首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vgamma9Vdelta2 T cells, a major gammadelta PBL subset in human adults, have been previously implicated in dendritic cell (DC) licensing, owing to their high frequency in peripheral tissues and their ability to produce inflammatory cytokines upon recognition of a broad array of conserved Ags. Although these observations implied efficient recognition of Ag-expressing immature DC (iDC) by Vgamma9Vdelta2 T cells, the role played by DC subsets in activation of these lymphocytes has not been carefully studied so far. We show that iDC, and to a lesser extent mature DC, potentiated Th1 and Th2 cytokine, but not cytolytic or proliferative responses, of established Vgamma9Vdelta2 T cell clones and ex vivo memory Vgamma9Vdelta2 PBL stimulated by synthetic agonists. The ability of iDC to potentiate Vgamma9Vdelta2 production of inflammatory cytokines required for their own maturation suggested that Vgamma9Vdelta2 T cells, despite their strong lytic activity, could promote efficient iDC licensing without killing at suboptimal Ag doses. Accordingly Vgamma9Vdelta2 cells induced accelerated maturation of Ag-expressing iDC but not "bystander" DC, even within mixed cell populations comprising both Ag-expressing and nonexpressing iDC. Furthermore Vgamma9Vdelta2 cells induced full differentiation into IL-12-producing cells of iDC infected by Vgamma9Vdelta2-stimulating mycobacteria that were otherwise unable to induce complete DC maturation. In conclusion the ability of iDC to selectively potentiate cytokine response of memory Vgamma9Vdelta2 T cells could underlie the adjuvant effect of these lymphocytes, and possibly other natural memory T cells, on conventional T cell responses.  相似文献   

2.
The lack of available tumor antigens with strong immunogenicity, human leukocyte antigen restriction, and immunosuppression via regulatory T-cells (Tregs) and myeloid-derived suppressor cells are limitations for dendritic cell (DC)–based immunotherapy in patients with advanced head and neck cancer (HNC). We sought to overcome these limitations and induce effective antitumor immunity in the host. The effect of low-dose docetaxel (DTX) treatment on DC maturation was examined in an ex vivo study, and a phase I clinical trial of combination therapy with direct peritumoral immature DC (iDC) injection with OK-432 and low-dose cyclophosphamide (CTX) plus DTX was designed. Low-dose DTX did not negatively affect iDC viability and instead promoted maturation and IL-12 production. Five patients with metastatic or recurrent HNC were enrolled for the trial. All patients experienced grade 1 to 3 fevers. Intriguingly, elevated CD8+ effector T-cells and reduced Tregs were observed in four patients who completed two treatment cycles. All patients were judged to have progressive disease, but tumor regressions were observed in a subset of targeted metastatic lesions in two of five patients. Our results show that the combination of direct peritumoral iDC injection with OK-432 and low-dose CTX plus DTX is well tolerated and should give rise to changing the immune profile of T-cell subsets and improvement of immunosuppression in advanced HNC patients. Additionally, our ex vivo data on the effect of low-dose DTX treatment on DC maturation may contribute to developing new combination therapies with low-dose chemotherapy and immunotherapy.  相似文献   

3.
Background aimsModified vaccinia Ankara (MVA) is a promising vaccine vector for infectious diseases and malignancies. It is fundamental to ascertain its tropism in human leukocyte populations and immunostimulatory mechanisms for application in immunotherapy.MethodsHuman peripheral blood mononuclear cells (PBMC) and leukocyte subpopulations [monocyte-derived dendritic cells (DC), monocytes and B cells] were infected with MVA in order to evaluate their infection rate, changes in surface markers, cytokine expression and apoptosis.ResultsMonocytes, DC and B cells were most susceptible to MVA infection, followed by natural killer (NK) cells. Monocytes were activated strongly, with upregulation of co-stimulatory molecules, major histocompatibility complex (MHC) molecules and chemokine (C-C motif) receptor (CCR7), while immature DC showed partial activation and B cells were inhibited. Furthermore, expression of chemokine (C-X-C motif) ligand (CXCL10), tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-12p70 was enhanced but IL-1β and IL-10 were stable or even downregulated. MVA induced a high apoptosis rate of antigen-presenting cells (APC). Nevertheless, incubation of MVA-infected leukocytes with uninfected immature DC (iDC) led to complete maturation of the DC. Subsequently, the matured DC were able to stimulate cytomegalovirus (CMV)-immediate early protein (IE1)-specific T cells.ConclusionsMVA induces a T-helper (Th)-1-polarizing cytokine expression in APC. Furthermore, incubation of MVA-infected leukocytes with uninfected iDC leads to complete maturation of the DC and may be the basis for cross-presentation of MVA-encoded antigens. Thus this approach seems to be an ideal model for further studies with MVA-encoded viral antigens regarding immunotherapy and vaccination strategies.  相似文献   

4.
Nieda M  Tomiyama M  Egawa K 《Human cell》2003,16(4):199-204
Dendritic cells (DCs) are potent antigen presenting cells that are able to initiate and modulate immune responses and are hence exploited as cellular vaccines for immunotherapy. In particular DCs generated from peripheral blood monocytes (Mo-DCs) have been used with promising results as a new approach for the immunotherapy of cancer. In this study, we have analyzed the changes in the pattern of expression molecules on Mo-DCs during DC maturation using different maturation cytokine combinations and the expansion capacity of an antigen specific CD8+T cells monitored by flow cytometry with the fluorescent tetramers and anti-CD8 monoclonal antibody. These analyses revealed that the expansion of antigen specific CD8+T cells is the most effective when T cells were activated by fully maturated DCs by culturing monocytes for 5 days in the presence of GM-CSF and IL-4, followed by 2-3 days of maturation with pro-inflammatory mediators including TNFalpha, IL-6, IL-1beta and PGE2. These results pave the way to a more effective immunotherapy using DCs for patients with malignancy, as well as infectious diseases.  相似文献   

5.
Dendritic cell (DC) immunotherapy is capable of generating tumour‐specific immune responses. Different maturation strategies were previously tested to obtain DC capable of anti‐cancer responses in vitro, usually with limited clinical benefit. Mutual comparison of currently used maturation strategies and subsequent complex evaluation of DC functions and their stimulatory capacity on T cells was performed in this study to optimize the DC vaccination strategy for further clinical application. DC were generated from monocytes using granulocyte–macrophage colony‐stimulating factor (GM‐CSF) and interleukin (IL)‐4, pulsed with whole tumour cell lysate and then matured with one of five selected maturation strategies or cultured without additional maturation stimulus. DC were characterized with regard to their surface marker expression, cytokine profiles, migratory capacity, allogeneic and autologous T cell stimulatory capacity as well as their specific cytotoxicity against tumour antigens. We were able to demonstrate extensive variability among different maturation strategies currently used in DC immunotherapeutic protocols that may at least partially explain limited clinical benefit of some clinical trials with such DC. We identified DC matured with interferon‐γ and lipopolysaccharide as the most attractive candidate for future clinical trials in cancer immunotherapy.  相似文献   

6.
Understanding the whole process of dendritic cell (DC) activation might help in the development of more efficient immunotherapeutic strategies for tumor patients. Part of this process is cytokine secretion, which has important effects on innate and adaptive immune response. Here, we cultured circulating monocytes for five days with interleukin-4 and GM-CSF followed by two-day culture with or without CD40 ligand and LPS to create a mature DC (mDC) and an immature DC (iDC) phenotype, respectively, characterized by differential expression of co-stimulatory molecules (CD80, CD83). We then compared the cytokine expression profile of the mDC and iDC using two protein platform arrays. Twelve supernatants from mDC paired with 12 from iDC were compared. The mDC protein expression profile showed significant increases in 16 out of 34 factors tested, including TNFalpha, IL-10, IL-12, IFNgamma, MIP1alpha, MIP1beta, IL-8, MDC, RANTES, and IL-6, which play a crucial role in the regulation of the innate immune response as well as the recruitment and activation of adaptive immune effectors. Interestingly, some of the cytokines expressed during maturation were also found in the gene expression profile identified in tumor metastases following IL-2 therapy using cDNA arrays. This finding suggests a possible role for resident DC maturation as a mediator of systemic IL-2 effects. Most important, the array of cytokines secreted during DC maturation may be considered an important component during adoptive transfer. Further characterization of the kinetics and persistence of their secretion should be undertaken in the future.  相似文献   

7.
Dendritic cells for specific cancer immunotherapy   总被引:8,自引:0,他引:8  
The characterization of tumor-associated antigens recognized by human T lymphocytes in a major histocompatibility complex (MHC)-restricted fashion has opened new possibilities for immunotherapeutic approaches to the treatment of human cancers. Dendritic cells (DC) are professional antigen presenting cells that are well suited to activate T cells toward various antigens, such as tumor-associated antigens, due to their potent costimulatory activity. The availability of large numbers of DC, generated either from hematopoietic progenitor cells or monocytes in vitro or isolated from peripheral blood, has profoundly changed pre-clinical research as well as the clinical evaluation of these cells. Accordingly, appropriately pulsed or transfected DC may be used for vaccination in the field of infectious diseases or tumor immunotherapy to induce antigen-specific T cell responses. These observations led to pilot clinical trials of DC vaccination for patients with cancer in order to investigate the feasibility, safety, as well as the immunologic and clinical effects of this approach. Initial clinical studies of human DC vaccines are generating encouraging preliminary results demonstrating induction of tumor-specific immune responses and tumor regression. Nevertheless, much work is still needed to address several variables that are critical for optimizing this approach and to determine the role of DC-based vaccines in tumor immunotherapy.  相似文献   

8.
Dendritic cells (DC) have important functions in T cell immunity and T cell tolerance. Previously, it was believed that T cell unresponsiveness induced by immature DC (iDC) is caused by the absence of inflammatory signals in steady-state in vivo conditions and by the low expression levels of costimulatory molecules on iDC. However, a growing body of evidence now indicates that iDC can also actively maintain peripheral T cell tolerance by the induction and/or stimulation of regulatory T cell populations. In this study, we investigated the in vitro T cell stimulatory capacity of iDC and mature DC (mDC) and found that both DC types induced a significant increase in the number of transforming growth factor (TGF)-beta and interleukin (IL)-10 double-positive CD4(+) T cells within 1 week of autologous DC/T cell co-cultures. In iDC/T cell cultures, where antigen-specific T cell priming was significantly reduced as compared to mDC/T cell cultures, we demonstrated that the tolerogenic effect of iDC was mediated by soluble TGF-beta and IL-10 secreted by CD4(+)CD25(-)FOXP3(-) T cells. In addition, the suppressive capacity of CD4(+) T cells conditioned by iDC was transferable to already primed antigen-specific CD8(+) T cell cultures. In contrast, addition of CD4(+) T cells conditioned by mDC to primed antigen-specific CD8(+) T cells resulted in enhanced CD8(+) T cell responses, notwithstanding the presence of TGF-beta(+)/IL-10(+) T cells in the transferred fraction. In summary, we hypothesize that DC have an active role in inducing immunosuppressive cytokine-secreting regulatory T cells. We show that iDC-conditioned CD4(+) T cells are globally immunosuppressive, while mDC induce globally immunostimulatory CD4(+) T cells. Furthermore, TGF-beta(+)/IL-10(+) T cells are expanded by DC independent of their maturation status, but their suppressive function is dependent on immaturity of DC.  相似文献   

9.
Dendritic cells (DC) are activated by pathogens, cytokines and activated T cells. We investigated the impact of a transient initial DC stimulation on the kinetics of maturation using a combination of double-stranded RNA and TNFalpha and subsequent restimulation by T cell-derived stimuli. Transient stimulation of DC was sufficient to start an irreversible program of phenotypic maturation which proceeded in the absence of the initial stimulus. Transiently stimulated DC secreted lower amounts of IL-12 during the 48-h period of the first stimulation than cells activated for 48 h. Although both DC preparations expressed the same level of maturation-associated markers at 48 h, DC stimulated for shorter periods preserved higher sensitivity to boosting upon subsequent stimulation by T cell-derived signals. We showed that DC initially stimulated for shorter periods were more potent stimulators of T lymphocytes and they induced a more polarized Th1 response. These results indicate that short exposure of DC to maturation stimuli enables an efficient defensive immune response induction by differentially regulating phenotypic maturation and cytokine production of DC.  相似文献   

10.
Recombinant adenoviral vectors (AdV) are potent vehicles for antigen engineering of dendritic cells (DC). DC engineered with AdV to express full length tumor antigens are capable stimulators of antigen-specific polyclonal CD8+ and CD4+ T cells. To determine the impact of AdV on the HLA class I antigen presentation pathway, we investigated the effects of AdV transduction on antigen processing machinery (APM) components in human DC. Interactions among AdV transduction, maturation, APM regulation and T cell activation were investigated. The phenotype and cytokine profile of DC transduced with AdV was intermediate, between immature (iDC) and matured DC (mDC). Statistically significant increases in expression were observed for peptide transporters TAP-1 and TAP-2, and HLA class I peptide-loading chaperone ERp57, as well as co-stimulatory surface molecule CD86 due to AdV transduction. AdV transduction enhanced the expression of APM components and surface markers on mDC, and these changes were further modulated by the timing of DC maturation. Engineering of matured DC to express a tumor-associated antigen stimulated a broader repertoire of CD8+ T cells, capable of recognizing immunodominant and subdominant epitopes. These data identify molecular changes in AdV-transduced DC (AdV/DC) that could influence T cell priming and should be considered in design of cancer vaccines.  相似文献   

11.
Cytokines in the generation and maturation of dendritic cells: recent advances   总被引:14,自引:0,他引:14  
Dendritic cells (DCs) are extremely efficient antigen presenting cells (APCs) that are potent stimulators of both T and B cell-mediated immune responses. Although DCs are normally present in very small numbers in the peripheral blood (PB), recent advances have made it possible to generate relatively large numbers of cells in culture. DCs can be differentiated in vitro from various cellular sources, including bone marrow (BM), cord blood (CB) and PB mononuclear cells (PBMCs). Although a wide variety of conditions have been reported to be able to support DC generation, the majority of research and clinical protocols to date differentiate DCs from precursors using granulocyte-macrophage colony stimulating factor (GM-CSF) in combination with either tumor necrosis factor-(TNF-)alpha or interleukin (IL)-4. However, a diverse array of cytokines has been shown to be able to induce DC differentiation under a variety of conditions. According to recent reports, cytokines such as IL-2, IL-6, IL-7, IL-13, IL-15 and hepatocyte growth factor (HGF), in combination or even, in some cases, alone, can contribute to the generation of DCs from either monocytes or CD34+ cells. Although the majority of cytokine combinations include GM-CSF, some do not. For example, Flt3 ligand (FL), in conjuction with IL-6 (in the absence of GM-CSF), has been reported to be able to induce DC differentiation from BM cells in a murine system. Other agents can play a dual role in DC activity. CD40 ligand (CD40L), as a single agent, has been shown to be able to generate DCs from PB monocytes, while numerous other reports have also demonstrated its role as a potent maturation factor. In contrast, for other cytokines such as IL-16 or IL-17, although there is no data for a role in DC generation, they have been reported to be involved in promoting DC maturation in vitro as defined by upregulation of costimulatory molecules, major histocompatibility complex (MHC) antigens and antigen presenting/T lymphocyte stimulatory capacity. Furthermore, cytokines such as stem cell factor (SCF) and FL have been shown to dramatically enhance in vivo DC recovery. The wide variety of cytokines and conditions that have been shown to be able to influence DC differentiation and activity to amply demonstrate the extreme heterogeneity found in the DC population, something that is reflected in the diverse phenotypes, functions and ontogeny displayed by DCs. This diversity may account for the large number of roles that have been attributed to DCs in the development and function of the immune system and, in turn, emphasizes the potential as well as the challenges of modifying specific aspects of the immune response system by manipulating specific DC subpopulations.  相似文献   

12.
Peripheral blood mononuclear cells (PBMC) have been accepted as a unique material for cancer immunotherapy using dendritic cells (DC) or activated lymphocytes that are being developed as an alternative or adjuvant to conventional therapies such as surgery, chemotherapy and radiation treatment. Although successful cryopreservation of large numbers of PBMC is critical for the immunotherapy, subsequent functional study of the effects of PBMC cryopreservation on differentiation into immune cells has not been well defined. In this study, over 1.0 × 108 cells/ml PBMC were cryopreserved as long as 52 weeks using a controlled-rate freezer (CRF) and stored in a vapor phase of liquid nitrogen tank. The effect of PBMC cryopreservation on differentiation into DC was studied by comparing the phenotypic and functional properties of immature DC (iDC) and mature DC (mDC) derived from cryopreserved PBMC to those from fresh PBMC. The results show that cryopreservation of PBMC at a fairly high cell concentration does not significantly affect cell recovery, viability, or phenotypes of PBMC. After differentiation into DC, iDC and mDC derived from cryopreserved PBMC had their typical phenotypes and function equivalent to those derived from fresh PBMC. Therefore, the improved cryopreservation process of PBMC described in this study is available for DC-based cancer immunotherapy.  相似文献   

13.
For vaccination strategies and adoptive immunotherapy purposes, immature dendritic cells (DC) can be generated from adherent monocytes using GM-CSF and IL-4. Presently, the only clinically applicable method to induce stable maturation of DC is the use of supernatants of activated monocytes (monocyte-conditioned medium (MCM)). MCM contains an undefined mixture of cytokines and is difficult to standardize. Here we report that stable maturation of DC can be simply induced by the addition of polyriboinosinic polyribocytidylic acid (poly(I:C)), a synthetic dsRNA clinically applied as an immunomodulator. Poly(I:C)-treated DC show a mature phenotype with high expression levels of HLA-DR, CD86, and the DC maturation marker CD83. This mature phenotype is retained for 48 h after cytokine withdrawal. In contrast to untreated DC, poly(I:C)-treated DC down-regulate pinocytosis, produce high levels of IL-12 and low levels of IL-10, induce strong T cell proliferation in a primary allo MLR, and effectively present peptide Ags to HLA class I-restricted CTL. In conclusion, we present a simple methodology for the preparation of clinically applicable mature DC.  相似文献   

14.
Acute and chronic Plasmodium falciparum malaria are accompanied by severe immunodepression possibly related to subversion of dendritic cells (DC) functionality. Phagocytosed hemozoin (malarial pigment) was shown to inhibit monocyte functions related to immunity. Hemozoin-loaded monocytes, frequently found in circulation and adherent to endothelia in malaria, may interfere with DC development and play a role in immunodepression. Hemozoin-loaded and unloaded human monocytes were differentiated in vitro to immature DC (iDC) by treatment with GM-CSF and IL-4, and to mature DC (mDC) by LPS challenge. In a second setting, hemozoin was fed to iDC further cultured to give mDC. In both settings, cells ingested large amounts of hemozoin undegraded during DC maturation. Hemozoin-fed monocytes did not apoptose but their differentiation and maturation to DC was severely impaired as shown by blunted expression of MHC class II and costimulatory molecules CD83, CD80, CD54, CD40, CD1a, and lower levels of CD83-specific mRNA in hemozoin-loaded iDC and mDC compared with unfed or latex-loaded DC. Further studies indicated activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in hemozoin-loaded iDC and mDC, associated with increased expression of PPAR-gamma mRNA, without apparent involvement of NF-kappaB. Moreover, expression of PPAR-gamma was induced and up-regulation of CD83 was inhibited by supplementing iDC and mDC with plausible concentrations of 15(S)-hydroxyeicosatetraenoic acid, a PPAR-gamma ligand abundantly produced by hemozoin via heme-catalyzed lipoperoxidation.  相似文献   

15.
Dendritic cells (DCs) orchestrate innate inflammatory responses and adaptive immunity through T-cell activation via direct cell–cell interactions and/or cytokine production. Tolerogenic DCs (tolDCs) help maintain immunological tolerance through the induction of T-cell unresponsiveness or apoptosis, and generation of regulatory T cells. Mesenchymal stromal cells (MSCs) are adult multipotent cells located within the stroma of bone marrow (BM), but they can be isolated from virtually all organs. Extracellular vesicles and exosomes are released from inflammatory cells and act as messengers enabling communication between cells. To investigate the effects of MSC-derived exosomes on the induction of mouse tolDCs, murine adipose-derived MSCs were isolated from C57BL/6 mice and exosomes isolated by ExoQuick-TC kits. BM-derived DCs (BMDCs) were prepared and cocultured with MSCs-derived exosomes (100 μg/ml) for 72 hr. Mature BMDCs were derived by adding lipopolysaccharide (LPS; 0.1μg/ml) at Day 8 for 24 hr. The study groups were divided into (a) immature DC (iDC, Ctrl), (b) iDC + exosome (Exo), (c) iDC + LPS (LPS), and (d) iDC + exosome + LPS (EXO + LPS). Expression of CD11c, CD83, CD86, CD40, and MHCII on DCs was analyzed at Day 9. DC proliferation was assessed by coculture with carboxyfluorescein succinimidyl ester-labeled BALB/C-derived splenocytes p. Interleukin-6 (IL-6), IL-10, and transforming growth factor-β (TGF-β) release were measured by enzyme-linked immunosorbent assay. MSC-derived exosomes decrease DC surface marker expression in cells treated with LPS, compared with control cells ( ≤ .05). MSC-derived exosomes decrease IL-6 release but augment IL-10 and TGF-β release (p ≤ .05). Lymphocyte proliferation was decreased (p ≤ .05) in the presence of DCs treated with MSC-derived exosomes. CMSC-derived exosomes suppress the maturation of BMDCs, suggesting that they may be important modulators of DC-induced immune responses.  相似文献   

16.
Background aimsRecent studies have shown that the ligation of Toll-like receptor 3 (TLR3) or Dectin-1 on human monocyte-derived dendritic cells (MoDC) elicits their maturation, but with a different outcome on immunomodulation. Therefore the aim of this work was to study the response of MoDC to the combined effect of polyinosinic:polycytydilic acid [Poly (I:C)] and curdlan, selective TLR3 and Dectin-1 agonists, respectively.MethodsImmature MoDC, generated from human monocytes, were treated with Poly (I:C), curdlan or their combination for 2 days. Phenotypic characteristics of MoDC were determined by flow cytometry, and cytokine production was measured by enzyme-linked immunosorbent assay (ELISA) and FlowCytomix, while the stimulatory capability of MoDC was tested using a mixed leukocyte reaction assay.ResultsThe combination of Poly (I:C) and curdlan induced phenotypic maturation of MoDC with the capability to stimulate an alloreactive response. Such treated MoDC up-regulated the production of interleukin (IL)-12, IL-23 and IL-10, compared with the effect of Poly (I:C) alone. Curdlan-treated MoDC stimulated the production of IL-17 by alloreactive CD4 + T cells more strongly than Poly (I:C)-treated MoDC. The opposite effect was observed for interferon(IFN)-γ production. When combined, these agonists primed MoDC to increase further the production of IFN-γ by CD4 + T cells in co-culture, especially those of naive (CD45RA +) phenotype, and IL-17 by memory (CD45RO +) CD4 + T cells.ConclusionsLigation of TLR3 and Dectin-1 receptor up-regulates T-helper (Th) 1 and Th17 immune responses compared with single agonists. These findings may have therapeutic implications for the use of MoDC in immunotherapy.  相似文献   

17.
Dendritic cell (DC)-based immunotherapy is a potent therapeutic modality for treating renal cell carcinoma (RCC), but development of antigens specific for tumor-targeting and anti-tumor immunity is of great interest for clinical trials. The present study investigated the ability of DCs pulsed with a combination of carbonic anhydrase IX (CA9) as an RCC-specific biomarker and Acinetobacter baumannii outer membrane protein A (AbOmpA) as an immunoadjuvant to induce anti-tumor immunity against murine renal cell carcinoma (RENCA) in a murine model. Murine bone-marrow-derived DCs pulsed with a combination of RENCA lysates and AbOmpA were tested for their capacity to induce DC maturation and T cell responses in vitro. A combination of RENCA lysates and AbOmpA up-regulated the surface expression of co-stimulatory molecules, CD80 and CD86, and the antigen presenting molecules, major histocompatibility (MHC) class I and class II, in DCs. A combination of RENCA lysates and AbOmpA also induced interleukin-12 (IL-12) production in DCs. Next, the immunostimulatory activity of DCs pulsed with a combination of CA9 and AbOmpA was determined. A combination of CA9 and AbOmpA up-regulated the surface expression of co-stimulatory molecules and antigen presenting molecules in DCs. DCs pulsed with a combination of CA9 and AbOmpA effectively secreted IL-12 but not IL-10. These cells interacted with T cells and formed clusters. DCs pulsed with CA9 and AbOmpA elicited the secretion of interferon-γ and IL-2 in T cells. In conclusion, a combination of CA9 and AbOmpA enhanced the immunostimulatory activity of DCs, which may effectively induce anti-tumor immunity against human RCC.  相似文献   

18.
The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research of their potential use in immunotherapy. Accumulating results show the efficacy of this treatment on melanomas which are highly immunogenic. However, its efficacy remains unclear in other tumors. In this study, allogeneic gastric cancer cell–DC hybrids were used to determine the efficacy of this type of immunotherapy in gastric cancer. Fusion cells of DC and allogeneic gastric cancer cells were generated by polyethylene glycol (PEG) and electrofusion. These hybrids were used to induce tumor associated antigen (TAA) specific cytotoxic T lymphocytes (CTLs). The DCs were successfully fused with the allogeneic gastric cancer cells resulting in hybrid cells. These hybrid cells were functional as antigen-presenting cell because they induced allogeneic CD4+ T cells proliferation. CD8+ T cells stimulated by the MKN-45-DC hybrid cells were able to kill MKN-45 when used for immunization. The CTLs killed another gastric cancer cell line, MKN-1, as well as a melanoma cell line, 888mel, suggesting the recognition of a shared tumor antigen. MKN-45 specific CTLs can recognize carcinoembryonic antigen (CEA), indicating that the killing is due to tumor antigens as well as alloantigens. This approach suggests the possible use of allogeneic gastric cancer cell–DC hybrids in DC based immunotherapy for gastric cancer treatment.  相似文献   

19.
There is increasing interest in the generation of dendritic cells (DC) for cancer immunotherapy. In order to utilize DC in clinical trials it is necessary to have standardized, reproducible and easy to use protocols. We describe here the process development for the generation of DC as the result of investigation of culture conditions as well as consumption rates of medium and cytokines. Our studies demonstrate that highly viable DC (93 ± 2%) can be produced from CD14+ enriched monocytes via immunomagnetic beads in a high yield (31 ± 6%) with X-VIVO 15, 400 U ml−1 GM-CSF and 2000 U ml−1 IL-4 without serum and feeding. For the maturation of DC different cocktails (TNF-α, IL-1β, IL-6, PGE2 and TNF-α, PGE2) were compared. In both cases cells expressed typical surface molecules of mature DC and induced high proliferative responses in mixed lymphocyte reactions which led to IFN-γ producing T-lymphocytes. The data suggest that the use of this optimized, easy to use protocol results in highly mature DC. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A key factor in dendritic cell (DC)-based tumor immunotherapy is the identification of an immunoadjuvant capable of inducing DC maturation to enhance cellular immunity. The efficacy of a 50S ribosomal protein L7/L12 (rplL) from Mycobacterium tuberculosis Rv0652, as an immunoadjuvant for DC-based tumor immunotherapy, and its capacity for inducing DC maturation was investigated. In this study, we showed that Rv0652 is recognized by Toll-like receptor 4 (TLR4) to induce DC maturation, and pro-inflammatory cytokine production (TNF-alpha, IL-1beta, and IL-6) that is partially modulated by both MyD88 and TRIF signaling pathways. Rv0652-activated DCs could activate naïve T cells, effectively polarize CD4+ and CD8+ T cells to secrete IFN-gamma, and induce T cell-mediated-cytotoxicity. Immunization of mice with Rv0652-stimulated ovalbumin (OVA)-pulsed DCs resulted in induction of a potent OVA-specific CD8+ T cell response, slowed tumor growth, and promoted long-term survival in a murine OVA-expressing E.G7 thymoma model. These findings suggest that Rv0652 enhances the polarization of T effector cells toward a Th1 phenotype through DC maturation, and that Rv0652 may be an effective adjuvant for enhancing the therapeutic response to DC-based tumor immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号