首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Langmuir-Blodgett (LB) method was applied and a few series of advancing and receding contact angles measurements as a function of time were performed to examine stability of model phospholipid monolayers during their contact with water, formamide and diiodomethane droplets. The studied monolayer was single-component saturated phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) transferred onto mica surface. When the time of the contact angle measurements is prolonged in these systems, some changes in the DPPC layer structure occur due to the contact with probing liquid, especially water, which is reflected in the changes of measured contact angle. Generally, with increasing time of the droplet contact with DPPC monolayer the contact angle decreases. Some correlation between the contact angle decrease and molecular rearrangements of initially hydrophobic DPPC monolayer is observed if it comes into contact with water. On the other hand, the contact angle completed within the first few seconds can faithfully reflect the original structure of the layer, and thus its energetic state, because during this time the structure changes are insignificant. Basing on the measured contact angles the monolayer's apparent surface free energy and its components, corresponding to different contact times of the droplets, were calculated. These results are helpful for better characterization of the processes taking place in the phospholipid layers being in contact with polar (water and formamide) and nonpolar (diiodomethane) liquids.  相似文献   

2.
Abstract

The changes of wetting state of water droplet on the solid surface featuring pillared structures are quantitatively studied by Coarse Grained simulation. Our results demonstrate that wetting state changes with the different topography (surface roughness), and it depends on the intrinsic hydrophilic/hydrophobic property of surface as well. Only if the contact angle of water droplet on the smooth surface is larger than 93.13°, the wetting state translates from the Wenzel state to the Cassie state on the rough surface with certain pillar height and width, and the contact angle climb up to the highest point and then remain almost unchanged with the increasing of pillar height and the same pillar distance. However, the wetting state does not change if the contact angle on the smooth surface is 85.1° or less, no matter what pillar structure the surface has. Additionally, the contact angles will remain almost unchanged if the pillar height is higher than a certain value. Our simulation results provide a quantitative understanding about the wetting state of water droplet on solid rough surfaces, and the results show the wetting state can be controlled by combining rough structure design and hydrophilic/hydrophobic property change of surfaces.  相似文献   

3.
Water droplets on bare silicon surfaces are studied to examine the wetting behaviour as a function of the surface energy and to parameterise water–silicon interactions in order to recover the hydrophobic behaviour measured by experiments. Two different wetting regimes characterised by a critical interaction strength value are observed. At a threshold value of the water–silicon interaction parameter, water molecules start penetrating into the first layer of silicon surface under thermally vibrating walls, resulting in two distinct wetting behaviours. Fixed (cold) silicon walls do not exhibit the two different wetting characteristics. Size effects are studied for nano-scale droplets, and line tension influence is observed depending on the surface wettability. Decrease in the droplet size increases the contact angle values for the low wetting cases, while contact angles decrease for smaller droplets on the high wetting surfaces. Considering the line tension effects and droplet size, ?Si–O for water–silicon interactions to recover the hydrophobic behaviour of silicon surfaces is estimated to be 12.5% of the value predicted using the Lorentz–Berthelot mixing rule.  相似文献   

4.
The line tension for a Lennard–Jones (LJ) fluid on a (9, 3) solid of varying strength was calculated using Monte Carlo simulations. A new perturbation method was used to determine the interfacial tension between liquid–vapour, solid–liquid and solid–vapour phases for this system to determine the Young's equation contact angle. Cylindrical and spherical nanodroplets were simulated for comparison. The contact angles from the cylindrical drops and Young's equation agree very well over the range of surface strengths and cylindrical drop sizes, except on a very weak surface. Tolman length effects were not observable for cylindrical drops. This shows that quite small systems can reproduce macroscopic contact angles. For spherical droplets, a deviation between the contact angle of spherical droplets and Young's equation was evident, but decreased with increasing interaction strengths to be negligible for contact angles less than 90°. Linear fitting of the contact angle data for varying droplet sizes showed no clear effect by line tension on contact angle. All calculated line tension values have a magnitude less than 4 × 10? 12 J/m with both negative and positive signs. The best estimate of line tension for this system of LJ droplets was 1 × 10? 13 J/m, which is smaller than the reported estimations in the literature, and is too small to be conclusively positive or negative in value.  相似文献   

5.
The contact angles of Lennard-Jones fluid droplets on a structureless solid surface, simulated using Monte Carlo simulation, are calculated by fitting isochoric surfaces and making a number of assumptions about the droplet. The results show that there are significant uncertainties in the calculated contact angles due to the choice of these assumptions, such as the grid size used in tracking the isochoric density profile, the omission of isochoric data points near the surface and the function used to fit the isochoric profile. In this study, we propose a new method of calculating density contours based on atomic density instead of number density. This method results in a much smaller variation in contact angle when applying different assumptions than using number density for isochoric contours. The most consistent results, across a range of assumptions about the droplet and the contact angle, come from averaging the contact angle from several isochoric density profiles. In addition, this gives a measurement of the variation due to the choice of isochoric density.  相似文献   

6.
Fungal surface hydrophobicity has many ecological functions and water contact angles measurement is a direct and simple approach for its characterization. The objective of this study was to evaluate if in-vitro growth conditions coupled with versatile image analysis allows for more accurate fungal contact angle measurements. Fungal cultures were grown on agar slide media and contact angles were measured utilizing a modified microscope and digital camera setup. Advanced imaging software was adopted for contact angle determination. Contact angles were observed in hydrophobic, hydrophilic and a newly created chronoamphiphilic class containing fungi taxa with changing surface hydrophobicity. Previous methods are unable to detect slight changes in hydrophobicity, which provide vital information of hydrophobicity expression patterns. Our method allows for easy and efficient characterization of hydrophobicity, minimizing disturbance to cultures and quantifying subtle variation in hydrophobicity.  相似文献   

7.
The role of bacterial cell wall hydrophobicity in adhesion   总被引:25,自引:0,他引:25  
In this study, the adhesion of bacteria differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was measured as the contact angle of water on a bacterial layer collected on a microfilter. The contact angles ranged from 15 to 70 degrees. This method was compared with procedures based upon adhesion to hexadecane and with the partition of cells in a polyethylene glycol-dextran two-phase system. The results obtained with these three methods agreed reasonably well. The adhesion of 16 bacterial strains was measured on sulfated polystyrene as the solid phase. These experiments showed that hydrophobic cells adhered to a greater extent than hydrophilic cells. The extent of adhesion correlated well with the measured contact angles (linear regression coefficient, 0.8).  相似文献   

8.
The role of bacterial cell wall hydrophobicity in adhesion.   总被引:31,自引:18,他引:13       下载免费PDF全文
In this study, the adhesion of bacteria differing in surface hydrophobicity was investigated. Cell wall hydrophobicity was measured as the contact angle of water on a bacterial layer collected on a microfilter. The contact angles ranged from 15 to 70 degrees. This method was compared with procedures based upon adhesion to hexadecane and with the partition of cells in a polyethylene glycol-dextran two-phase system. The results obtained with these three methods agreed reasonably well. The adhesion of 16 bacterial strains was measured on sulfated polystyrene as the solid phase. These experiments showed that hydrophobic cells adhered to a greater extent than hydrophilic cells. The extent of adhesion correlated well with the measured contact angles (linear regression coefficient, 0.8).  相似文献   

9.
The aim of this study was to examine the hydrophobicities of 23 urogenital, dairy, poultry, and American Type Culture Collection isolates of lactobacilli and to determine the effect on hydrophobicity of serially passaging the strains in liquid medium. To this end, strains were grown after isolation and identification and then serially passaged up to 20 times. Hydrophobicity was assessed through contact angle measurements on lawns of cells by using water, formamide, methylene iodide, 1-bromonaphthalene, and hexadecane as wetting agents and through measurement of their partitioning in a hexadecane-water system. The hydrophobicities of these strains varied widely, with Lactobacillus casei strains being predominantly hydrophilic and L. acidophilus strains being mostly hydrophobic. For some isolates, serial passaging was accompanied by a clear loss of hydrophobic surface properties, whereas for other strains, cultures became heterogeneous in that some cells had already lost their hydrophobic surface properties while others were still hydrophobic. Adhesion of this collection of lactobacilli to hexadecane droplets in microbial adhesion to hexadecane (MATH) tests was driven by their aversion to water rather than by their affinity for hexadecane, as concluded from the fact that hexadecane contact angles were zero for all strains. Furthermore, adhesion of the lactobacilli to hexadecane in MATH tests occurred only when the water contact angle on the cells was above 60 degrees.  相似文献   

10.
The aim of this study was to examine the hydrophobicities of 23 urogenital, dairy, poultry, and American Type Culture Collection isolates of lactobacilli and to determine the effect on hydrophobicity of serially passaging the strains in liquid medium. To this end, strains were grown after isolation and identification and then serially passaged up to 20 times. Hydrophobicity was assessed through contact angle measurements on lawns of cells by using water, formamide, methylene iodide, 1-bromonaphthalene, and hexadecane as wetting agents and through measurement of their partitioning in a hexadecane-water system. The hydrophobicities of these strains varied widely, with Lactobacillus casei strains being predominantly hydrophilic and L. acidophilus strains being mostly hydrophobic. For some isolates, serial passaging was accompanied by a clear loss of hydrophobic surface properties, whereas for other strains, cultures became heterogeneous in that some cells had already lost their hydrophobic surface properties while others were still hydrophobic. Adhesion of this collection of lactobacilli to hexadecane droplets in microbial adhesion to hexadecane (MATH) tests was driven by their aversion to water rather than by their affinity for hexadecane, as concluded from the fact that hexadecane contact angles were zero for all strains. Furthermore, adhesion of the lactobacilli to hexadecane in MATH tests occurred only when the water contact angle on the cells was above 60 degrees.  相似文献   

11.
The effects of superficial wax on leaf wettability   总被引:6,自引:0,他引:6  
Experiments are described which provide more information on the role played by superficial waxes in the natural water-repellency of leaf surfaces. Contact angles of water were measured on a variety of leaf surfaces, before and after removal of wax, and on smooth films of the isolated superficial waxes. The differences in wettability of leaf surfaces are not wholly accounted for by differences which occur in the chemical and hydrophobic properties of their superficial waxes. Waxes isolated from leaves exhibiting contact angles less than 90° are usually more hydrophobic than the leaf surface itself. On most leaves exhibiting angles greater than 90° wax is the dominant factor governing water-repellency, the isolated wax normally making at least a 60 % contribution to the contact angle measured on the leaf surface. Additional factors, such as roughness, responsible for the occurrence of contact angles greater than 110° on certain leaf surfaces, reside in the wax layer. The hydrophobic properties of some leaves are unaffected by chloroform washing, revealing that superficial waxes play little part in their wettability.  相似文献   

12.
Wetting of the upper leaf surface of Juglans regia L. and of model surfaces colonized by epiphytic micro-organisms was investigated by measuring contact angles of aqueous solutions buffered at different pH values. During June to October 1995, contact angles of aqueous solutions on the leaf surface of J. regia decreased by angles ranging from 12° (low pH values) to 25° at high pH values. At the end of this vegetation period, wetting was strongly dependent on pH showing significantly lower contact angles with alkaline solutions (pH 9·0) than with acidic solutions (pH 3·0). Contact angle titration measured angles on the leaf surface as a function of the pH of buffered aqueous solutions, covering a pH range from 3·0 to 11·0. Titration curves revealed inflection points around 7·5, indicating the existence of ionizable carboxylic groups at the interface of the phylloplane. Altered leaf-surface wetting properties observed on the intact leaf surface could be simulated in model experiments by measuring contact angles on artificial surfaces colonized by Pseudomonas fluorescens and by epiphytic micro-organisms isolated from the phylloplane of J. regia . Strong evidence is provided that interfacial carboxylic groups derive from epiphytic micro-organisms present on the phylloplane. Results suggest that the age-dependent increase in, and pH dependence of, wetting as leaves mature are related to the presence of epiphytic micro-organisms on the phylloplane. Ecological consequences of increased leaf-surface wetting, concerning the structure of the leaf surface as a microhabitat for epiphytic micro-organisms, are discussed.  相似文献   

13.
Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique.The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa.The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3 μL water drop at room temperature.The measurement of the wetting property showed that the water contact angle of the unmodified as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time.The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure.The structure is composed of the micro-scaled alumina columns and pores.The height of columns and the depth of pores depend on the anodizing time.The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT),showing a change in the wettability from hydrophobicity to super-hydrophobicity.This improvement in the wetting property is attributed to the decrease in the surface energy caused by the chemical modification.  相似文献   

14.
西安市常见绿化植物叶片润湿性能及其影响因素   总被引:2,自引:0,他引:2  
利用接触角测定仪测定了西安市21种常见绿化植物叶片表面的接触角,探讨了叶片表面特性如蜡质、绒毛、气孔对接触角的影响。结果表明,植物叶片正背面、物种间的接触角差异均显著,叶片正面和背面接触角大小在40°~140°。接触角大小与变异系数呈负相关,可能由于接触角小的润湿叶片在不同的生境和位置下,受到环境条件的影响较大而出现大的变异;接触角较大的非润湿性叶片,环境物质持留时间较短,对叶片形态和组成影响较小,因而出现小的变异。植物叶片表面的接触角随蜡质含量的升高而增大。表皮蜡质去除后大部分叶片接触角明显降低,尤其是疏水性较强的银杏(Ginkgo biloba)、月季(Ro-sa chinensis)和紫叶小檗(Berberis thunbergii)。女贞(Ligustrum lucidum)正背面、加杨(Popu-lus canadensis)背面等亲水型的叶片蜡质去除后接触角反而增大。叶片绒毛的多少及其形态、分布方式对接触角具有重要的影响,不同的作用方式表现出润湿和不润湿的特征,人为将其去除可以增加叶片的润湿性。背面气孔密度与气孔长度、保卫细胞长度呈负相关;接触角则与气孔密度呈负相关,与气孔长度呈正相关。  相似文献   

15.
The role of cell and surface hydrophobicity in the adherence of the waterborne bacterium Mycobacterium smegmatis to nanostructures and biofilm formation was investigated. Carbon nanostructures (CNs) were synthesized using a flame reactor and deposited on stainless steel grids and foils, and on silicon wafers that had different initial surface hydrophobicities. Surface hydrophobicity was measured as the contact angle of water droplets. The surfaces were incubated in suspensions of isogenic hydrophobic and hydrophilic strains of M. smegmatis and temporal measurements of the numbers of adherent cells were made. The hydrophobic, rough mutant of M. smegmatis adhered more readily and formed denser biofilms on all surfaces compared to its hydrophilic, smooth parent. Biofilm formation led to alterations in the hydrophobicity of the substratum surfaces, demonstrating that bacterial cells attached to CNs are capable of modifying the surface characteristics.  相似文献   

16.
Wetting of the upper needle surface of Abies grandis Lindl. by aqueous solutions of different pH values was investigated. With increasing needle age, contact angles decreased significantly from about 75° on current-year needles to values lower than 30° on 4-year-old needles. On older needles, contact angles were significantly lower, by more than 10°, when aqueous solutions of pH9-0 were used compared with those of pH3-0. On the surfaces of older needles, contact angle titrations were carried out, contact angles being measured with aqueous solutions covering a pH range from 3.0 to 11.0. Measured titration curves showed clear inflection points around pH 7.0, indicating the existence of ionizable carboxylie groups in the interface between needle surface and atmosphere. The evidence seems convincing that the pronounced pH dependence of wetting is mainly due to the presence and/or activity of epiphyllic micro-organisms, whereas the cuticular wax composition of Abies grandis needles does not appear to contribute significantly to this phenomenon. Thus, the results presented here allow the general conclusion that changes of contact angles measured on leaf surfaces may not always be due to changes in the leaf surface chemistry and/or the fine structure of leaf surface waxes, but may also be due to increased amounts of epiphyllic micro-organisms significantly altering the leaf surface wetting properties.  相似文献   

17.
Spherical and cylindrical water droplets on silicon surface are studied to tune the silicon–oxygen interaction. We use molecular dynamics simulations to estimate the contact angle of two different shaped droplets. We found that the cylindrical droplets are independent of the line tension as their three phases curvature is equal zero. Additionally, we compare an analytical model, taking into account or not the Tolman length and we show that for spherical small size droplets, this length is important to be included, in contrast to cylindrical droplets in which the influence of the Tolman length is negligible. We demonstrate that the usual convenient way to exclude linear tension in the general case can give wrong results. Here, we consider cylindrical droplets, since their contact angle does not depend on the droplet size in the range of few to 10ths of nanometres. The droplets are stabilised due to the periodic boundary conditions. This allows us to propose a new parameterisation for nanoscale droplets, which is independent the size of the droplets or its shape, minimising at the same time the calculation procedure. With the proposed methodology, we can extract the epsilon parameter of the interaction potential between a liquid and a solid from the nanoscaled molecular simulation with only as input the macrosized experimental wetting angle for a given temperature.  相似文献   

18.
The packing structures of transmembrane helices are traditionally attributed to patterns in residues along the contact surface. In this view, besides keeping the helices confined in the membrane, the bilayer has only a minor effect on the helices structure. Here, we use two different approaches to show that the lipid environment has a crucial effect in determining the cross-angle distribution of packed helices. We analyzed structural data of a membrane proteins database. We show that the distribution of cross angles of helix pairs in this database is statistically indistinguishable from the cross-angle distribution of two noninteracting helices imbedded in the membrane. These results suggest that the cross angle is, to a large extent, determined by the tilt angle of the individual helices. We test this hypothesis using molecular simulations of a coarse-grained model that contains no specific residue interactions. These simulations reproduce the same cross-angle distribution as found in the database. As the tilt angle of a helix is dominated by hydrophobic mismatch between the protein and surrounding lipids, our results indicate that hydrophobic mismatch is the dominant factor guiding the transmembrane helix packing. Other short-range forces might then fine-tune the structure to its final configuration.  相似文献   

19.
The contact angles of distilled water and methanol solution on the wings of butterflies were determined by a visual contact angle measuring system. The scale structures of the wings were observed using scanning electron microscopy, The influence of the scale micro- and ultra-structure on the wettability was investigated. Results show that the contact angle of distilled water on the wing surfaces varies from 134.0° to 159.2°. High hydrophobicity is found in six species with contact angles greater than 150°. The wing surfaces of some species are not only hydrophobic but also resist the wetting by methanol solution with 55% concentration. Only two species in Parnassius can not resist the wetting because the micro-structure (spindle-like shape) and ultra-structure (pinnule-like shape) of the wing scales are remarkably different from that of other species. The concentration of methanol solution for the occurrence of spreading/wetting on the wing surfaces of different species varies from 70% to 95%. After wetting by methanol solution for 10 min, the distilled water contact angle on the wing surface increases by 0.8°-2.1°, showing the promotion of capacity against wetting by distilled water.  相似文献   

20.
【目的】茶小绿叶蝉Empoasca onukii体表覆盖的网粒体具有超疏水性,杀虫剂喷雾触碰虫体后药滴动态是否受网粒体影响尚未完全清楚。本研究旨在明确网粒体在茶小绿叶蝉成虫抵御杀虫剂雾滴渗透的屏障作用。【方法】以罗丹明B(RhB)作为指示剂添加到测试的杀虫剂(联苯菊酯和茚虫威)中,利用可拍照显微镜观察记录联苯菊酯(1.25 mg/L和0.05 mg/L)和茚虫威(0.006 mg/L和0.0009 mg/L)喷雾处理后24 h,茶小绿叶蝉成虫翅面药滴滚落、蒸发、被抖动扫除等行为动态,分析翅面药滴大小与蒸发后固化形态的关系;测定网粒体移除前后药滴与翅面的接触角,统计不同疏水性翅面上的网粒体分布密度;收集并利用扫描电镜分析叶蝉体表抖落的药滴及药剂颗粒是否含有网粒体,同时观察网粒体与翅面残留溶质接触的显微形态。【结果】药滴动态观察显示,圆球状药滴在茶小绿叶蝉成虫翅面不会自行滚落,72.0%成虫静止等待翅面药滴蒸发,蒸发后形成药剂颗粒或不规则药斑与药滴大小无关,而与虫体翅面的疏水类型有关,蒸发后24 h内翅面的药剂颗粒都被叶蝉抖动扫除;在叶蝉疏水性强翅面上,药滴的静态接触角为141.63±8.06°,药滴蒸发后形成药剂颗粒,网粒体分布密度为6.1±1.2粒/μm2,而疏水性弱的翅面上药滴蒸发形成药斑,网粒体分布密度为2.2±0.9粒/μm2;SEM图片显示被茶小绿叶蝉抖落的药滴和药剂颗粒表面均带有网粒体,药斑和药剂颗粒的显微结构显示网粒体出现聚集并与残留溶质相融合。【结论】超疏水性网粒体的均匀分布决定药滴触碰茶小绿叶蝉成虫翅面后形成圆球状,网粒体的亲油性及团聚性促使药滴蒸发后形成药剂颗粒,网粒体的脱落性使药剂颗粒可被茶小绿叶蝉成虫抖动扫除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号