首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fungal biology》2020,124(6):551-561
Hypsizygus marmoreus is an important commercial edible fungus, but the lack of basic studies on this fungus has hindered further development of its commercial value. In this study, we found that the treatment of damaged vegetative mycelia with 1 mM l-ascorbic acid (ASA) significantly increased the antioxidant enzyme activities (GPX, GR, CAT and SOD) and antioxidant contents (GSH and ASA) and reduced the ROS levels (H2O2 and O2-) in mechanically damaged mycelia. Additionally, this treatment increased mycelial biomass. At the reproductive stage, our results demonstrated that the treatment of damaged H. marmoreus mycelia with 2.24 mM ASA significantly increased the antioxidant enzyme activities (GPX, GR, GST, TRXR and CAT), endogenous ASA contents and GSH/GSSG ratios in different developmental stages and significantly decreased the MDA and H2O2 contents. Furthermore, this study showed that the expression levels of the antioxidant enzyme genes were consistent with the enzyme activities. Damaged mycelia treated with ASA regenerated 2–3 d earlier than the control group and showed significantly enhanced fruiting body production. These results suggested that exogenous ASA regulated mycelia intracellular ASA content to increase mycelial antioxidant abilities, induce the regeneration of damaged mycelia and regulate the development of fruiting bodies in H. marmoreus.  相似文献   

2.
研究桑黄发酵菌丝体次级代谢产物及活性与子实体的差异性,探讨其替代子实体的可能性。研究通过高效液相色谱分析和化学法比较菌丝体和子实体石油醚、氯仿、乙酸乙酯和正丁醇4个萃取相中的成分差异,以二苯基三硝基苯肼自由基(DPPH)清除率和Trolox当量抗氧化能力(TEAC)作为抗氧化活性的指标、HepG2和MCF-7癌细胞的抑制率作为抑制肿瘤细胞生长的指标,比较其活性差异。结果表明,菌丝体和子实体4个萃取相在化学成分上存在差异;在活性方面,菌丝体各萃取相的抗氧化活性高于子实体,而子实体抗肿瘤活性优于菌丝体。菌丝体醇提取的总黄酮含量高于子实体醇提物,抗氧化活性和总黄酮含量有显著相关性,发酵菌丝体在抗氧化活性方面具有替代子实体的可行性。  相似文献   

3.
为了探究曲酸增加子实体产量的机制,首先考察了搔菌后外源添加曲酸对不同菌丝培养时间出菇的影响。研究发现当菌丝培养时间过短或者过长添加曲酸都得不到很好的增产效果,菌丝培养时间在60-80d之间增产效率最高,并且后熟期60d的增产效率大于80d的增产效率。进一步研究发现添加曲酸可以提高菌丝利用基质中木质纤维素的利用率。更深入地研究发现,基质中的漆酶和纤维素酶活性在斑玉蕈的不同发育时期受到曲酸调控。漆酶活性在最初的菌丝恢复期和转色期酶活性低于对照组,但是在原基期、钉头期和子实体期酶活性显著地高于对照组;纤维素酶活性在整个发育周期中曲酸组都高于对照组,在子实体发育后期酶活性被提高3.16倍。最后,从分子水平上分析了漆酶基因和纤维素酶基因的表达量,研究显示添加曲酸后漆酶基因和纤维素酶基因在不同程度上被上调,这个结果与酶活的结果相一致。这些结果说明外源添加曲酸通过提高生殖生长阶段的菌丝利用培养基质中的漆酶和纤维素酶活性,进而提高菌丝利用木质纤维素,为斑玉蕈子实体生长发育提供更多的能源,实现增加子实体产量的目的。  相似文献   

4.
灵芝Ganoderma lingzhi是最著名的药用真菌之一。本文研究了60%高氧条件下灵芝子实体呼吸速率、灵芝酸(ganoderic acid,GA)含量、总酚含量、活性氧(reactive oxygen species,ROS)含量、丙二醛(malondialdehyde,MDA)含量、抗氧化酶活性、黄嘌呤氧化酶(xanthineoxidase,XOD)活性、琥珀酸脱氢酶(succinic dehydrogenase,SDH)活性、H +-ATP酶活性、Ca 2+-ATP酶活性的变化。结果显示,高氧抑制灵芝子实体的呼吸速率;处理前期(第1天),灵芝子实体内过氧化氢(H2O2)和超氧阴离子自由基(O2 -?)含量高于对照组,但随着处理的进行,ROS含量显著减少,MDA积累减少,超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和SDH活性提高,GA和总酚含量增加。表明一定的环境胁迫压力可以激发灵芝启动自身的抗氧化系统,保护机体免受氧化损伤,并促进相关次生代谢产物的合成。  相似文献   

5.
Luan R  Liang Y  Chen Y  Liu H  Jiang S  Che T  Wong B  Sun H 《Fungal biology》2010,114(8):599-608
Mycelia of basidiomycetes differentiating into fruiting body is a controlled developmental process, however the underlying molecular mechanism remains unknown. In previous work, a novel fungal Agrocybe aegerita galectin (AAL) was isolated from A. aegerita in our laboratory. AAL was shown to promote mycelial differentiation in A. aegerita and Auricularia polytricha, indicating that AAL might function as a conserved fruiting initiator during basidiomycete mycelia development. In the current work, we investigate the role of AAL in mycelia differentiation and fruiting body formation. First, the expression and localization of AAL in mycelia, primordium and fruiting body were assessed by Western blotting and immunohistochemistry. AAL was found to be ubiquitously expressed in the primordium and fruiting body but not in the mycelia. AAL facilitated mycelia congregation and promoted fruiting body production when AAL was applied on mycelia. At the same time, when AAL was spread on potato dextrose agar (PDA) medium prior to mycelia inoculation, mycelia exhibited slowed growth rates, resulting in mycelia cords formation and inhibition of fruiting body formation. The 5' regulatory sequence of aal was cloned by 'genome walking'. Here, we show that aal lack introns in the coding region and the upstream 740 bp sequence was characterized by the existence of core promoter elements, which included: two CCAAT boxes (-535/-280), a GC box (-145), a TATA box (-30) and a fungal leader intron within the 5' UTR. The identification of regulatory expression elements may provide an explanation to the stage-specific and high-level expression of aal during fruiting development.  相似文献   

6.
为了更清楚地了解斑玉蕈菌丝成熟、原基形成和子实体发育的过程,本研究对不同菌丝培养时期的栽培瓶进行出菇实验,并对其不同培养时期和生长发育关键时期的信息素通路基因进行差异表达分析,以期揭示信息素信号通路基因参与调节斑玉蕈菌丝的生长、子实体形成和发育的作用。研究结果表明:斑玉蕈菌丝培养40-80d过程中,子实体产量呈上升的趋势,说明菌丝的成熟程度对产量会产生重要影响。对斑玉蕈基因组中的信息素信号通路基因进行分析鉴定共获得了8个关键基因。信息素通路基因差异表达分析表明:在菌丝培养40-80d过程中,大部分信息素信号通路基因在第60天时表达量最高,其中ste20cdc24ste12上调了4-20倍,而在第80天出现下降。从菌丝恢复到扭结形成原基和子实体发育的过程中,大多数基因在原基时期表达量最高,其中ste20cdc24ste11ste12表达量上调最为显著,在子实体成熟期这些基因表达量下降。因此,这说明在菌丝营养生长过程中,在第60天菌丝细胞增殖生长最为旺盛,而在第80天菌丝细胞基本停止生长,菌丝也逐渐达到成熟。同时,在菌丝生殖生长过程中,斑玉蕈持续地上调信息素通路基因表达使菌丝细胞不断地分裂增殖,从而使新生的菌丝扭结形成原基,其中ste3ste20cdc24ste11ste12基因可能对斑玉蕈菌丝细胞的分裂增殖和诱导子实体形成起到关键的作用。  相似文献   

7.
The 24 h effect of low (20°C) and high (43°C) temperature on the antioxidant enzyme activities and lipid peroxidation was investigated in intact cells of the cyanobacteriumSynechocystis PCC 6803 grown at 36°C. At low temperature treated cells, the superoxide dismutase, catalase and glutathione peroxidase activities were significantly higher and the protein content lower than in high temperature treated cells. The increase of hydroxyl free radical level and malonyldialdehyde formation, when algal cells were exposed to low temperature, were due to the stimulated production of superoxide radicals O2 and hydrogen peroxide (H2O2).  相似文献   

8.
H2O2 can freely crosses membranes and in the presence of Fe2+ (or Cu+) it is prone to participate in Fenton reaction. This study evaluated the concentration and time-dependent effects of H2O2-induced oxidative stress on MnSOD, Se:GPx and catalase and on aconitase. Acute and chronic H2O2 treatments were able to induce oxidative stress in HeLa cells as they significantly decreased aconitase activity and also caused a very significant decrease on antioxidant enzyme activities. The inhibition of enzyme activities was time- and concentration-dependent. Chronic treatment with 5 µM H2O2/h after 24 h was able to decrease all enzyme activities almost at the same level as the acute treatment. Acute and chronic treatments on antioxidant enzyme activities were prevented by cell treatment with ascorbic acid or N-acetylcysteine. These results indicate that antioxidant enzymes can also be affected by the same ROS they produce or neutralize if the time of exposure is long enough.  相似文献   

9.
Diazinon is one of the most widely used organophosphate insecticides (OPIs) in agriculture and public health programs. Reactive oxygen species (ROS) caused by OPIs may be involved in the toxicity of various pesticides. The aim of this study was to investigate how diazinon affects lipid peroxidation (LPO) and the antioxidant defense system in vivo and the possible ameliorating role of vitamins E and C. For this purpose, experiments were done to study the effects of DI on LPO and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in adult rat heart. Experimental groups were: (1) control group, (2) diazinon treated (DI) group, (3) DI+vitamins E and C-treated (DI+Vit) group. The levels of malondialdehyde (MDA) and the activities of SOD and CAT increased significantly in the DI group compared with the control group. The activity of SOD and the levels of MDA decreased significantly in the DI+Vit group compared with the DI group. The differences between the DI+Vit and control groups according to the MDA levels and the activities of both SOD and CAT were statistically significant. These results suggest that treating rats with a single dose of diazinon increases LPO and some antioxidant enzyme activities in the rat myocardium and, in addition, that single-dose treatment with a combination of vitamins E and C after the administration of diazinon can reduce LPO caused by diazinon, though this treatment was not sufficiently effective to reduce the values to those in control group.  相似文献   

10.
The mechanism of free radical production by complex I deficiency is ill-defined, although it is of significant contemporary interest. This study studied the ROS production and antioxidant defenses in children with mitochondrial NADH dehydrogenase deficiency. ROS production has remained significantly elevated in patients compared to controls. The expression of all antioxidant enzymes significantly increased at mRNA level. However, the enzyme activities did not correlate with high mRNA or protein expression. Only the activity of superoxide dismutase (SOD) was found to correlate with higher mRNA expression in patient derived cell lines. The activities of the enzymes such as glutathione peroxidase (GPx), Catalase (CAT) and glutathione-S-transferase (GST) were significantly reduced in patients (p<0.05 or p<0.01). Glutathione reductase (GR) activity and intracellular glutathione (GSH) levels were not changed. Decreased enzyme activities could be due to post-translational or oxidative modification of ROS scavenging enzymes. The information on the status of ROS and marking the alteration of ROS scavenging enzymes in peripheral lymphocytes or lymphoblast cell lines will provide a better way to design antioxidant therapies for such disorders.  相似文献   

11.
Essential Hyperhidrosis is a disorder of excessive, bilateral, and relatively symmetric sweating occurring in the axillae, palms, soles, or craniofacial region without obvious etiology. Nitric oxide may play a physiological part in the production and/or excretion of sweat in skin eccrine glands. Tempol, a SOD mimetic, increases the half-life of NO and results in vasodilatation, hypotension, and reflex activation of sympathetic nervous system. Reactive oxygen species (ROS) may directly activate both central and peripheral sympathetic nervous system activity. We assessed the levels of malondialdehyde (MDA), the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) of red blood cells in patients with essential hyperhidrosis (n = 31) compared to age-and sex-matched healthy controls (n = 28). Erythrocyte activities of SOD and level of MDA were detected significantly higher (p = 0.020, p = 0.004 and respectively) and activities of CAT and GSH-Px were significantly lower (p = 0.0001, p = 0.0001 respectively) in patients than controls. Our results support the hypothesis that oxidative damage resulting from increased ROS production along with insufficient capacity of antioxidant mechanisms may be involved in pathogenesis of EH.  相似文献   

12.
We have previously reported that polysaccharides extracted from fruiting bodies or cultured mycelia of Antrodia camphorata exhibit an anti-hepatitis B virus effect. In this study, we intended to elucidate the anti-inflammatory potency of six mycelial extracts, namely PDB-ext, CK-ext, CM-ext, CO-ext, CC-ext, and CKO-ext, isolated from mycelia of A. camphorata cultured with six different media including potato dextrose broth (PDB) and five water-soluble fractions from the wood of different Cinnamomum species, i.e. C. kanehirae (CK), C. micranthum (CM), C. osmophloeum (CO), C. camphora (CC), and C. kotoense (CKO), against reactive oxygen species (ROS) production induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) or phorbol 12-myristate 13-acetate (PMA) in peripheral human neutrophils (PMN) or mononuclear cells (MNC). ROS produced by PMN or MNC act as inflammatory mediators and also signal immune responses. Pretreatment with these mycelial extracts (1-50 microg ml(-1)) concentration-dependently diminished fMLP- or PMA-induced ROS production in PMN or MNC, as measured by lucigenin-amplified chemiluminescence, with 50% inhibition concentrations (IC(50)) ranging from 2 to 20 microg ml(-1). Among these extracts evaluated, CM-ext, CO-ext, or CKO-ext exhibited higher potency than the others. Using high performance liquid chromatography, we identified two lanostane-type compounds, i.e. dehydrosulfurenic acid and 15alpha-acetyl-dehydrosulfurenic acid, which could be involved in the anti-inflammatory actions of these extracts. The anti-inflammatory actions of these extracts were not due to cytotoxic effects. In summary, these data suggest that extracts from cultured mycelia of A. camphorata display anti-inflammatory effects by inhibiting ROS production in human leukocytes at a pharmacologically applicable concentration. The biological activities of these extracts were further promoted when the culture medium was replaced with water-soluble fractions isolated from the wood of CM, CO or CKO.  相似文献   

13.
The aim of this study was to investigate the role of endogenous nitric oxide in protective effects of He–Ne laser on salt stressed-tall fescue leaves. Salt stress resulted in significant increases of membrane injury, reactive oxygen species (ROS) production, polyamine accumulation, and activities of SOD, POD, and APX, while pronounced decreases of antioxidant contents, CAT activity and intracellular Ca2+ concentration in seedlings leaves. He–Ne laser illumination caused a distinct alleviation of cellular injury that was reflected by the lower MDA amounts, polyamine accumulation and ROS levels at the stress period. In contrast, the laser treatment displayed a higher Ca2+ concentration, antioxidant amounts, NO release, antioxidant enzyme, and NOS activities. These responses could be blocked due to the inhibition of NO biosynthesis by PTIO (NO scavenger) or LNNA (NOS inhibitor). The presented results demonstrated that endogenous NO might be involved in the progress of He–Ne laser-induced plant antioxidant system activation and ROS degradation in order to enhance adaptive responses of tall fescue to prolonged saline conditions.  相似文献   

14.
Excessive reactive oxygen species (ROS) levels are harmful to the body. The peroxidase, GPx, and the superoxide dismutase, SOD, are important antioxidant enzymes for preventing ROS‐induced damage. Se‐CuZn‐65P is an enzyme mimetic with dual GPx and SOD antioxidant function. However, currently, its production is mainly based on the cysteine auxotrophic expression technique, which is inefficient, expensive, and time consuming. In this study, we combined protein engineering and the chemical mutation method to synthesize Se‐CuZn‐65P. The DNA sequence encoding the 65 amino acid peptide with the desired sequence transformations to incorporate the SOD and the GPx catalytic sites was cloned and expressed in a soluble protein expression vector. The protein yield increased up to 152 mg/L, which is 10 times higher than in previous studies. The SOD and GPx activity of Se‐CuZn‐65P was high (1181 U/mg and 753 U/μmol, respectively). The binding constant of glutathione was 5.6 × 104 L·mol?1, which shows that Se‐CuZn‐65P efficiently catalyzed hydrogen peroxide reduction by glutathione. Mitochondrial damage experiments confirmed the double protective role of the Se‐CuZn‐65P peptide and demonstrated functional synergy between the SOD and the GPx domains, which indicates its potential to be used in the treatment of ROS‐related diseases. Our research may give a new thought to increase the yield of mimic.  相似文献   

15.
Mannitol metabolism was evaluated in fruiting bodies of Lentinus edodes. Cell extracts were prepared from fruiting bodies, and key enzymes involved in mannitol metabolism were assayed, including hexokinase, mannitol dehydrogenase, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, and fructose-6-phosphatase. Mannitol dehydrogenase, fructose-6-phosphatase, mannitol-1-phosphatase, and hexokinase activities were found in extracts of fruiting bodies. However, mannitol-1-phosphate dehydrogenase activity was not detected. Mycelial cultures were grown in an enriched liquid medium, and enzymes of the mannitol cycle were assayed in cell extracts of rapidly growing cells. Mannitol-1-phosphate dehydrogenase activity was also not found in mycelial extracts. Hence, evidence for a complete mannitol cycle both in vegetative mycelia and during mushroom development was lacking. The pathway of mannitol synthesis in L. edodes appears to utilize fructose as an intermediate.  相似文献   

16.
Like other filamentous fungi, the medicinal ascomycete Cordyceps militaris frequently degenerates during continuous maintenance in culture by showing loss of the ability to reproduce sexually or asexually. Degeneration of fungal cultures has been related with cellular accumulation of reactive oxygen species (ROS). In this study, an antioxidant glutathione peroxidase (Gpx) gene from Aspergillus nidulans was engineered into two C. militaris strains, i.e., the Cm01 strain which can fruit normally and the Cm04 strain which has lost the ability to form fruiting bodies on different media through subculturing. The results showed that the mitotically stable mutants had higher Gpx activities and stronger capacity to scavenge cellular ROS than their parental strains. Most significantly, the fruiting ability of Cm04 strain was restored by overexpression of the antioxidant enzyme. However, after being successively transferred for up to ten generations, two of three Cm04 mutants again lost the ability to fruit on insect pupae while Cm01 transformants remained fertile. This study confirms the relationship between fungal culture degeneration and cellular ROS accumulation. Our results indicate that genetic engineering with an antioxidant gene can be an effective way to reverse fungal degeneration during subculturing.  相似文献   

17.
Rhizoctonia solani AG-1 IA is the causal agent of rice sheath blight (RSB) and causes severe economic losses in rice-growing regions around the world. The sclerotia play an important role in the disease cycle of RSB. In this study, we report the effects of reactive oxygen species (ROS) and trehalose on the sclerotial development of R. solani AG-1 IA. Correlation was found between the level of ROS in R. solani AG-1 IA and sclerotial development. Moreover, we have shown the change of ROS-related enzymatic activities and oxidative burst occurs at the sclerotial initial stage. Six genes related to the ROS scavenging system were quantified in different sclerotial development stages by using quantitative RT-PCR technique, thereby confirming differential gene expression. Fluorescence microscopy analysis of ROS content in mycelia revealed that ROS were predominantly produced at the hyphal branches during the sclerotial initial stage. Furthermore, exogenous trehalose had a significant inhibitory effect on the activities of ROS-related enzymes and oxidative burst and led to a reduction in sclerotial dry weight. Taken together, the findings suggest that ROS has a promoting effect on the development of sclerotia, whereas trehalose serves as an inhibiting factor to sclerotial development in R. solani AG-1 IA.  相似文献   

18.
Proton (H+) and aluminum (Al3+) toxicities are major factors limiting crop production on acid soils. To study whether salicylic acid (SA) is functional in alleviating protein damage caused by H+ and Al3+ toxicities, an investigation of the antioxidant defense response regulated by SA was carried out on barley (Hordeum vulgare L.) seedlings under H+, Al3+, and combined stresses. It was found that the relative root elongation of seedlings, which grew in the solutions supplemented with SA, was significantly higher than that of seedlings without SA treatment after 24-h treatments with H+, Al3+, and combined stresses. The lesser amount of carbonylated proteins with molecular weights ranging from 14.4 to 97 kD, was accumulated in seedlings treated with SA than that in the seedlings without SA treatment. The higher activities of antioxidant enzymes and lesser content of MDA were observed in seedlings treated with SA compared with the seedlings without SA treatment. Moreover, the nitroblue tetrazolium staining of roots showed that ROS accumulation was decreased by SA treatments. This study suggested that SA could alleviate cell damage caused by H+ and Al3+ toxicities on acid soils by both activating antioxidant defense responses and reducing the contents of carbonylated proteins caused by ROS in barley seedlings.  相似文献   

19.
Coronary artery disease (CAD) is the leading cause of mortality in diabetic patients. Mitochondrial dysfunction and increased production of reactive oxygen species (ROS) are associated with diabetes and CAD. Elevated levels of glycated LDL (glyLDL) were detected in patients with diabetes. Our previous studies demonstrated that glyLDL increased the generation of ROS and altered the activities of antioxidant enzymes in vascular endothelial cells (EC). This study examined the effects of glyLDL on oxygen consumption in mitochondria and the activities of key enzymes in the mitochondrial electron transport chain (ETC) in cultured porcine aortic EC. The results demonstrated that glyLDL treatment significantly impaired oxygen consumption in Complexes I, II/III, and IV of the mitochondrial ETC in EC compared to LDL or vehicle control detected using oxygraphy. Incubation with glyLDL significantly reduced the mitochondrial membrane potential, the NAD+/NADH ratio, and the activities of mitochondrial ETC enzymes (NADH-ubiquinone dehydrogenase, succinate cytochrome c reductase, ubiquinone cytochrome c reductase, and cytochrome c oxidase) in EC compared to LDL or control. The abundance of mitochondria-associated ROS and the release of ROS from EC were significantly increased after glyLDL treatment. The findings suggest that glyLDL attenuates the activities of key enzymes in the mitochondrial ETC, decreases mitochondrial oxygen consumption, reduces mitochondrial membrane potential, and increases ROS generation in EC, which potentially contribute to mitochondrial dysfunction in diabetic patients.  相似文献   

20.
In view of the antioxidant properties of melatonin, the effects of melatonin on the oxidative-antioxidative status of tissues affected by diabetes, e.g. liver, heart and kidneys, were investigated in streptozotocin (STZ)-induced diabetic rats in the present study. Concentrations of malondialdehyde (MDA) and reduced glutathione (GSH), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the tissues were compared in three groups of 10 rats each (control non-diabetic rats (group I), untreated diabetic rats (group II) and diabetic rats treated with melatonin (group III)). In the study groups, diabetes developed 3 days after intraperitoneal (i.p.) administration of a single 60 mg kg(-1) dose of STZ. Thereafter, while the rats in group II received no treatment, the rats in group III began to receive a 10 mg kg(-1) i.p. dose of melatonin per day. After 6 weeks, the rats in groups II and III had significantly lower body weights and higher blood glucose levels than the rats in group I (p < 0.001 and p < 0.001, respectively). MDA levels in the liver, kidney and heart of group II rats were higher than that of the control group (p < 0.01, p < 0.05, p < 0.01, respectively) and diabetic rats treated with melatonin (p < 0.05). The GSH, GSH-Px and SOD levels increased in diabetic rats. Treatment with melatonin changed them to near control values. Our results confirm that diabetes increases oxidative stress in many organs such as liver, kidney and heart and indicate the role of melatonin in combating the oxidative stress via its free radical-scavenging and antioxidant properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号