首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The inclusion body expression and refolding of a pH-sensitive intein fusion protein (Ssp DnaB intein) delivered sufficient quantities of an N-terminal Cys-polypeptide for native chemical ligations. This strategy circumvents premature intein cleavage under expression conditions and allows the expression and purification of proteins with uncertain solubility properties. The expressed protein resembles the C-terminal portion of the amphiphilic immunity protein Im7, which can be ligated to synthetic thioesters to yield synthetic protein analogues for protein folding studies.  相似文献   

2.
Lew BM  Mills KV  Paulus H 《Biopolymers》1999,51(5):355-362
Protein splicing in trans results in the ligation of two protein or peptide segments linked to appropriate intein fragments. We have characterized the trans-splicing reaction mediated by a naturally expressed, approximately 100-residue N-terminal fragment of the Mycobacterium tuberculosis intein and a synthetic peptide containing the 38 C-terminal intein residues, and found that the splicing reaction was very versatile and robust. The efficiency of splicing was nearly independent of temperature between 4 and 37 degrees C and pH between 6.0 and 7.5, with only a slight decline at pH values as high as 8.5. In addition, there was considerable flexibility in the choice of the C-terminal intein fragment, no significant difference in protein ligation efficiency being observed between reactions utilizing the N-terminal fragment and either the naturally expressed 107-residue C-terminal portion of the intein, much smaller synthetic peptides, or the 107-residue C-terminal intein fragment modified by fusion of a maltose binding protein domain to its N-terminus. The ability to use different types of the C-terminal intein fragments and a broad range of reaction conditions make protein splicing in trans a versatile tool for protein ligation.  相似文献   

3.
A gram-positive bacterial expression vector using Streptococcus gordonii has been developed for expression and secretion, or surface anchoring of heterologous proteins. This system, termed Surface Protein Expression system or SPEX, has been used to express a variety of surface anchored and secreted proteins. In this study, the Mycobacterium xenopi (Mxe) GyrA intein and chitin binding domain from Bacillus circulans chitinase Al were used in conjunction with SPEX to express a fusion protein to facilitate secretion, cleavage, and purification. Streptococcus gordonii was transformed to express a secreted fusion protein consisting of a target protein with a C-terminal intein and chitin-binding domain. Two target proteins, the C-repeat region of the Streptococcus pyogenes M6 protein (M6) and the nuclease A (NucA) enzyme of Staphylococcus aureus, were expressed and tested for intein cleavage. The secreted fusion proteins were purified from culture medium by binding to chitin beads and subjected to reaction conditions to induce intein self-cleavage to release the target protein. The M6 and NucA fusion proteins were shown to bind chitin beads and elute under cleavage reaction conditions. In addition, NucA demonstrated enzyme activity both before and after intein cleavage.  相似文献   

4.
Protein splicing elements (inteins), capable of catalyzing controllable peptide bond cleavage reactions, have been used to separate recombinant proteins from affinity tags during affinity purification. Since the inteins eliminate the use of a protease in the recovery process, the intein-mediated purification system has the potential to significantly reduce recovery costs for the industrial production of recombinant proteins. Thus far, the intein system has only been examined and utilized for expression and purification of recombinant proteins at the laboratory scale for cells cultivated at low cell densities. In this study, protein splicing and in vitro cleavage of intein fusion proteins expressed in high-cell-density fed-batch fermentations of recombinant Escherichia coli were examined. Three model intein fusion constructs were used to examine the stability and splicing/cleavage activities of the fusion proteins produced under high-cell-density conditions. The data indicated that the intein fusion protein containing the wild-type intein catalyzed efficient in vivo protein splicing during high-cell-density cultivation. Also, the intein fusion proteins containing modified inteins catalyzed efficient thiol-induced in vitro cleavage reactions. The results of this study demonstrated the potential feasibility of using the intein-mediated protein purification system for industrial-scale production of recombinant proteins.  相似文献   

5.
蛋白质剪切是一种翻译后修饰事件 ,它将插入前体蛋白的中间的蛋白质肽段 (Intein ,internalproteinfrag ment)剪切出来 ,并用正常肽键将两侧蛋白质多肽链 (Extein ,flankingproteinfragments)连接起来。在此过程中不需要辅酶或辅助因子的作用 ,仅需四步分子内反应。Intein及其侧翼序列可以通过突变产生高度特异性的自我切割用于蛋白质纯化、蛋白质连接和蛋白质环化反应 ,在蛋白质工程方面有广泛的应用前景。  相似文献   

6.
Smith AN  Borthwick KJ  Karet FE 《Gene》2002,282(1-2):169-177
Protein splicing involves the self-catalyzed excision of an intervening sequence, the intein, from a precursor protein, with the concomitant ligation of the flanking extein sequences to yield a new polypeptide. The ability of inteins to promote protein splicing even when inserted into a foreign context has facilitated the study of the modulation of protein splicing. In this paper, we describe an in vivo screening system for the isolation of mutations or inhibitors that interfere with protein splicing mediated by the RecA intein of Mycobacterium tuberculosis. It involves the activation of the cytotoxic CcdB protein by protein splicing, such that host cells survive in the presence of inducer only when protein splicing is blocked. The coding sequence for the RecA intein was inserted in-frame into the polylinker region of an inducible lacZ alpha-ccdB fusion vector, leading to inactivation of the CcdB toxin unless the intein is excised by protein splicing. Depending on the objective of the screening procedure, its stringency can be modified by altering the level of expression of the intein-CcdB fusion protein. To induce large amounts of CcdB fusion proteins, the fusion protein is expressed from a high-copy-number plasmid. Such a screening system detects even low levels of protein splicing and we have used it to show that protein splicing of the RecA intein is compatible with any amino acid in the extein position adjacent to the N-terminal splice junction. In order to search for protein splicing inhibitors, which may attenuate protein splicing by less than an order of magnitude, we have also constructed a low-copy-number intein-CcdB plasmid so that the host cells can survive when splicing of the expressed CcdB fusion protein is only moderately suppressed. We anticipate that the CcdB-based in vivo screening system will find uses in the analysis of structural and mechanistic aspects of protein splicing.  相似文献   

7.
In this work, we apply self-cleaving affinity tag technology to several target proteins secreted into the Escherichia coli periplasm, including two with disulfide bonds. The target proteins were genetically fused to a self-cleaving chitin-binding domain-intein tag for purification via a chitin-agarose affinity resin. By attaching the intein-tagged fusion genes to the PelB secretion leader sequence, the tagged target proteins were secreted to the periplasmic space and could be recovered in active form by simple osmotic shock. After chitin-affinity purification, the target proteins were released from the chitin-binding domain tag via intein self-cleaving. This was induced by a small change in pH from 8.5 to 6.5 at room temperature, allowing direct elution of the cleaved target protein from the chitin affinity resin. The target proteins include the E. coli maltose-binding protein and β-lactamase enzyme, as well as two human antibody fragments that contain disulfide bonds. In all cases, the target proteins were purified with good activity and yield, without the need for refolding. Overall, this work demonstrates the compatibility of the ΔI-CM intein with the PelB secretion system in E. coli, greatly expanding its potential to more complex proteins.  相似文献   

8.
 We report the construction and expression of a fusion protein between a single-chain antibody specific for human carcinomas and human β-glucuronidase by recombinant DNA technology. The sequences encoding the murine monoclonal antibody 323/A3 light- and heavy-chain variable genes were joined by a synthetic sequence encoding a 15-amino-acid linker and combined with human β-glucuronidase by a synthetic sequence encoding a 6-amino-acid linker. The construct was placed under the control of the cytomegalovirus promotor and expressed in COS-7 cells. The yield of active fusion protein was 10 ng/ml transfectoma supernatant. Antibody affinity, antibody specificity and enzyme activity were fully retained by the fusion protein. Biochemical characterization of the fusion protein by sodium dodecyl sulfate/polyacrylamide gel electrophoresis showed a molecular mass of 100 kDa under denaturing conditions. Gel-filtration analysis indicated that the enzymatically active form is a tetramer of approximately 400 kDa. The non-toxic prodrug N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate was activated to the cytotoxic drug doxorubicin by the fusion protein with a hydrolysis rate similar to that of human β-glucuronidase. The growth inhibition of tumor cells coated with the fusion protein and exposed to prodrug was similar to that obtained with doxorubicin. This study shows the feasibility of constructing eukaryotic fusion proteins consisting of a single-chain antibody and human β-glucuronidase for use in the specific activation of anticancer prodrugs. Received: 5 June 1997 / Accepted: 25 October 1997  相似文献   

9.
以pET28a为起始质粒,构建高表达DnaB split intein的重组质粒.将质粒pVmut上的编码IntC-dnaB-N-IntN片段克隆至pET28a,得到表达载体pEV,在T7启动子的作用下可使融合DnaB split intein大量表达;并在split intein介导下发生催化DnaB-N的剪接反应,生成环化的DnaB-N蛋白.将合成的包含随机编码5肽的大小为115 bp的片段插入质粒pEV DnaB-N位置,转化大肠杆菌后得到一个编码含有6肽(含5个随机氨基酸和1个Cys)的包含约103个克隆的表达载体pEV-IS库.随机挑取20个克隆,测序证明均按正确阅读框插入了不同的小肽序列;挑取其中9个克隆进行表达.结果表明可产生大量的融合蛋白,90%的融合蛋白在16℃表达20 h后发生体内剪接.将在30℃表达3 h的融合蛋白用His柱进行纯化,通过MALDI-TOF质谱检测到了目的环肽分子量.  相似文献   

10.
The intein-mediated purification system has the potential to significantly reduce the recovery costs of industrial recombinant proteins. The ability of inteins to catalyze a controllable peptide bond cleavage reaction can be used to separate a recombinant protein from its affinity tag during affinity purification. Inteins have been combined with a chitin-binding domain to serve as a self-cleaving affinity tag, facilitating highly selective capture of the fusion protein on an inexpensive substrate--chitin (IMPACT) system, New England Biolabs, Beverly, MA). This purification system has been used successfully at a lab scale in low cell density cultures, but has not been examined comprehensively under high-cell density conditions in defined medium. In this study, the intein-mediated purification of three commercially relevant proteins expressed under high-cell density conditions in E. coli was studied. Additionally, losses during the purification process were quantified. The data indicate that the intein fusion proteins expressed under high cell density fermentations were stable in vivo after induction for a significant duration, and the intein fusion proteins could undergo thiol or pH and temperature initiated cleavage reaction in vitro. Thus, the intein-mediated protein purification system potentially could be employed for the production of recombinant proteins at the industrial-scale.  相似文献   

11.
Zhang A  Gonzalez SM  Cantor EJ  Chong S 《Gene》2001,275(2):241-252
Affinity purification of recombinant proteins has been facilitated by fusion to a modified protein splicing element (intein). The fusion protein expression can be further improved by fusion to a mini-intein, i.e. an intein that lacks an endonuclease domain. We synthesized three mini-inteins using overlapping oligonucleotides to incorporate Escherichia coli optimized codons and allow convenient insertion of an affinity tag between the intein (predicted) N- and C-terminal fragments. After examining the splicing and cleavage activities of the synthesized mini-inteins, we chose the mini-intein most efficient in thiol-induced N-terminal cleavage for constructing a novel intein fusion system. In this system, green fluorescent protein (GFP) was fused to the C-terminus of the affinity-tagged mini-intein whose N-terminus was fused to a target protein. The design of the system allowed easy monitoring of soluble fusion protein expression by following GFP fluorescence, and rapid purification of the target protein through the intein-mediated cleavage reaction. A total of 17 target proteins were tested in this intein-GFP fusion system. Our data demonstrated that the fluorescence of the induced cells could be used to measure soluble expression of the intein fusion proteins and efficient intein cleavage activity. The final yield of the target proteins exhibited a linear relationship with whole cell fluorescence. The intein-GFP system may provide a simple route for monitoring real time soluble protein expression, predicting final product yields, and screening the expression of a large number of recombinant proteins for rapid purification in high throughput applications.  相似文献   

12.
Brenzel S  Kurpiers T  Mootz HD 《Biochemistry》2006,45(6):1571-1578
In protein trans-splicing, an intein domain split into two polypeptide chains mediates linkage of the flanking amino acid sequences, the N- and C-terminal exteins, with a native peptide bond. This process can be exploited to assemble proteins from two separately prepared fragments, e.g., for the segmental labeling with isotopes for NMR studies or the incorporation of chemical and biophysical probes. Split inteins can be artificially generated by genetic means; however, the purified inteinN and inteinC fragments usually require a denaturation and renaturation treatment to fold into the active intein, thus preventing their application to proteins that cannot be refolded. Here, we report that the purified fragments of the artificially split DnaB helicase of Synechocystis spp. PCC6803 (Ssp DnaB) intein are active under native conditions. The first-order rate constant of the protein trans-splicing reaction was 7.1 x 10(-4) s(-1). The previously described split vacuolar ATPase of Saccharomyces cerevisiae (Sce VMA) intein is the only other artificially split intein that is active under native conditions; however, it requires induced complex formation of the intein fragments by auxiliary dimerization domains for efficient protein trans-splicing. In contrast, fusion of the dimerization domains to the split Ssp DnaB intein fragments had no effect on activity. This difference was also reflected by a higher thermostability of the split Ssp DnaB intein. Further investigations of the split Sce VMA intein under optimized conditions revealed a first-order rate constant of 9.4 x 10(-4) s(-1) for protein trans-splicing and 1.7 x 10(-3) s(-1) for C-terminal cleavage involving a Cys1Ala mutant. Finally, we show that the two split inteins are orthogonal, suggesting further applications for the assembly of proteins from more than two parts.  相似文献   

13.
Improper protein-folding often results in inclusion-body formation in a protein expression system using Escherichia coli. To express such proteins in the soluble fraction of E. coli cytoplasm, we developed an expression system by fusing the target protein with an archaeal FK506 binding protein (FKBP). It has been reported that an archaeal FKBP from a hyperthermophilic archaeon, Thermococcus sp. KS-1 (TcFKBP18), possesses not only peptidyl–prolyl cis–trans isomerase activity, but also chaperone-like activity to enhance the refolding yield of an unfolded protein by suppressing irreversible protein aggregation. To study the effect of this fusion strategy with FKBP on the expression of foreign protein in E. coli, a putative rhodanese (thiosulfate sulfurtransferase) from a hyperthermophilic archaeon and two mouse antibody fragments were used as model target proteins. When they were expressed alone in E. coli, they formed insoluble aggregates. Their genes were designed to be expressed as a fusion protein by connecting them to the C-terminal end of TcFKBP18 with an oligopeptide containing a thrombin cleavage site. By fusing TcFKBP18, the expression of the target protein in the soluble fraction was significantly increased. The percentage of the soluble form in the expressed protein reached 10–28% of the host soluble proteins. After purification and protease digestion of the expressed antibody fragment–TcFKBP18 fusion protein, the cleaved antibody fragment (single-chain Fv) showed specific binding to the antigen in ELISA. This indicated that the expressed antibody fragment properly folded to the active form.  相似文献   

14.
The porcine CD3 specific monoclonal antibody 898H2-6-15 has been used in allo- and xeno-transplantation studies as a porcine CD3 marker and as an effective T cell depletion reagent when conjugated to the diphtheria toxin mutant, CRM9. A recombinant anti-porcine CD3 immuntoxin was recently developed using single-chain variable fragments (scFv) derived from 898H2-6-15. In this study, using published sequence data, we have expressed the porcine CD3 ectodomain molecules in E. coli through inclusion body isolation and in vitro refolding approach. The expressed and refolded porcine CD3 ectodomain molecules include CD3ε, CD3γ, CD3δ, CD3εγ heterodimer, CD3εδ heterodimer, CD3εγ single-chain fusion protein and CD3εδ single-chain fusion protein. These refolded porcine CD3 ectodomain molecules were purified with a strong anion exchange resin Poros 50HQ. ELISA analysis demonstrated that only the porcine CD3εγ ectodomain single-chain fusion protein can bind to the porcine CD3 specific monoclonal antibody 898H2-6-15. The availability of this porcine CD3εγ ectodomain single-chain fusion protein will allow screening for affinity matured variants of scFv derived from 898H2-6-15 to improve the recombinant anti-porcine CD3 immunotoxin. Porcine CD3εγ ectodomain single-chain fusion protein will also be a very useful reagent to study the soluble phase interaction between porcine CD3εγ and porcine CD3 antibodies such as 898H2-6-15.  相似文献   

15.
Brizio C  Barile M  Brandsch R 《FEBS letters》2002,519(1-3):141-146
Tobacco plants were engineered to express SMAP-29, a mammalian antimicrobial peptide of innate immunity, as fusion protein with modified vacuolar membrane ATPase intein. The peptide was purified taking advantage of the intein-mediated self-cleaving mechanism. SMAP-29 was immunologically detected in the chromatographic eluate and appeared tightly bound to copurified plant proteins. Electrophoretic separation under disaggregating conditions indicated that the recombinant peptide was cleaved off by intein at the expected site and an overlay gel assay demonstrated that the peptide retained antimicrobial activity. These results indicate that a modified intein expression system can be used to produce pharmaceutical peptides in transgenic plants.  相似文献   

16.
A strategy for purification of inclusion body-forming proteins is described, in which the positively charged domain Z(basic) is used as a fusion partner for capture of denatured proteins on a cation exchange column. It is shown that the purification tag is selective under denaturing conditions. Furthermore, the new strategy for purification of proteins from inclusion bodies is compared with the commonly used method for purification of His(6)-tagged inclusion body proteins. Finally, the simple and effective means of target protein capture provided by the Z(basic) tag is further successfully explored for solid-phase refolding. This procedure has the inherited advantage of combining purification and refolding in one step and offers the advantage of eluting the concentrated product in a suitable buffer.  相似文献   

17.
The vasopressin type 2 (V2R) receptor belongs to the class of G-protein coupled receptors. It is mainly expressed in the membrane of kidney tubules, where it is activated by the extracellular arginine vasopressin. In men, inactivating and activating mutations cause nephrogenic diabetes insipidus and the nephrogenic syndrome of inappropriate antidiuresis respectively. Like most GPCRs, V2R's third intracellular loop (V2R-i3) is involved in the binding and activation of its major effector, the GαS protein. We overexpressed the V2R??????? fragment corresponding to V2R-i3 as a fusion protein with thioredoxin A at the N-terminus and a hexahistidine tag between the two proteins. Recombinant V2R-i3 was designed to harbor N- and C-terminal cysteines, in order to introduce a disulfide bond between N- and C-terminal extremities and hence reproduce the hairpin fold presumably present in the full-length receptor. The fusion protein was produced as inclusion bodies in Escherichia coli and purified by nickel affinity chromatography under denaturing conditions. After a refolding step, thioredoxin and hexahistidine tags were specifically cleaved with the tobacco etch virus protease. The hydrolysis yield, initially very low, increased up to 80% thanks to optimization of buffers and refolding methods. The cleaved fragment, V2???????, devoid of any tag, was then eluted with low imidazole concentrations in a second nickel affinity chromatography in denaturing conditions. The final yield was sufficient to prepare a 1?N-13C labeled NMR sample suitable for triple resonance experiments. We assigned all NMR resonances and confirmed the correct peptide sequence. As expected, the peptide forms a hairpin stabilized by a disulfide bond between its N- and C-terminal parts, thus mimicking its native structure in the full-length receptor. This study may provide a strategy for producing and studying the structure/function relationship of GPCR fragments.  相似文献   

18.
Immunotoxins might be potential in treatment of cancer for their ability to kill selected cell populations. We constructed a novel immunotoxin hS83P34 by fusing N-terminal 34 amino acid fragment of human perforin to the C-terminus of humanized single-chain fragment variable antibody against CTLA4. The fusion protein was inductively expressed as inclusion bodies at a high level about 30% of total bacterial proteins. After washing with buffer containing 2 M urea, the purity of inclusion body was about 71%. The washed inclusion bodies were solubilized in 8 M urea and further purified to homogeneity (approximately 92% purity) by cation-exchange chromatography and Ni-agarose affinity chromatography under denaturing condition. The inclusion body refolding conditions were optimized following Pro-Matrix Protein Refolding Guide. After refolded in Tris buffer (pH 8.0) containing 1M urea, 0.8 M l-arginine, and 2 mM GSH:0.2 mM GSSG or 2 mM GSH:0.4 mM GSSG for 18h at 4 degrees C, over 90% proteins were recovered from inclusion bodies. In vitro dose-dependent cytotoxicity assay demonstrates that hS83P34 is only toxic to CTLA4-positive cells. IC(50) of hS83P34 for leukemic cells Raji and 6T-CEM are about 0.85 and 1.3 microM individually. Whereas, CTLA4-negative endothelial cell ECV-304 is resistant to hS83P34.  相似文献   

19.
In this work, the intein fusion approach was used for expression and purification of cathelicidin-like peptide SMAP-29 from Escherichia coli cultures. To overcome the high toxicity of the antimicrobial peptide against host cells, both C- and N-terminal fusions with Sce VMA intein were evaluated. The fusion of SMAP-29 with the N-terminus of intein had a dramatic lethal effect. In contrast, chimeric constructs harboring SMAP-29 linked to the C-terminus of intein displayed no significant inhibition of bacterial growth. Expression of intein-SMAP fusion protein was then induced in ER2566 E. coli strain by IPTG addition and different experimental conditions were tested in order to optimize the recovery of the soluble protein complex. Peptide purification was carried out by affinity chromatography: the chitin binding domain linked to intein was used to immobilize the chimeric protein on a chitin column and intein-mediated splicing of target peptide was obtained by thiol addition. Microbroth dilution assay showed that recombinant SMAP-29 displayed a high, dose-dependent bactericidal activity. These data demonstrate that the fusion of SMAP-29 with C-intein was able to inactivate the antimicrobial properties of the cathelicidin peptide allowing the expression of fusion protein in the host cell. The intein-mediated purification supplied an effective way to recover the fusion partner in its proper biologically active form.  相似文献   

20.
A new isotope labeling technique for peptide segments in a protein sample was recently established using the protein splicing element intein [Yamazaki et al. (1998) J. Am. Chem. Soc., 120, 5591–5592]. This method makes it possible to observe signals of a selected amino (N-) or carboxyl (C-) terminal region along a peptide chain. However, there is a problem with the yield of the segmentally labeled protein. In this paper, we report an increase in the yield of the protein that enables the production of sufficient amounts of segmentally 13C/15N-labeled protein samples. This was achieved by improvement of the expression level of the N-terminal fragment in cells and the efficiency of refolding into the active splicing conformation. The N-terminal fragment was expressed as a fused protein with the cellulose binding domain at its N-terminus, which was expressed as an insoluble peptide in cells and the expression level was increased. Incubation with 2.5 M urea and 50% glycerol increased the efficiency of the refolding greatly, thereby raising the final yields of the ligated proteins. The feasibility of application of the method to a high-molecular-weight protein was demonstrated by the results for a maltose binding protein consisting of 370 amino acids. All four examined joints in the maltose binding protein were successfully ligated to produce segmentally labeled protein samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号