首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 267 毫秒
1.
Damage to foliage of the tomato, Lycopersicon esculentum, causes the induction of proteinase inhibitors and of the oxidative enzymes polyphenol oxidase, peroxidase, and lipoxygenase. The time courses of induction of these proteins by feeding of two caterpillar species (Manduca sexta and Helicoverpa zea) were studied in a series of experiments. In another series of experiments, the effects of plant age on the inducibility of these proteins were studied. In the time course experiments, induction of proteinase inhibitors and oxidative enzymes in the damaged leaflet was rapid, with higher protein activities evident in damaged leaflets within 12–24 h of damage, depending on the enzyme and the species of insect used to damage the plant. Systemic induction of proteinase inhibitors was also rapid, but systemic induction of polyphenol oxidase was delayed relative to systemic induction of proteinase inhibitors, possibly because high constitutive polyphenol oxidase activities obscured expression of systemic induction at earlier time points. Lipoxygenase and peroxidase were not induced systemically. Induction of all proteins persisted for at least 21 days. In the phenology experiments, inducibility of all proteins decreased in magnitude and was less consistent as plants aged. The results of these experiments exemplify the numerous constraints on induction in tomato plants. Knowledge of these physiological constraints is important to an understanding of the ecological role and causal basis of induced resistance.  相似文献   

2.
Specificity of induced resistance in the tomato, Lycopersicon esculentum   总被引:2,自引:0,他引:2  
Specificity in the induced responses of tomato foliage to arthropod herbivores was investigated. We distinguished between two aspects of specificity: specificity of effect (the range of organisms affected by a given induced response), and specificity of elicitation (ability of the plant to generate distinct chemical responses to different damage types). Specificity of effect was investigated by examining the effect of restricted feeding by Helicoverpa zea on the resistance of tomato plants to an aphid species (Macrosiphum euphorbiae), a mite species (Tetranychus urticae), a noctuid species (Spodoptera exigua), and to a phytopathogen, Pseudomonas syringae pv. tomato. Prior H. zea feeding was found to increase the resistance of tomato plants to all four organisms. Specificity in elicitation was investigated by examining the effect of aphid feeding on the activities of four defense-related proteins and on the suitability of foliage for S. exigua. Aphid feeding was found to induce peroxidase and lipoxygenase activities but not polyphenol oxidase and proteinase inhibitor activities; this response is distinct from the response to H. zea feeding, which induces polyphenol oxidase and proteinase inhibitors but not peroxidase. Leaflets which had been fed upon by aphids were better sources of food for S. exigua than were leaflets which had not been fed upon by aphids. Studies of both these aspects of specificity are needed to understand the way in which plants coordinate and integrate induced responses against insects with other physiological processes. Received: 20 December 1996 / Accepted: 2 July 1997  相似文献   

3.
Using four-leaf tomato plants (Lycopersicon esculentum Mill) as a model system, we examined the spatial distribution of damage-induced changes in foliar protein activities. Terminal leaflets of third leaves of tomato plants were subjected to one of four types of damage, and the activities of four putative defenses — polyphenol oxidase, peroxidase, lipoxygenase, and proteinase inhibitors — were determined at four leaflet positions relative to the damaged leaflet. Multiple proteins were differentially induced by the different damage types. For a given damage type, the spatial pattern of induction was different for different proteins. More exhaustive spatial mapping of the polyphenol oxidase response to feeding by Helicoverpa zea Boddie revealed that damaged plants were more variable, both within and between plants, in the activity of this enzyme than undamaged plants. The spatial patterns of induction of these four putative defenses throughout the plant suggest that the induced plant is chemically heterogeneous and that different mechanisms of defense operate in different regions of the plant. These data are critical to an elucidation of cause-effect relationships between induced chemicals and induced resistance in tomato foliage. In addition, these data suggest that induction functions, in part, to increase chemical variation in tomato plants; the potential role of phytochemical variation in plant defense is discussed.  相似文献   

4.
Plant defence mechanisms can reduce the digestive enzyme activity of insect pests. The aim of this study was to determine the relationship between the production of proteinase inhibitors, lipoxygenase and polyphenol oxidase activity in Coffea arabica (Catuai IAC 15) plants, and the digestive enzyme activity in the pest Leucoptera coffeella (Lepidoptera: Lyonetiidae) after feeding on the plant. The production of proteinase inhibitors was evaluated with L‐BApNA as a substrate. We studied lipoxygenase activity with linoleic acid and polyphenol oxidase activity with catechol substrates, in coffee plants damaged (T1) and not damaged (T2) by L. coffeella. L. coffeella digestive enzyme activity was verified by trypsinlike (substrate l ‐BApNA and l ‐TAME), chymotrypsinlike (BTpNA and ATEE), cysteine proteases (l ‐BApNA) and total protease (azocasein). Proteinase inhibitor production and lipoxygenase and polyphenol oxidase activity in C. arabica increases (P ≤ 0.05) with L. coffeella damage. Our results provide important information that these enzymatic activities may play a role in plant defence processes in C. arabica. Trypsinlike activity increases, whereas chymotrypsin‐like and cysteine protease activity decrease in the midgut of L. coffeella, which acts as a defence mechanism.  相似文献   

5.
The role of salicylic acid (SA) in plant responses to pathogens has been well documented, but its direct and indirect effects on plant responses to insects are not so well understood. We examined the effects of SA, alone and in combination with jasmonic acid (JA), on the performance of the generalist herbivore, Spodoptera exigua, in wild-type and mutant Arabidopsis thaliana genotypes that varied genetically in their ability to mount SA- and JA-mediated defence responses. In one experiment, growth of S. exigua larvae was highest on the Wassilewskija wild-type, intermediate on the Columbia wild-type and the JA-deficient fad mutant, and lowest on the nim1-1 and jar1-mutants, which are defective in the SA and JA pathways, respectively. Activity of guaiacol peroxidase, polyphenoloxidase, n-acetylglucosaminidase, and trypsin inhibitor varied by genotype but did not correlate with insect performance. SA treatment increased growth of S. exigua larvae by approximately 35% over all genotypes, but had no discernable effect on activities of the four defence proteins. In a second experiment, growth of S. exigua was highest across treatments on the cep1 mutant, a constitutive expressor of high SA levels and systemic acquired resistance, and lowest on the fad mutant, which is JA-deficient. JA treatment generally increased activity of all four defence proteins, increased total glucosinolate levels and reduced insect growth by approximately 25% over all genotypes. SA generally inhibited expression of JA-induced resistance to S. exigua when both hormones were applied simultaneously. Across genotypes and treatments, larval mass was negatively correlated with the activity of trypsin inhibitor and polyphenoloxidase and with total glucosinolate levels, and insect damage was negatively correlated with the activity of polyphenoloxidase. SA had little effect on the induction of defence protein activity by JA. However, SA attenuated the induction of glucosinolates by JA and therefore may explain better the interactive effects of SA and JA on insect performance. This study illustrates that direct and indirect cross-effects of SA on resistance to S. exigua can occur in A. thaliana. Effects of SA may be mediated through effects on plant defence chemistry or other aspects of the suitability of foliage for insect feeding and growth.  相似文献   

6.
Novel types of proteinase inhibitors with multi-inhibitory activities were generated by replacement of phytocystatin domains in sunflower multi-cystatin (SMC) by the serine proteinase inhibitor BGIT from bitter gourd seeds. Two chimeric inhibitors SMC-T3 and SMC-T23, in which the third domain in SMC and the second and third domains in SMC were replaced by BGIT, acquired trypsin inhibitory activity (Ki: 1.46 x 10(-7) M and 1.75 x 10(-7) M), retaining inhibitory activity toward papain (Ki: 4.5 x 10(-8) M and 1.52 x 10(-7) M), respectively. We compared the chimeric inhibitors and the recombinant SMC (r-SMC) in relation to their effects on the growth of larval Spodoptera exigua. When the second instar larvae were reared on a diet containing rSMC, SMC-T3, or SMC-T23 for ten days, a significant reduction in weight gain was observed. Mean weights for rSMC, SMC-T3, and SMC-T23 were 43 mg, 32 mg, and 43 mg, respectively, as compared with that (60 mg) for the absence of the inhibitor. In contrast, BGIT had little effect on the growth of the S. exigua larvae. This result indicated that the chimeric inhibitor SMC-T3 with two phytocystatin domains and one serine proteinase inhibitor domain is an efficient inhibitor of proteinases in the S. exigua larvae. Therefore, this novel type of proteinase inhibitor with multi-inhibitory activities may represent a promising protein for successful application to a transgenic plant with insect resistance.  相似文献   

7.
Jasmonate-mediated induced plant resistance affects a community of herbivores   总被引:17,自引:0,他引:17  
1. The negative effect of induced plant resistance on the preference and performance of herbivores is a well‐documented ecological phenomenon that is thought to be important for both plants and herbivores. This study links the well‐developed mechanistic understanding of the biochemistry of induced plant resistance in the tomato system with an examination of how these mechanisms affect the community of herbivores in the field. 2. Several proteins that are induced in tomato foliage following herbivore damage have been linked causally to reductions in herbivore performance under laboratory conditions. Application of jasmonic acid, a natural elicitor of these defensive proteins, to tomato foliage stimulates induced responses to herbivory. 3. Jasmonic acid was sprayed on plants in three doses to generate plants with varying levels of induced responses, which were measured as increases in the activities of proteinase inhibitors and polyphenol oxidase. 4. Field experiments conducted over 3 years indicated that induction of these defensive proteins is associated with decreases in the abundance of all four naturally abundant herbivores, including insects in three feeding guilds, caterpillars, flea beetles, aphids, and thrips. Induced resistance killed early instars of noctuid caterpillars. Adult flea beetles strongly preferred control plants over induced plants, and this effect on host plant preference probably contributed to differences in the natural abundance of flea beetles. 5. The general nature of the effects observed in this study suggests that induced resistance will suppress many members of the herbivore community. By linking plant biochemistry, insect preference, performance, and abundance, tools can be developed to manipulate plant resistance sensibly and to predict its outcome under field conditions.  相似文献   

8.
Zong N  Wang CZ 《Planta》2007,226(1):215-224
Plants respond differently to damage by different herbivorous insects. We speculated that sibling herbivorous species with different host ranges might also influence plant responses differently. Such differences may be associated with the diet breadth (specialization) of herbivores within a feeding guild, and the specialist may cause less intensive plant responses than the generalist. The tobacco Nicotinana tabacum L. is the common host plant of a generalist Helicoverpa armigera (Hübner) and a specialist H. assulta Guenée (Lepidoptera, Noctuidae). The induced responses of tobacco to feeding of these two noctuid herbivores and mechanical wounding were compared. The results showed that the feeding of the specialist H. assulta and the generalist H. armigera resulted in the same inducible defensive system, but response intensity of plants was different to these two species. Inductions of jasmonic acid (JA), lipoxygenase (LOX), and proteinase inhibitors (PIs) were not significantly different concerning these two species, but H. assulta caused the less intensive foliar polyphenol oxidase (PPO) increase, more intensive nicotine and peroxidase (POD) increases in tobacco than H. armigera. The defensive response of plant to herbivores with different diet breadth seems to be more complicated than we expected, and the specialist does not necessarily cause less intensive plant responses than the generalist.  相似文献   

9.
Peroxidase and polyphenol oxidase activities and peroxidase isozyme patterns were determined at different stages of hypocotyls of mung bean infected with Rhizoctonia solani. The effect of ethephon (2-chloroethyl phosphonic acid) has been studied. Peroxidase activity increased at 24 h after inoculation as compared with controls followed by a decline later. It increased at 120 h. Polyphenol oxidase activities increased after inoculation. Ethephon treatment increased the resistance to Rhizoctonia solani and enhanced peroxidase and polyphenol oxidase activities. Peroxidase isozyme pattern was found to change as a result of inoculation and ethephon treatment. The results indicated that ethephon-induced resistance was related to peroxidase and polyphenol oxidase activities.  相似文献   

10.
Experiments were conducted to investigate the potential induction of plant defenses by Myzus persicae Sulzer (Homoptera: Aphididae) feeding on five lupin, Lupinus spp. (Leguminosae), varieties with well‐characterized levels of aphid resistance. Myzus persicae feeding on L. angustifolius and L. luteus varieties induced genotype‐specific changes in their host that were not consistent with the level of aphid resistance or the plant species. The plant responses were systemically detected by apterous and alate forms of the aphids. Chemical assays revealed no induction of oxidizing enzyme (catalase, peroxidase, or polyphenol oxidase) activity, serine or cystein proteinase inhibitors, or soluble phenolics in any of the five varieties tested following 3 days of feeding by 10 or 30 aphids. However, there were significant differences among the five lupin varieties in the levels of peroxidase and polyphenol oxidase activity, proteinase inhibitors, and soluble phenolics.  相似文献   

11.
Summary Degradative changes in tissue during protoplast isolation were a contributing factor to low protoplast yields in the saltsensitive Grevillea arenaria (R. Brown) and the salt-tolerant Grevillea ilicifolia (R. Brown). Protein and malondialdehyde content decreased significantly during the protoplast isolation procedure. Acid and neutral proteases were identified, and high acid protease activities were correlated to low protoplast yields. Acid phosphatase, catalase, polyphenol oxidase and lipoxygenase activities increased in both Grevillea species with cell wall digestion. High activities of catalase and low levels of polyphenol oxidase were correlated with high protoplast yields. Levels of acid phosphatase and lipoxygenase were not good indicators of final protoplast yields. The addition of the anti-oxidant, reduced glutathione, and the acid protease inhibitor, pepstatin A, significantly increased protoplast yields. Strategies were identified to minimize deleterious degradative effects during the isolation of protoplasts, including strict pH control, testing a number of cell wall digestion enzymes, and the addition of anti-oxidative metabolites and protease inhibitors.  相似文献   

12.
The nutrient composition and enzyme activities in larvae of the beet armyworm, Spodoptera exigua (Hübner), fed on high, medium or low gossypol cotton cultivars were examined at different time intervals. Significantly lower free fatty acid was observed in larvae fed for 6 h on high gossypol ‘M9101’ compared to larvae fed on the low (ZMS13) and intermediate (HZ401) gossypol cultivars. Significantly higher trypsin activity was observed in larvae fed on high gossypol ‘M9101’ for 24 h compared to those fed for 1, 4 and 6 h. Significantly higher catalase and total superoxide dismutase enzyme activities were observed in larvae of S. exigua fed on high gossypol ‘M9101’ compared with low gossypol cultivars ‘ZMS13’ and ‘HZ401’ for 1, 4, 6 and 24 h. However, significantly lower carboxylesterase and acetylcholinesterase enzyme activities were found in larvae fed on high gossypol ‘M9101’ compared with the other cultivars for 1, 4, 6 and 24 h. The interaction between cotton variety and beet armyworm infestation time significantly affected the carboxylesterase enzyme activity in S. exigua. The characterization of the effects of plant allelochemicals on herbivorous larvae is important for aiding understanding of plant-insect interaction as well as in devising solutions to pest problems by breeding plant resistance, identifying metabolic targets for insecticide development, etc.  相似文献   

13.
The breaking of dormancy in apple buds (Malus domestica Borkh cv. York Imperial) by thidiazuron (N-phenyl-N′-1,2,3,-thidiazol-5-ylurea) was investigated in relation to catalase, peroxidase, and polyphenol oxidase activities and their isoenzyme patterns. The activity and number of isoenzymic components of catalase increased progressively during bud break, then decreased after buds started to grow. Peroxidase activity was highest during dormancy and declined during bud swell, increased at bud break, and decreased after bud expansion. Several isoperoxidases were observed in gel electrophoresis. Similar patterns were found at different growth stages of apple buds except for one peroxidase isoenzyme, P3, which disappeared 12 days after thidiazuron treatment. There was an inverse relationship between the activities of polyphenol oxidase and peroxidase during the development of apple buds. Apple buds have a very similar polyphenol oxidase isoenzyme pattern throughout bud development. However, the appearance and disappearance of minor isoenzymes were also observed. Phloridzin, rutin, p-coumaric, epicatechin, naringin, chlorogenic acid, and catechol were found in apple buds. Among them, phloridzin, rutin, and p-coumaric were the dominant phenolic compounds. Dormant buds contained a high amount of phenolic substances which decreased after bud break (4 days after thidiazuron treatment) then increased until the start of bud expansion. Phenolic compounds are found to be potent modifiers of catalase, peroxidase, and polyphenol oxidase activity, as both inhibitors and stimulators in apple buds.  相似文献   

14.
The breaking of dormancy in apple buds (Malus domestica Borkh cv. York Imperial) by thidiazuron (N-phenyl-N-1,2,3,-thidiazol-5-ylurea) was investigated in relation to catalase, peroxidase, and polyphenol oxidase activities and their isoenzyme patterns. The activity and number of isoenzymic components of catalase increased progressively during bud break, then decreased after buds started to grow. Peroxidase activity was highest during dormancy and declined during bud swell, increased at bud break, and decreased after bud expansion. Several isoperoxidases were observed in gel electrophoresis. Similar patterns were found at different growth stages of apple buds except for one peroxidase isoenzyme, P3, which disappeared 12 days after thidiazuron treatment. There was an inverse relationship between the activities of polyphenol oxidase and peroxidase during the development of apple buds. Apple buds have a very similar polyphenol oxidase isoenzyme pattern throughout bud development. However, the appearance and disappearance of minor isoenzymes were also observed. Phloridzin, rutin, p-coumaric, epicatechin, naringin, chlorogenic acid, and catechol were found in apple buds. Among them, phloridzin, rutin, and p-coumaric were the dominant phenolic compounds. Dormant buds contained a high amount of phenolic substances which decreased after bud break (4 days after thidiazuron treatment) then increased until the start of bud expansion. Phenolic compounds are found to be potent modifiers of catalase, peroxidase, and polyphenol oxidase activity, as both inhibitors and stimulators in apple buds.  相似文献   

15.
为探讨外源茉莉酸对青杨Populus cathayana的诱导抗性及其对舞毒蛾Lymantria dispar的影响, 室内对青杨扦插苗喷施不同浓度的茉莉酸(对照为0.17%丙酮), 分别在喷施后1, 5和10 d采集叶片分析其保护性酶活性的变化, 并接舞毒蛾幼虫于青杨苗木上观测其长发育情况。结果表明: 0.1 和0.001 mmol/L两种浓度的茉莉酸(JA)处理均使青杨叶过氧化物酶(POD)、 多酚氧化酶(PPO)、 苯丙氨酸解氨酶(PAL)、 胰凝乳蛋白酶抑制剂(CI)和胰蛋白酶抑制剂(TI)活性较对照增加(P<0.05)。取食茉莉酸诱导的青杨苗木后, 舞毒蛾幼虫的发育历期延长, 体重降低。0.1 mmol/L茉莉酸诱导的青杨苗木5 d后接虫, 使舞毒蛾幼虫的发育历期显著延长, 较对照长8 d; 接虫21 d后称重时, 取食茉莉酸诱导的青杨叶片的幼虫体重较对照组降低了50%~100%, 该结果说明外源茉莉酸诱导青杨产生了对舞毒蛾明显的抗虫性。  相似文献   

16.
【目的】探讨溴氰虫酰胺对甜菜夜蛾 Spodoptera exigua (Hübner)的亚致死效应,为甜菜夜蛾的综合防治和溴氰虫酰胺的合理使用提供理论依据。【方法】采用饲料混毒法,测定溴氰虫酰胺对甜菜夜蛾3龄幼虫的毒力,确定其亚致死剂量(LC10和LC25),并分别用该亚致死剂量处理甜菜夜蛾3龄幼虫,研究其对甜菜夜蛾的生长发育和体内3种解毒酶活性的影响。【结果】以LC10 和LC25剂量处理甜菜夜蛾3龄幼虫后,幼虫生长受到显著抑制,虫重抑制率分别为11.55%和27.68%;LC10和LC25处理组3龄幼虫到化蛹天数分别比对照组延长0.07和0.20 d;化蛹率显著低于对照组(80.93%),分别为63.89%和49.43%;成虫寿命显著缩短1.11 d和2.08 d;单雌产卵量和卵孵化率也低于对照组。亚致死剂量溴氰虫酰胺处理甜菜夜蛾幼虫后24-96 h,羧酸酯酶活性和谷胱甘肽-S转移酶活性表现出相似的变化趋势,呈先激活升高、后被抑制降低;而多功能氧化酶活性在药剂处理48 h和72 h均受到不同程度的抑制作用,这种抑制作用与浓度成正比。【结论】亚致死剂量的溴氰虫酰胺对甜菜夜蛾的生长发育有显著抑制作用,对其幼虫体内解毒酶活性也有不同程度的抑制作用。  相似文献   

17.
宋佳  王骏  叶茂 《生态学报》2020,40(15):5433-5440
茉莉酸甲酯(Methyl jasmonate, MeJA)与植物间的防御通讯密切相关,其挥发性强,可以在空气中传播而诱导邻近植物产生防御反应,为探明MeJA诱导邻近植株抗虫性的浓度和距离效应,本研究在大棚(长4 m×宽1 m×高1 m)进口处喷以不同浓度MeJA,检测离气味源60 cm、120 cm、180 cm、240 cm和300 cm远的番茄植株叶片多酚氧化酶(Polyphenol oxidase, PPO),过氧化物酶(Peroxidase, POD)和脂氧合酶(Lipoxygenase, LOX)的活性以及斜纹夜蛾幼虫取食不同处理番茄植株叶片后的体重增长率,研究结果表明1 mmol/L和10 mmol/L MeJA挥发物可以显著诱导增强邻近番茄植株叶片PPO,POD和LOX酶的活性,以离10 mmol/L MeJA气味源60 cm处植株叶片的酶活性最高,并随着距离的增加而呈降低的趋势;取食60 cm和300 cm对照组植株叶片的斜纹夜蛾幼虫其体重增长率没有显著差异,然而1 mmol/L和10 mmol/L MeJA处理下,取食300 cm处植株叶片的斜纹夜蛾幼虫其体重增长率显著高于取食60 cm处的,相同时间下以取食10 mmol/L MeJA处理组60 cm处植株叶片的幼虫体重增长率最低,以上研究结果表明MeJA对邻近番茄植株抗虫性的诱导有明显的浓度和距离效应。  相似文献   

18.
19.
The effect of regurgitant from Leptinotarsa decemlineata Say larvae on wound-induced responses was studied using two plant species, Solanum tuberosum L. and Phaseolus vulgaris L. Wounding of one leaf of intact S. tuberosum plants differentially affected ethylene production and activities of peroxidase and polyphenol oxidase. Only polyphenol oxidase activity was stimulated by wounding in both wounded and systemic leaves. Peroxidase activity was not affected by wounding. Wounding caused only a transient increase of ethylene production from wounded leaves. The application of regurgitant to wound surfaces stimulated ethylene production as well as activities of peroxidase and polyphenol oxidase in both wounded and systemic leaves. Wounding significantly enhanced ethylene production and polyphenol oxidase activity in wounded and systemic leaves of P. vulgaris . The application of regurgitant caused an amplification of ethylene production, peroxidase activity, and polyphenol oxidase activity, in both wounded and systemic leaves of bean plants. Several substances were tested for their role as possible endogenous signals in P. vulgaris . Hydrogen peroxide and methyl jasmonate appeared as potential local and systemic signals of ethylene formation in wounded bean plants. Local ethylene production in leaf discs was differentially affected by the regurgitant application in potato versus bean plants. While all tested concentrations of regurgitant caused stimulation of ethylene formation from potato leaf discs, ethylene production was completely inhibited by increasing concentrations of the regurgitant in bean leaf discs. Our data present evidence that ethylene may play an important role in the interaction between plants and herbivores at the level of recognition of a particular herbivore leading to specific induction of signalling cascades.  相似文献   

20.
The development of transgenic maize plants expressing soybean proteinase inhibitors could reduce the economic damage of one of the major maize pests in Brazil, the fall armyworm, Spodoptera frugiperda (J.E. Smith, 1797). We examined the influence of soybean proteinase inhibitors on digestive enzyme properties and development of S. frugiperda larvae. The inhibition of trypsin and chymotrypsin activities in vitro by soybean proteinase inhibitors suggested that either Kunitz (SBTI) or Bowman-Birk (SBBI) would have a potential antimetabolic effect when ingested by insect larvae. However, chronic ingestion of semipurified soybean inhibitors did not result in a significant reduction of growth and development of fall armyworm. Therefore, digestive serine proteinase activities (trypsin and chymotrypsin) of fall armyworm larvae were characterized. The results suggest that S. frugiperda was able to physiologically adapt to dietary proteinase inhibitors by altering the complement of proteolytic enzymes in the insect midguts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号