首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《Epigenetics》2013,8(10):1217-1227
Esophageal squamous cell carcinoma (ESCC) is believed to arise from esophageal mucosa through accumulation of both genetic and epigenetic changes. DNA methylation is a critical epigenetic mechanism involved in key cellular processes and its deregulation has been linked to many human cancers, including ESCC. The aim of this study is to examine the global deregulation of methylation states in ESCC and identify potential early biomarkers. With this purpose, we performed a bead array analysis of more than 800 cancer-related genes in ten ESCC samples, ten matched surrounding tissues and four esophageal mucosa from healthy individuals. Pyrosequencing was used for validation of DNA methylation changes in up to 106 cases and 27 controls. A total of 37 CpG sites were found to be differentially methylated between tumors and surrounding tissues. These CpG sites were significantly enriched in genes related to several pathways including IL-10 anti-inflammatory signaling pathway and cell communication pathway. In addition, by comparing with healthy esophageal mucosa, we identified TFF1 gene as a potential early marker of ESCC. This is the first study to address methylation changes in ESCC in a large set of genes. Methylome analysis is shown as a sensitive and powerful tool to identify molecular players in ESCC. These data should prove to be the reference for future studies identifying potential biomarkers and molecular targets in ESCC.  相似文献   

2.
DNA methylation is a critical epigenetic mechanism involved in key cellular processes. Its deregulation has been linked to many human cancers including esophageal squamous cell carcinoma (ESCC). This study was designed to explore the whole methylation status of ESCC and to identify potential plasma biomarkers for early diagnosis. We used Infinium Methylation 450k array to analyze ESCC tissues (n = 4), paired normal surrounding tissues (n = 4) and normal mucosa from healthy individuals (n = 4), and combined these with gene expression data from the GEO database. One hundred and sixty eight genes had differentially methylated CpG sites in their promoter region and a gene expression pattern inverse to the direction of change in DNA methylation. These genes were involved in several cancer-related pathways. Three genes were validated in additional 42 ESCC tissues and paired normal surrounding tissues. The methylation frequency of EPB41L3, GPX3, and COL14A1 were higher in tumor tissues than in normal surrounding tissues (P<0.017). The higher methylation frequency of EPB41l3 was correlated with large tumor size (P = 0.044) and advanced pT tumor stage (P = 0.001). The higher methylation frequency of GPX3 and COL14A1 were correlated with advanced pN tumor stage (P = 0.001 and P<0.001). The methylation of EPB41L3, GPX3, and COL14A1 genes were only found in ESCC patients'' plasma, but not in normal individuals upon testing 42 ESCC patients and 50 healthy individuals. Diagnostic sensitivity was increased when methylation of any of the 3 genes were counted (64.3% sensitivity and 100% specificity). These differentially methylated genes in plasma may be used as biomarkers for early diagnosis of ESCC.  相似文献   

3.
Abnormal hypermethylation of CpG islands not only associated with tumor suppressor genes can lead to repression of gene expression, but also contribute to escape of the tumor from immune surveillance and contribute significantly to tumorigenesis. In the present study, we studied the hypermethylation of low molecular-weight protein (LMP) gene and its regulation on protein expression in biopsies from resected tissues from Kazak’s esophageal squamous cell carcinoma (ESCC) patients and their neighboring normal tissues. LMP2 and LMP7 genes promoter region methylation sequences were maped in esophageal cancer cell line Eca109 by bisulfite-sequencing PCR and quantitative detection of methylated DNA from 30 pairs of Kazak’s ESCC and adjacent normal tissues by MassARRAY (Sequenom, San Diego, CA, USA) and LMP2 and LMP7 protein expression were analyzed with immunohistochemistry. In Eca109, we identified 6 CG sites methylated from all of 22 CpG sites of LMP7 gene. However, no methylation was found for LMP2. The analysis of the data resulted from the quantitative analysis of single CpG site methylation by Sequenom MassARRAY platform, has shown that the methylation level between two groups CpG sites (CpG_5, CpG_9, CpG_20, CpG_21 and CpG_20) from CpG_1, CpG_2, CpG_3, CpG_4, CpG_5, CpG_6, CpG_7, CpG_8, CpG_9, CpG_10.11, CpG_12.13.14, CpG_15.16.17.18, CpG_19, CpG_20, CpG_21 and CpG_22 significant differences between ESCC and neighboring normal tissues. The analysis of methylation level of whole target CpG fragment indicated that the methylation level of LMP7 was significant higher in ESCC (0.0517 ± 0.0357) than in neighboring normal tissues (0.0380 ± 0.0214, P < 0.05). there was a tendency of decreasing the LMP7 proteins expression as the increasing the methylation level of LMP7 gene promoter regions (F = 7.69, P = 0.041). The LMP7 gene promoter methylation and protein downregulation were correlated at high extent in Kazakh’s ESCC patients, and may explain the epigenetic regulation on gene expression.  相似文献   

4.
Dysregulation of miR-203 by promoter methylation is associated with the development of various cancers. We aimed to explore the underlying link between promoter methylation and miR-203 expression in Kazakh esophageal squamous cell carcinoma (ESCC). MassARRAY® System spectrometry was used to quantitatively analyze the DNA methylation of 32 CpG sites within miR-203 in 99 Kazakh ESCC and 46 normal esophageal tissues (NETs) with similar population characteristics. We conducted real-time PCR to detect miR-203 expression levels and evaluated their association with methylation. Eleven CpG units within miR-203 promoter were frequently hypermethylated in ESCC compared with NETs (P < 0.05). The hypermethylation of several CpG units positively correlated with age, lower esophagus, constrictive type of ESCC, and moderately differentiated ESCC. Given the involvement of human papillomavirus (HPV) in etiology of ESCC was confirmed from our previous reports, herein we found that CpG units within miR-203 in HPV16-positive ESCC are more heavily methylated. Furthermore, miR-203 expression showed a nearly 4.5-fold decrease in ESCC than NETs (0.206 ± 0.336 vs. 0.908 ± 1.424, P < 0.001) and was significantly associated with lymph node metastasis (P = 0.012). The expression of miR-203 with 11 completely hypermethylated CpG units was approximately 6.5-fold lower than that with at least 1 unmethylated CpG unit (P < 0.001) and especially the CpG_15.16 and CpG_31.32 with higher methylation levels in ESCC tissues exhibited lower expression levels of miR-203, which indicated a reverse association between miR-203 methylation and expression. Hypermethylated miR-203 is a potential biomarker and targeted delivery of miR-203 could therefore serve as a preventive or therapeutic strategy for Kazakh ESCC.  相似文献   

5.
Hepatocellular Carcinoma (HCC) is one of the leading causes of cancer-associated mortality worldwide. However, the role of epigenetic changes such as aberrant DNA methylation in hepatocarcinogenesis remains largely unclear. In this study, we examined the methylation profiles of 59 HCC patients. Using consensus hierarchical clustering with feature selection, we identified three tumor subgroups based on their methylation profiles and correlated these subgroups with clinicopathological parameters. Interestingly, one tumor subgroup is different from the other 2 subgroups and the methylation profile of this subgroup is the most distinctly different from the non-tumorous liver tissues. Significantly, this subgroup of patients was found to be associated with poor overall as well as disease-free survival. To further understand the pathways modulated by the deregulation of methylation in HCC patients, we integrated data from both the methylation as well as the gene expression profiles of these 59 HCC patients. In these patients, while 4416 CpG sites were differentially methylated between the tumors compared to the adjacent non-tumorous tissues, only 536 of these CpG sites were associated with differences in the expression of their associated genes. Pathway analysis revealed that forty-four percent of the most significant upstream regulators of these 536 genes were involved in inflammation-related NFκB pathway. These data suggest that inflammation via the NFκB pathway play an important role in modulating gene expression of HCC patients through methylation. Overall, our analysis provides an understanding on aberrant methylation profile in HCC patients.  相似文献   

6.
7.
8.
研究溶酶体相关4次跨膜蛋白B(lysosome associated protein transmembrane 4 beta,LAPTM4B)基因在食管癌中的表达,及其启动子区甲基化状态,为进一步揭示LAPTM4B在不同肿瘤中表达高低机理提供参考.采用半定量RT-PCR法,确定42对食管癌中LAPTM4B mRNA表达.采用5对肝癌中LAPTM4B mRNA表达做内对照(利用灰度值比较),分析该基因在食管癌中的表达强度.选取其中3对食管癌组织样品(癌组织和癌旁正常组织),提取基因组DNA,采用亚硫酸氢钠修饰法,联合基因测序法分析LAPTM4B启动子区是否有甲基化修饰位点存在.结果发现,在42对食管癌组织中,癌组织和癌旁正常组织LAPTM4B mRNA表达存在差异:癌组织中LAPTM4B mRNA表达阳性为37/42(88.1%),癌旁正常组织中LAPTM4B mRNA表达阳性为26/42(61.9%).经基因测序法分析3对食管癌组织经通用引物PCR扩增的片段,发现1例癌旁正常组织样品中有3个CpG位点.以上结果表明,LAPTM4B基因与肝癌比较在食管癌中低表达,其启动子区1例癌旁正常组织在靠近转录起始点上游-418、-416和-398位置,存在3个CpG位点,而其他2例癌旁正常组织和3例癌组织中,没有发现CpG位点.这提示,LAPTM4B基因启动子区甲基化是其表达调节的重要方式.  相似文献   

9.

Background

DNA methylation is an epigenetic modification that changes with age in human tissues, although the mechanisms and specificity of this process are still poorly understood. We compared CpG methylation changes with age across 283 human blood, brain, kidney, and skeletal muscle samples using methylation arrays to identify tissue-specific age effects.

Results

We found age-associated CpGs (ageCGs) that are both tissue-specific and common across tissues. Tissue-specific ageCGs are frequently located outside CpG islands with decreased methylation, and common ageCGs show the opposite trend. AgeCGs are significantly associated with poorly expressed genes, but those with decreasing methylation are linked with higher tissue-specific expression levels compared with increasing methylation. Therefore, tissue-specific gene expression may protect against common age-dependent methylation. Distinguished from other tissues, skeletal muscle ageCGs are more associated with expression, enriched near genes related to myofiber contraction, and closer to muscle-specific CTCF binding sites. Kidney-specific ageCGs are more increasingly methylated compared to other tissues as measured by affiliation with kidney-specific expressed genes. Underlying chromatin features also mark common and tissue-specific age effects reflective of poised and active chromatin states, respectively. In contrast with decreasingly methylated ageCGs, increasingly methylated ageCGs are also generally further from CTCF binding sites and enriched within lamina associated domains.

Conclusions

Our data identified common and tissue-specific DNA methylation changes with age that are reflective of CpG landscape and suggests both common and unique alterations within human tissues. Our findings also indicate that a simple epigenetic drift model is insufficient to explain all age-related changes in DNA methylation.  相似文献   

10.
The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject’s colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands—in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)—were significantly hypermethylated in tumor vs. normal tissues (P < 0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network—the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated genes, as well as hypomethylated LINE-1 sequences, which may serve as potential biomarkers for CRC in African Americans. Our discovered biomarkers were intimately linked to the insulin/TGF-B1 pathway, further strengthening the association of diabetic disorders with colon oncogenic transformation.  相似文献   

11.
Boar taint (BT) is an offensive flavor observed in non‐castrated male pigs that reduces the carcass price. Surgical castration effectively avoids the taint but is associated with animal welfare concerns. The functional annotation of farm animal genomes for understanding the biology of complex traits can be used in the selection of breeding animals to achieve favorable phenotypic outcomes. The characterization of pig epigenomes/methylation changes between animals with high and low BT and genome‐wide epigenetic markers that can predict BT are lacking. Reduced representation bisulfite sequencing of DNA methylation patterns based on next‐generation sequencing is an efficient technology to identify candidate epigenetic biomarkers associated with BT. Three different BT levels were analyzed using reduced representation bisulfite sequencing data to calculate the methylation levels of cytosine and guanine dinucleotide (CpG) sites. The co‐analysis of differentially methylated CpG sites identified by this study and differentially expressed genes identified by a previous study found 32 significant co‐located genes. The joint analysis of GO terms and pathways revealed that methylation and gene expression of seven candidate genes were associated with BT; in particular, FASN plays a key role in fatty acid biosynthesis, and PEMT might be involved in estrogen regulation and the development of BT. This study is the first to report the genome‐wide DNA methylation profiles of BT in pigs using next‐generation sequencing and summarize candidate genes associated with epigenetic markers of BT, which could contribute to the understanding of the functional biology of BT traits and selective breeding of pigs against BT based on epigenetic biomarkers.  相似文献   

12.
《Epigenetics》2013,8(4):503-512
The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject’s colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands—in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)—were significantly hypermethylated in tumor vs. normal tissues (P < 0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network—the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated genes, as well as hypomethylated LINE-1 sequences, which may serve as potential biomarkers for CRC in African Americans. Our discovered biomarkers were intimately linked to the insulin/TGF-B1 pathway, further strengthening the association of diabetic disorders with colon oncogenic transformation.  相似文献   

13.
14.
Gastrointestinal malignancies account for about 20% of all cancers worldwide. It is widely accepted that cancer evolves through several stepwise morphological stages such as the adenoma-carcinoma and hyperplastic polyp-serrated adenoma-carcinoma sequences in colorectal cancers, and the metaplasia-dysplasia-carcinoma sequences in esophageal and gastric cancers. The morphological progression is associated with the accumulation of multiple genetic and epigenetic events. It is now recognized that epigenetic silencing of gene expression by CpG island methylation is an important alternative mechanism of inactivating tumor suppressor genes. Inflammatory conditions of the gastrointestinal and pancreaticobiliary tracts and liver such as Barrett esophagus, Helicobacter pylori gastritis, inflammatory bowel disease and viral hepatitis, are associated with increased frequency of malignancies and CpG methylation. In addition, CpG methylation is present in aberrant crypt foci and pancreatic intraepithelial neoplasia that are considered putative precursors of colon and pancreatic carcinomas, respectively. Understanding of these early genetic and epigenetic changes allows for the discoveries of potential screening, monitoring and therapeutic strategies. Targeting of the epigenetic changes that occur before the development of frank malignancy offers a potential chemopreventive strategy.  相似文献   

15.
DNA methylation in states of cell physiology and pathology   总被引:11,自引:0,他引:11  
DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide) while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation). The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences) five new genes which are potential biomarkers of lung cancer have been presented.  相似文献   

16.
《Epigenetics》2013,8(2):195-201
Aberrant DNA methylation is a major epigenetic mechanism of gene silencing in a wide range of human cancers. Previous studies on DNA methylation typically used paired tumor and normal-appearing surrounding tissues from cancer-bearing individuals. However, genomic DNA isolated from surrogate tissues such as blood cells represents an attractive material that can be exploited in the discovery of biomarkers of exposure and tumorigenesis. Here we examined the association between lung cancer and DNA methylation patterns in a panel of candidate genes. We also investigated whether blood levels of vitamin metabolites modify DNA methylation levels in blood cells. To this end, we quantitatively determined DNA methylation levels in blood cells of nested cases and controls from a prospective study with well defined dietary habits and lifestyles. Multiple CpG sites in five genes (CDKN2A/p16, RASSF1A, GSTP1, MTHFR, and MGMT) that are frequent targets of hypermethylation in a variety of human malignancies were included in the analysis. While no clear association between DNA methylation patterns and the case/control status was found, with the exception of RASSF1A hypermethylation, methylation level changed according to serum levels of 1-carbon metabolites and vitamins B. Overall, folate was associated with increased methylation levels of RASSF1A and MTHFR and methionine was associated with decreased methylation levels of RASSF1A. The associations with folate were more pronounced among never smokers while the associations with methionine were more evident among ever-smokers. These results are consistent with the notion that blood levels of 1-carbon metabolism markers and dietary/lifestyle factors may modify DNA methylation levels in blood cells and that blood cells can be exploited for the discovery of epigenetic biomarkers of exposures, providing proof-of-principle on the use of blood samples in the context of prospective studies.  相似文献   

17.
18.
DNA甲基化是一种重要的表观遗传学修饰,在基因的转录调控方面具有重要的作用。异常的DNA甲基化可以导致癌症等复杂疾病发生,癌基因相关的DNA甲基化调控位点的识别对于解析癌症的发生发展机制及识别新的癌症标记具有重要意义。本研究通过整合The Cancer Genome Atlas(TCGA)的泛癌症基因组的高通量甲基化谱和基因表达谱,识别癌基因相关的DNA甲基化调控位点。对于每种癌症分批次计算Cp G位点甲基化与相关基因表达之间的相关性,并筛选调控下游基因的Cp G位点(包括强调控位点、弱调控位点和不调控位点),结果表明仅有一半的Cp G位点对下游基因具有调控作用;对癌症间共享的调控位点的分析发现不同癌症间共享的调控位点不尽相同,表明癌症特异的甲基化调控位点的存在。进一步地,对差异甲基化和差异表达基因的功能富集分析揭示了受甲基化调控的基因确实参与了癌症发生发展相关的功能。本研究的结果是对当前甲基化调控位点集的重要补充,也是识别癌症新型分子标记特征的重要资源。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号