首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The genetic background of Basal Cell Carcinoma (BCC) has been studied extensively, while its epigenetic makeup has received comparatively little attention. Epigenetic alterations such as promoter hypermethylation silence tumor suppressor genes (TSG) in several malignancies.

Objective

We sought to analyze the promoter methylation status of ten putative (tumor suppressor) genes that are associated with Sonic Hedgehog (SHH), WNT signaling and (hair follicle) tumors in a large series of 112 BCC and 124 healthy control samples by methylation-specific PCR.

Results

Gene promoters of SHH (P = 0.016), adenomatous polyposis coli (APC) (P = 0.003), secreted frizzled-related protein 5 (SFRP5) (P = 0.004) and Ras association domain family 1A (RASSF1A) (P = 0.023) showed significantly more methylation in BCC versus normal skin. mRNA levels of these four genes were reduced for APC and SFRP5 in BCC (n = 6) vs normal skin (n = 6). Down regulation of SHH, APC and RASSF1A could be confirmed on protein level as well (P<0.001 for all genes) by immunohistochemical staining. Increased canonical WNT activity was visualized by β-catenin staining, showing nuclear β-catenin in only 28/101 (27.7%) of BCC. Absence of nuclear β-catenin in some samples may be due to high levels of membranous E-cadherin (in 94.1% of the samples).

Conclusions

We provide evidence that promoter hypermethylation of key players within the SHH and WNT pathways is frequent in BCC, consistent with their known constitutive activation in BCC. Epigenetic gene silencing putatively contributes to BCC tumorigenesis, indicating new venues for treatment.  相似文献   

2.

Objective

EFEMP1, the epidermal growth factor–containing fibulin-like extracellular matrix protein 1, functions as an oncogene or a tumor suppressor depending on the cancer types. In this study, we aim to determine whether EFEMP1 affects the tumorigenesis and progression of endometrial carcinoma.

Methods

The expression of EFEMP1 was investigated using immunohistochemistry in a panel of normal endometrium (n = 40), atypical hyperplasia (n = 10) and endometrial carcinoma tissues (n = 84). Methylation status of the EFEMP1 promoter was detected by methylation-specific PCR (MSP) and bisulphite genomic sequencing. Up- or down-regulation of EFEMP1 were achieved by stable or transient transfection with pCMV6/GFP/Neo-EFEMP1 or pGPU6/GFP/Neo-shEFEMP1 respectively. Effects of EFEMP1 on tumor proliferation, invasion and migration were evaluated by MTT, plate colony formation, Transwell and wound healing assay. The nude mouse tumor xenograft assay was used to investigate function of EFEMP1 in vivo.

Results

Compared with normal endometrium (32/40) and atypical hyperplasia (7/10), EFEMP1 expression was much lower in endometrial carcinoma tissues (16/84) (P<0.001 and P = 0.02). EFEMP1 promoter was hypermethylated in endometrial carcinoma tissues (67%) as compared to normal tissue (10%) and down-regulation of EFEMP1 was associated with promoter hypermethylation. Treatment with 5-aza-2′-deoxycytidine (5-aza-dC) and/or trichostatin A (TSA) altered EFEMP1 methylation status, and restored EFEMP1 expression. Moreover, EFEMP1 decreased secretion of MMPs and inhibited tumor cell proliferation, metastasis and invasion in vitro and suppressed tumorigenesis in nude mice. Besides, EFEMP1 increased expression of E-cadherin and suppressed expression of vimentin in endometrial carcinoma.

Conclusion

EFEMP1 is a new candidate tumor suppressor gene in endometrial carcinoma, and is frequently silenced by promoter hypermethylation. It could inhibit tumor growth and invasion both in vitro and in vivo. Our findings propose that targeting EFEMP1 might offer future clinical utility in endometrial carcinoma.  相似文献   

3.

Background

Non muscle invasive bladder cancer (NMIBC) has the highest recurrence rate of any malignancy and as many as 70% of patients experience relapse. Aberrant DNA methylation is present in all bladder tumors and can be detected in urine specimens. Previous studies have identified DNA methylation markers that showed significant diagnostic value. We evaluated the significance of the biomarkers for early detection of tumor recurrence in urine.

Methodology/Principal Findings

The methylation levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 in urine specimens were measured by real-time PCR (MethyLight). We analyzed 390 urine sediments from 184 patients diagnosed with NMIBC. Urine from 35 age-matched control individuals was used to determine the methylation baseline levels. Recurrence was diagnosed by cystoscopy and verified by histology. Initially, we compared urine from bladder cancer patients and healthy individuals and detected significant hypermethylation of all six markers (P<0.0001) achieving sensitivity in the range 82%–89% and specificity in the range 94%–100%. Following, we validated the urinary hypermethylation for use in recurrence surveillance and found sensitivities of 88–94% and specificities of 43–67%. EOMES, POU4F2, VIM and ZNF154 were more frequently methylated in urine from patients with higher grade tumors (P≤0.08). Univariate Cox regression analysis showed that five markers were significantly associated with disease recurrence; HOXA9 (HR = 7.8, P = 0.006), POU4F2 (HR = 8.5, P = 0.001), TWIST1 (HR = 12.0, P = 0.015), VIM (HR = 8.0, P = 0.001), and ZNF154 (HR = 13.9, P<0.001). Interestingly, for one group of patients (n = 15) we found that hypermethylation was consistently present in the urine samples despite the lack of tumor recurrences, indicating the presence of a field defect.

Conclusion/Significance

Methylation levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 in urine specimens are promising diagnostic biomarkers for bladder cancer recurrence surveillance.  相似文献   

4.

Background

Accumulated evidences demonstrated that single nucleotide polymorphisms (SNPs) in mRNA 3''-untranslated region (3''-UTR) may impact microRNAs (miRNAs)-mediated expression regulation of oncogenes and tumor suppressors. There is a TNFAIP2 3''-UTR rs8126 T>C genetic variant which has been proved to be associated with head and neck cancer susceptibility. This SNP could disturb binding of miR-184 with TNFAIP2 mRNA and influence TNFAIP2 regulation. However, it is still unclear how this polymorphism is involved in development of esophageal squamous cell carcinoma (ESCC). Therefore, we hypothesized that the functional TNFAIP2 rs8126 SNP may affect TNFAIP2 expression and, thus, ESCC risk.

Methods

We investigated the association between the TNFAIP2 rs8126 variant and ESCC risk as well as the functional relevance on TNFAIP2 expression in vivo. Genotypes were determined in a case-control set consisted of 588 ESCC patients and 600 controls. The allele-specific regulation on TNFAIP2 expression by the rs8126 SNP was examined in normal and cancerous tissue specimens of esophagus.

Results

We found that individuals carrying the rs8126 CC or CT genotype had an OR of 1.89 (95%CI  = 1.23–2.85, P = 0.003) or 1.38 (95%CI  = 1.05–1.73, P = 0.017) for developing ESCC in Chinese compared with individual carrying the TT genotype. Carriers of the rs8126 CC and CT genotypes had significantly lower TNFAIP2 mRNA levels than those with the TT genotypes in normal esophagus tissues (P<0.05).

Conclusions

Our data demonstrate that functional TNFAIP2 rs8126 genetic variant is a ESCC susceptibility SNP. These results support the hypothesis that genetic variants interrupting miRNA-mediated gene regulation might be important genetic modifiers of cancer risk.  相似文献   

5.

Objective

Early-onset colorectal cancer (CRC) represents a clinically distinct form of CRC that is often associated with a poor prognosis. Methylation levels of genomic repeats such as LINE-1 elements have been recognized as independent factors for increased cancer-related mortality. The methylation status of LINE-1 elements in early-onset CRC has not been analyzed previously.

Design

We analyzed 343 CRC tissues and 32 normal colonic mucosa samples, including 2 independent cohorts of CRC diagnosed ≤50 years old (n = 188), a group of sporadic CRC >50 years (MSS n = 89; MSI n = 46), and a group of Lynch syndrome CRCs (n = 20). Tumor mismatch repair protein expression, microsatellite instability status, LINE-1 and MLH1 methylation, somatic BRAF V600E mutation, and germline MUTYH mutations were evaluated.

Results

Mean LINE-1 methylation levels (±SD) in the five study groups were early-onset CRC, 56.6% (8.6); sporadic MSI, 67.1% (5.5); sporadic MSS, 65.1% (6.3); Lynch syndrome, 66.3% (4.5) and normal mucosa, 76.5% (1.5). Early-onset CRC had significantly lower LINE-1 methylation than any other group (p<0.0001). Compared to patients with <65% LINE-1 methylation in tumors, those with ≥65% LINE-1 methylation had significantly better overall survival (p = 0.026, log rank test).

Conclusions

LINE-1 hypomethylation constitutes a potentially important feature of early-onset CRC, and suggests a distinct molecular subtype. Further studies are needed to assess the potential of LINE-1 methylation status as a prognostic biomarker for young people with CRC.  相似文献   

6.
DNA methylation has been implicated in the etiopathology of various complex disorders. DNA methyltransferases are involved in maintaining and establishing new methylation patterns. The aim of the present study was to investigate the inherent genetic variations within DNA methyltransferase genes in predisposing to susceptibility to schizophrenia. We screened for polymorphisms in DNA methyltransferases, DNMT1, DNMT3A, DNMT3B and DNMT3L in 330 schizophrenia patients and 302 healthy controls for association with Schizophrenia in south Indian population. These polymorphisms were also tested for subgroup analysis with patient''s gender, age of onset and family history. DNMT1 rs2114724 (genotype P = .004, allele P = 0.022) and rs2228611 (genotype P = 0.004, allele P = 0.022) were found to be significantly associated at genotypic and allelic level with Schizophrenia in South Indian population. DNMT3B rs2424932 genotype (P = 0.023) and allele (P = 0.0063) increased the risk of developing schizophrenia in males but not in females. DNMT3B rs1569686 (genotype P = 0.027, allele P = 0.033) was found to be associated with early onset of schizophrenia and also with family history and early onset (genotype P = 0.009). DNMT3L rs2070565 (genotype P = 0.007, allele P = 0.0026) confers an increased risk of developing schizophrenia at an early age in individuals with family history. In-silico prediction indicated functional relevance of these SNPs in regulating the gene. These observations might be crucial in addressing and understanding the genetic control of methylation level differences from ethnic viewpoint. Functional significance of genotype variations within the DNMTs indeed suggest that the genetic nature of methyltransferases should be considered while addressing epigenetic events mediated by methylation in Schizophrenia.  相似文献   

7.

Background

Colorectal cancer (CRC) multiplicity has been mainly related to polyposis and non-polyposis hereditary syndromes. In sporadic CRC, aberrant gene promoter methylation has been shown to play a key role in carcinogenesis, although little is known about its involvement in multiplicity. To assess the effect of methylation in tumor multiplicity in sporadic CRC, hypermethylation of key tumor suppressor genes was evaluated in patients with both multiple and solitary tumors, as a proof-of-concept of an underlying epigenetic defect.

Methodology/Principal Findings

We examined a total of 47 synchronous/metachronous primary CRC from 41 patients, and 41 gender, age (5-year intervals) and tumor location-paired patients with solitary tumors. Exclusion criteria were polyposis syndromes, Lynch syndrome and inflammatory bowel disease. DNA methylation at the promoter region of the MGMT, CDKN2A, SFRP1, TMEFF2, HS3ST2 (3OST2), RASSF1A and GATA4 genes was evaluated by quantitative methylation specific PCR in both tumor and corresponding normal appearing colorectal mucosa samples. Overall, patients with multiple lesions exhibited a higher degree of methylation in tumor samples than those with solitary tumors regarding all evaluated genes. After adjusting for age and gender, binomial logistic regression analysis identified methylation of MGMT2 (OR, 1.48; 95% CI, 1.10 to 1.97; p = 0.008) and RASSF1A (OR, 2.04; 95% CI, 1.01 to 4.13; p = 0.047) as variables independently associated with tumor multiplicity, being the risk related to methylation of any of these two genes 4.57 (95% CI, 1.53 to 13.61; p = 0.006). Moreover, in six patients in whom both tumors were available, we found a correlation in the methylation levels of MGMT2 (r = 0.64, p = 0.17), SFRP1 (r = 0.83, 0.06), HPP1 (r = 0.64, p = 0.17), 3OST2 (r = 0.83, p = 0.06) and GATA4 (r = 0.6, p = 0.24). Methylation in normal appearing colorectal mucosa from patients with multiple and solitary CRC showed no relevant difference in any evaluated gene.

Conclusions

These results provide a proof-of-concept that gene promoter methylation is associated with tumor multiplicity. This underlying epigenetic defect may have noteworthy implications in the prevention of patients with sporadic CRC.  相似文献   

8.
Gastric cancer remains the second leading cause of cancer-related death in the world. H. pylori infection, a major risk factor for gastric cancer, generates high levels of reactive oxygen species (ROS). Glutathione peroxidase 3 (GPX3), a plasma GPX member and a major scavenger of ROS, catalyzes the reduction of hydrogen peroxide and lipid peroxides by reduced glutathione. To study the expression and gene regulation of GPX3, we examined GPX3 gene expression in 9 gastric cancer cell lines, 108 primary gastric cancer samples and 45 normal gastric mucosa adjacent to cancers using quantitative real-time RT-PCR. Downregulation or silencing of GPX3 was detected in 8 of 9 cancer cell lines, 83% (90/108) gastric cancers samples, as compared to non-tumor adjacent normal gastric samples (P<0.0001). Examination of GPX3 promoter demonstrated DNA hypermethylation (≥10% methylation level determined by Bisulfite Pyrosequencing) in 6 of 9 cancer cell lines and 60% of gastric cancer samples (P = 0.007). We also detected a significant loss of DNA copy number of GPX3 in gastric cancers (P<0.001). Treatment of SNU1 and MKN28 cells with 5-Aza-2′ Deoxycytidine restored the GPX3 gene expression with a significant demethylation of GPX3 promoter. The downregulation of GPX3 expression and GPX3 promoter hypermethylation were significantly associated with gastric cancer lymph node metastasis (P = 0.018 and P = 0.029, respectively). We also observed downregulation, DNA copy number losses, and promoter hypermethylation of GPX3 in approximately one-third of tumor-adjacent normal gastric tissue samples, suggesting the presence of a field defect in areas near tumor samples. Reconstitution of GPX3 in AGS cells reduced the capacity of cell migration, as measured by scratch wound healing assay. Taken together, the dysfunction of GPX3 in gastric cancer is mediated by genetic and epigenetic alterations, suggesting impairment of mechanisms that regulate ROS and its possible involvement in gastric tumorigenesis and metastasis.  相似文献   

9.

Background

Changes in host tumor genome DNA methylation patterns are among the molecular alterations associated with HPV-related carcinogenesis. However, there is little known about the epigenetic changes associated specifically with the development of anal squamous cell cancer (SCC). We sought to characterize broad methylation profiles across the spectrum of anal squamous neoplasia.

Methodology/Principal Findings

Twenty-nine formalin-fixed paraffin embedded samples from 24 patients were evaluated and included adjacent histologically normal anal mucosa (NM; n = 3), SCC-in situ (SCC-IS; n = 11) and invasive SCC (n = 15). Thirteen women and 11 men with a median age of 44 years (range 26–81) were included in the study. Using the SFP10 LiPA HPV-typing system, HPV was detected in at least one tissue from all patients with 93% (27/29) being positive for high-risk HPV types and 14 (93%) of 15 invasive SCC tissues testing positive for HPV 16. Bisulfite-modified DNA was interrogated for methylation at 1,505 CpG loci representing 807 genes using the Illumina GoldenGate Methylation Array. When comparing the progression from normal anal mucosa and SCC-IS to invasive SCC, 22 CpG loci representing 20 genes demonstrated significant differential methylation (p<0.01). The majority of differentially methylated gene targets occurred at or close to specific chromosomal locations such as previously described HPV methylation “hotspots” and viral integration sites.

Conclusions

We have identified a panel of differentially methlylated CpG loci across the spectrum of HPV-associated squamous neoplasia of the anus. To our knowledge, this is the first reported application of large-scale high throughput methylation analysis for the study of anal neoplasia. Our findings support further investigations into the role of host-genome methylation in HPV-associated anal carcinogenesis with implications towards enhanced diagnosis and screening strategies.  相似文献   

10.
Adrenocortical carcinoma (ACC) is a rare, but highly malignant tumor of unknown origin. Inhibin α-subunit (Inha) knockout mice develop ACCs following gonadectomy. In man, INHA expression varies widely within ACC tissues and its circulating peptide inhibin pro-αC has been described as a novel tumor marker for ACC. We investigated whether genetic and epigenetic changes of the INHA gene in human ACC cause loss or variation of INHA expression. To this end, analyses of INHA sequence, promoter methylation and mRNA expression were performed in human adrenocortical tissues. Serum inhibin pro-αC levels were also measured in ACC patients. INHA genetic analysis in 37 unique ACCs revealed 10 novel, heterozygous rare variants. Of the 3 coding bases affected, one variant was synonymous and two were missense variants: S72F and S184F. The minor allele of rs11893842 at −124 bp was observed at a low frequency (24%) in ACC samples and was associated with decreased INHA mRNA levels: 4.7±1.9 arbitrary units for AA, compared to 26±11 for AG/GG genotypes (P = 0.034). The methylation of four proximal INHA promoter CpGs was aberrantly increased in five ACCs (47.7±3.9%), compared to normal adrenals (18.4±0.6%, P = 0.0052), whereas the other 14 ACCs studied showed diminished promoter methylation (9.8±1.1%, P = 0.020). CpG methylation was inversely correlated to INHA mRNA levels in ACCs (r = −0.701, p = 0.0036), but not associated with serum inhibin pro-αC levels. In conclusion, aberrant methylation and common genetic variation in the INHA promoter occur in human ACCs and are associated with decreased INHA expression.  相似文献   

11.
12.

Background

The prognostic significance of survivin for survival of patients with esophageal squamous cell carcinoma (ESCC) remains controversial. Thus, meta-analysis of the literatures was performed in order to demonstrate its expression impact on ESCC clinicopathological features and prognosis.

Methodology

Relevant literatures were searched using PubMed, EMBASE and Medline Databases. Revman5.0 software was used to pool eligible studies and summary hazard ratio (HR). Correlation between survivin expression and clinicopathological features of ESCC was analyzed.

Principal Findings

Final analysis of 523 patients from 7 eligible studies was performed. Combined HR of survivin location in nuclei suggested that survivin expression has an unfavorable impact on ESCC patients'' survival (n = 277 in 3 studies; HR = 1.89, 95% CI: 1.45–2.96; Z = 4.69; P<0.0001). Nevertheless, combined HR of survivin location in cytoplasm displayed that survivin expression has no significance for prognosis of ESCC patients (n = 113 in 2 studies; HR = 0.96, 95% CI: 0.96–5.69; Z = 0.04; P = 0.97); Combined odds ratio (OR) of survivin location in cytoplasm indicated that survivin expression is associated with ESCC advanced stage (n = 113 in 2 studies; OR = 0.36, 95% CI: 0.14–0.93; Z = 2.10; P = 0.04). Whereas, combined OR of survivin location in nuclei exhibited that survivin over-expression has no correlation with cell differentiation grade, lymph node status, depth of invasion, stage, and metastasis of ESCC.

Conclusions

This study showed that survivin expression detected by immunohistochemistry seems to be associated with a worse prognosis of ESCC patients. Survivin subcellular location may be an important factor impacting on ESCC development. Larger prospective studies should be performed to evaluate the status of survivin in predicting prognosis of patients with ESCC.  相似文献   

13.
PLA2G7 gene product is a secreted enzyme whose activity is associated with coronary heart disease (CHD). The goal of our study is to investigate the contribution of PLA2G7 promoter DNA methylation to the risk of CHD. Using the bisulphite pyrosequencing technology, PLA2G7 methylation was measured among 36 CHD cases and 36 well-matched controls. Our results indicated that there was a significant association between PLA2G7 methylation and CHD (adjusted P = 0.025). Significant gender-specific correlation was observed between age and PLA2G7 methylation (males: adjusted r = −0.365, adjusted P = 0.037; females: adjusted r = 0.373, adjusted P = 0.035). A breakdown analysis by gender showed that PLA2G7 methylation was significantly associated with CHD in females (adjusted P = 0.003) but not in males. A further two-way ANOVA analysis showed there was a significant interaction between gender and status of CHD for PLA2G7 methylation (gender*CHD: P = 6.04E−7). Moreover, PLA2G7 methylation is associated with the levels of total cholesterols (TC, r = 0.462, P = 0.009), triglyceride (TG, r = 0.414, P = 0.02) and Apolipoprotein B (ApoB, r = 0.396, P = 0.028) in females but not in males (adjusted P>0.4). Receiver operating characteristic (ROC) curves showed that PLA2G7 methylation could predict the risk of CHD in females (area under curve (AUC) = 0.912, P = 2.40E−5). Our results suggest that PLA2G7 methylation changes with aging in a gender-specific pattern. The correlation between PLA2G7 methylation and CHD risk in females is independent of other parameters including age, smoking, diabetes and hypertension. PLA2G7 methylation might exert its effects on the risk of CHD by regulating the levels of TC, TG, and ApoB in females. The gender disparities in the PLA2G7 methylation may play a role in the molecular mechanisms underlying the pathophysiology of CHD.  相似文献   

14.
Epigenetic alterations of gene expression are important in the development of cancer. In this study, we identified genes which are epigenetically altered in major lymphoma types. We used DNA microarray technology to assess changes in gene expression after treatment of 11 lymphoma cell lines with epigenetic drugs. We identified 233 genes with upregulated expression in treated cell lines and with downregulated expression in B-cell lymphoma patient samples (n = 480) when compared to normal B cells (n = 5). The top 30 genes were further analyzed by methylation specific PCR (MSP) in 18 lymphoma cell lines. Seven of the genes were methylated in more than 70% of the cell lines and were further subjected to quantitative MSP in 37 B-cell lymphoma patient samples (diffuse large B-cell lymphoma (activated B-cell like and germinal center B-cell like subtypes), follicular lymphoma and Burkitt`s lymphoma) and normal B lymphocytes from 10 healthy donors. The promoters of DSP, FZD8, KCNH2, and PPP1R14A were methylated in 28%, 67%, 22%, and 78% of the 36 tumor samples, respectively, but not in control samples. Validation using a second series of healthy donor controls (n = 42; normal B cells, peripheral blood mononuclear cells, bone marrow, tonsils and follicular hyperplasia) and fresh-frozen lymphoma biopsies (n = 25), confirmed the results. The DNA methylation biomarker panel consisting of DSP, FZD8, KCNH2, and PPP1R14A was positive in 89% (54/61) of all lymphomas. Receiver operating characteristic analysis to determine the discriminative power between lymphoma and healthy control samples showed a c-statistic of 0.96, indicating a possible role for the biomarker panel in monitoring of lymphoma patients.  相似文献   

15.

Background

Respiratory muscle contractile performance is impaired by diabetes, mechanisms of which included altered carbohydrate and lipid metabolism, oxidative stress and changes in membrane electrophysiology. The present study examined to what extent these cellular perturbations involve changes in gene expression.

Methodology/Principal Findings

Diaphragm muscle from streptozotocin-diabetic rats was analyzed with Affymetrix gene expression arrays. Diaphragm from diabetic rats had 105 genes with at least ±2-fold significantly changed expression (55 increased, 50 decreased), and these were assigned to gene ontology groups based on over-representation analysis using DAVID software. There was increased expression of genes involved in palmitoyl-CoA hydrolase activity (a component of lipid metabolism) (P = 0.037, n = 2 genes, fold change 4.2 to 27.5) and reduced expression of genes related to carbohydrate metabolism (P = 0.000061, n = 8 genes, fold change −2.0 to −8.5). Other gene ontology groups among upregulated genes were protein ubiquitination (P = 0.0053, n = 4, fold change 2.2 to 3.4), oxidoreductase activity (P = 0.024, n = 8, fold change 2.1 to 6.0), and morphogenesis (P = 0.012, n = 10, fold change 2.1 to 4.3). Other downregulated gene groups were extracellular region (including extracellular matrix and collagen) (P = 0.00032, n = 13, fold change −2.2 to −3.7) and organogenesis (P = 0.032, n = 7, fold change −2.1 to −3.7). Real-time PCR confirmed the directionality of changes in gene expression for 30 of 31 genes tested.

Conclusions/Significance

These data indicate that in diaphragm muscle type 1 diabetes increases expression of genes involved in lipid energetics, oxidative stress and protein ubiquitination, decreases expression of genes involved in carbohydrate metabolism, and has little effect on expression of ion channel genes. Reciprocal changes in expression of genes involved in carbohydrate and lipid metabolism may change the availability of energetic substrates and thereby directly modulate fatigue resistance, an important issue for a muscle like the diaphragm which needs to contract without rest for the entire lifetime of the organism.  相似文献   

16.
Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment.  相似文献   

17.

Background

Death-associated protein kinase1 (DAPK1) is an important tumor suppressor gene. DNA methylation can inactivate genes, which has often been observed in the carcinogenesis of cervical cancer. During the past several decades, many studies have explored the association between DAPK1 promoter methylation and cervical cancer. However, many studies were limited by the small samples size and the findings were inconsistent among them. Thus, we conducted a meta-analysis to assess the association between DAPK1 promoter methylation and cervical cancer.

Methods

We systematically searched eligible studies in the PubMed, Web of Science, EMBASE and CNKI databases. Using meta-regression, subgroup analysis and sensitivity analysis, we explored the potential sources of heterogeneity. The odds ratio (OR) and 95% confidence interval (95% CI) were calculated by Meta-Analysis in R.

Results

A total of 15 studies from 2001 to 2012, comprising 818 tumor tissues samples and 671 normal tissues samples, were analyzed in this meta-analysis. The frequencies of DAPK1 promoter methylation ranged from 30.0% to 78.6% (median, 59.3%) in cervical cancer tissue and 0.0% to 46.7% (median, 7.8%) in normal cervical tissue. The pooled OR was 19.66 (95%CI = 8.72–44.31) with the random effects model, and heterogeneity was found through the sensitivity analysis. The I2 = 60% (P = 0.002) decreased to I2 = 29.2% (P = 0.144) when one heterogeneous study was excluded, and the pooled OR increased to 21.80 (95%CI = 13.44–35.36) with the fixed effects model.

Conclusion

The results suggested a strong association between DAPK1 promoter methylation and cervical cancer. This study also indicated that DAPK1 promoter methylation may be a biomarker during cervical carcinogenesis that might serve as an early indication of cervical cancer.  相似文献   

18.
19.
Excessive fibroproliferation is a central hallmark of idiopathic pulmonary fibrosis (IPF), a chronic, progressive disorder that results in impaired gas exchange and respiratory failure. Fibroblasts are the key effector cells in IPF, and aberrant expression of multiple genes contributes to their excessive fibroproliferative phenotype. DNA methylation changes are critical to the development of many diseases, but the DNA methylome of IPF fibroblasts has never been characterized. Here, we utilized the HumanMethylation 27 array, which assays the DNA methylation level of 27,568 CpG sites across the genome, to compare the DNA methylation patterns of IPF fibroblasts (n = 6) with those of nonfibrotic patient controls (n = 3) and commercially available normal lung fibroblast cell lines (n = 3). We found that multiple CpG sites across the genome are differentially methylated (as defined by P value less than 0.05 and fold change greater than 2) in IPF fibroblasts compared to fibroblasts from nonfibrotic controls. These methylation differences occurred both in genes recognized to be important in fibroproliferation and extracellular matrix generation, as well as in genes not previously recognized to participate in those processes (including organ morphogenesis and potassium ion channels). We used bisulfite sequencing to independently verify DNA methylation differences in 3 genes (CDKN2B, CARD10, and MGMT); these methylation changes corresponded with differences in gene expression at the mRNA and protein level. These differences in DNA methylation were stable throughout multiple cell passages. DNA methylation differences may thus help to explain a proportion of the differences in gene expression previously observed in studies of IPF fibroblasts. Moreover, significant variability in DNA methylation was observed among individual IPF cell lines, suggesting that differences in DNA methylation may contribute to fibroblast heterogeneity among patients with IPF. These results demonstrate that IPF fibroblasts exhibit global differences in DNA methylation that may contribute to the excessive fibroproliferation associated with this disease.  相似文献   

20.

Background

CHRNA5-A3-B4, the gene cluster encoding nicotinic acetylcholine receptor subunits, is associated with lung cancer risk and smoking behaviors in people of European descent. Because cigarette smoking is also a major risk factor for esophageal squamous cell carcinoma (ESCC), we investigated the associations between variants in CHRNA5-A3-B4 and ESCC risk, as well as smoking behaviors, in a Chinese population.

Methods

A case-control study of 866 ESCC patients and 952 healthy controls was performed to study the association of polymorphisms (rs667282 and rs3743073) in CHRNA5-A3-B4 with cancer risk using logistic regression models. The relationships between CHRNA5-A3-B4 polymorphisms and smoking behaviors that can be quantified by cigarettes smoked per day (CPD) and pack-years of smoking were separately estimated with Kruskal-Wallis tests among all 840 smokers.

Results

CHRNA5-A3-B4 rs667282 TT/TG genotypes were associated with significantly increased risk of ESCC [adjusted odds ratio (OR) = 1.32, 95% confidence interval (CI) = 1.03 – 1.69, P = 0.029]. The increased ESCC risk was even higher among younger subjects (≤60 years) (OR = 1.44, 95% CI = 1.04 – 1.98, P = 0.024). These effects were not found in another polymorphism rs3743073. No evident association between the two polymorphisms and smoking behaviors was observed.

Conclusions

These results support the hypothesis that CHRNA5-A3-B4 is a susceptibility gene cluster for ESCC. The relationship between CHRNA5-A3-B4 and smoking behaviors in a Chinese population needs further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号