples would detect 20% species turnover and be a cost-effective method of monitoring changes in biodiversity, whereas power analyses showed about 10 samples were required to detect 20% change in species richness using ANOVA. Errors will be higher if years with extreme climatic events (e.g. drought), which often have dramatic short-term effects on invertebrate communities, are included in analyses. We also suggest that protocols for monitoring aquatic invertebrate biodiversity should include microinvertebrates. Almost half the species collected from the wetlands in this study were microinvertebrates and their biodiversity was poorly predicted by macroinvertebrate data.  相似文献   

16.
Fifteen chemical and physical characteristics were examined in samples of shallow ground water taken in midsummer at 15-30 cm below the surface in six bogs, 15 swamps, and six fens. The wetland types were identified on the basis of their vegetation. Three groups of covarying water characteristics were identified by factor analysis. Factor I included Ca, Mg, Si, pH, alkalinity, conductivity and to a much lesser extent Na, and reflects the degree of telluric water influence in the wetland. Factor 2 included reactive-P, total-P, NH3-N, and to a lesser extent K, and consists of elements that primarily enter interstitial water via organic matter decomposition. Factor 3 included Na, Cl, and to a much lesser extent K. The wetlands formed two distinct groups with respect to water chemistry: weakly minerotrophic (pH 3.8-4.3) including all bogs and moderately to strongly minerotrophic (pH 5.5-7.4) including all swamps and fens. The bogs had very low values for Factor 1 characteristics and moderate values for the remaining characteristics. The swamps and fens had moderate to high values for Factor 1 characteristics and showed considerable overlap in this respect. The fens had consistently low values for Factor 2 characteristics but overlapped with some swamps which also had low Factor 2 scores. Failure to completely separate the vegetationally very distinct swamps and fens from each other on the basis of their physical and chemical water characteristics indicates that another factor, probably water level regime, is of major importance in determining their vegetation type.  相似文献   

17.
湿地植被对北京地区蜻蜓生态分布的影响   总被引:1,自引:0,他引:1  
王辰  高新宇  刘阳  张正旺 《生态学报》2007,27(2):516-525
蜻蜓目(Odonata)昆虫是半变态类(Hemimetabola)昆虫,它的一生经过卵、若虫和成虫3个阶段。和其他水生昆虫一样,蜻蜓目昆虫是淡水生物群落的重要组成部分,对淡水生态系统起到重要作用。蜻蜓目昆虫在其生活史中,取食、交配等活动离不开水生植物和水域附近的植被。为了研究蜻蜓栖息生境中的湿地植被特征对蜻蜓生态分布影响,对北京地区不同湿地类型的17块样地中296个样方分布的蜻蜓种类、多度以及湿地植被的特征和植物多样性进行调查,记录到蜻蜓6科26属36种,维管植物40科99属150种。应用TWINSPAN对蜻蜓种类和样地进行双向聚类分析,所有样地被划分成为四组。同时,将植被特征因子和湿地植物的多样性视为影响蜻蜓数量及分布的因子进行CCA分析。结果表明:湿地植物的丰富度与植物群落结构的完整性是影响蜻蜓分布的主要因素;各湿地植被特征因子对于蜻蜓生态分布的影响不一,依贡献率由大及小依次为浮水植物层盖度、湿生植物盖度、G1eason丰富度指数、沉水植物层盖度、G-F多样性指数、挺水植物层盖度。并且首次应用G-F多样性指数分析湿地植物的多样性。对于蜻蜓栖息地的保护、城市中对于湿地的兴建和改造也提出了相关保护建议。  相似文献   

18.
1. Invertebrate assemblages were described for nine floodplain sites located on a longitudinal gradient of river discharge in the Altamaha River catchment. The Altamaha River and its tributaries constitute one of the few remaining ‘unregulated’ catchments in the southeastern U.S. We predicted that, as the character of lateral flood pulses into backwater swamps changed along the discharge gradient, so would the structure of invertebrate communities. We also examined the relationship between invertebrate assemblages and physicochemical factors (degree of floodplain inundation, pH, conductivity and nutrient concentrations). 2. Cluster analyses of both invertebrate abundance and biomass separated the nine sites into three groups corresponding to their positions in the catchment (upper, mid‐ and lower reach clusters). Non‐metric multidimensional scaling ordinations further corroborated the groupings (with combined axis scores of 92% and 73% for abundance and biomass, respectively) and showed significant correlations with degree of inundation and conductivity (abundance), and conductivity, nitrate and phosphate concentrations (biomass). 3. Floodplains in the upper reaches were dominated by terrestrial taxa, such as earthworms, oribatid mites, collembolans and assorted terrestrial fly larvae, and some rapidly developing aquatics (harpacticoid crustaceans and mosquitoes). In the mid‐reach, the dominant taxa were longer lived aquatic organisms such as mayflies and aquatic oligochaetes, although some terrestrial organisms (elaterid beetles and mites) were still common. Invertebrate families dependent on water flow, such as riffle beetles and some mayflies, were common only in mid‐reach floodplain sites. Lower reaches were dominated by lentic aquatic taxa such as dytiscid beetles and asellid isopods, which commonly persist in wetlands after they dry. 4. Our study indicates that invertebrate community structure varies predictably among floodplains in the Altamaha catchment, with headwater habitats being dominated by terrestrial and rapidly‐developing aquatic invertebrates, mid‐reaches characterised by an influx of invertebrates from the river and lower reaches being dominated by wetland taxa with desiccation‐resistant stages. This spatial variability should be considered when applying the Flood Pulse Concept.  相似文献   

19.
The spatial distribution of species has long sparked interest among ecologists and biogeographers, increasingly so in studies of species responses to climate change. However, field studies on spatial patterns of distribution, useful to inform conservation actions at local scales, are still lacking for many regions, especially the tropics. We studied elevational trends and species‐area relationships among anurans in wetland habitats within Volcanoes National Park (VNP) in Rwanda, part of the biodiverse Albertine Rift region. In VNP, wetlands are key sites for anuran reproduction, and anurans are likely threatened by wetland desiccation which has occurred for the last few decades. Between 2012 and 2017, we sampled anuran communities in ten VNP wetlands located along an elevational gradient of c. 600 m (from 2,546 to 3,188 m a.s.l.) and found at least eight species, including at least two Albertine Rift Endemics. We show that species richness, diversity, and abundance likely decline with a decrease in wetland size and with an increase in elevation, though additional sampling (e.g., at night) might be needed to derive definite conclusions. Larger wetlands at lower elevations contained most species and individuals, which indicates the potential threat of wetland size reduction (through desiccation) for anuran conservation. However, we also found that wetlands differed in species composition and that some species (e.g., Sclerophrys kisoloensis) were likely restricted in distribution to only a few of the smaller wetlands—suggesting that the conservation of each individual wetland should be prioritized, regardless of size. We propose that all wetlands in VNP require additional conservation measures, which should be based on knowledge gathered through long‐term monitoring of anuran communities and research on drivers of wetland decline. Only such extended research will allow us to understand the response of anurans in VNP to threats such as climate change and wetland desiccation.  相似文献   

20.
Wetlands provide numerous ecosystem services, and ericaceous plants are important components of these habitats. However, the ecology of fungi associated with ericaceous roots in these habitats is poorly known. To investigate fungi associated with ericaceous roots in wetlands, ericoid mycorrhizal colonization was quantified, and fungal communities were characterized on the roots of Gaultheria hispidula and Kalmia angustifolia along two upland – forested wetland transects in spring and fall. Ericoid mycorrhizal colonization was significantly higher in the wetlands for both plant species. Both upland and wetland habitats supported distinct assemblages of ericaceous root associated fungi including habitat specific members of the genus Serendipita. Habitat was a stronger driver of ericoid mycorrhizal colonization and ericaceous root associated community composition than host or sampling season, with differences related to soil water content, soil nutrient content, or both. Our results indicate that ericaceous plant roots in forested wetlands are heavily colonized by habitat specific symbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号