首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 888 毫秒
1.
We previously isolated the novel heteropolysaccharide maitake Z-fraction (MZF) from the maitake mushroom (Grifola frondosa), and demonstrated that MZF significantly inhibited tumor growth by inducing cell-mediated immunity. In this study, we demonstrated that MZF upregulated the expression of CD80, CD86, CD83, and MHC II on bone marrow-derived dendritic cells (DCs) and significantly increased interleukin-12 (IL-12) and tumor necrosis factor-alpha production by DCs in a dose-dependent manner. MZF-treated DCs significantly stimulated both allogeneic and antigen-specific syngenic T cell responses and enhanced antigen-specific interferon-gamma (IFN-γ) production by syngenic CD4+ T cells; however, MZF-treated DCs did not affect IL-4 production. Furthermore, the enhancement of IFN-γ production in CD4+ T cells, which was induced by MZF-treated DCs, was completely inhibited by the addition of an anti-IL-12 antibody. These results indicate that MZF induced DC maturation and antigen-specific Th1 response by enhancing DC-produced IL-12. We also demonstrated that DCs pulsed with colon-26 tumor lysate in the presence of MZF induced both therapeutic and preventive effects on colon-26 tumor development in BALB/c mice. These results suggest that MZF could be a potential effective adjuvant to enhance immunotherapy using DC-based vaccination.  相似文献   

2.
In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using TLR4-/- DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560-treated DCs induced the transformation of naïve T cells to polarized CD4+ and CD8+ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy. [BMB Reports 2014;47(9): 512-517]  相似文献   

3.
Due to the pivotal role that dendritic cells (DC) play in eliciting functional anti-tumor T cell responses, immunotherapeutic approaches utilizing DC-based vaccines have readily been exploited. It has been argued that, in the setting of immunotherapy, mature DC will be more efficient at T cell priming and, therefore, required for effective vaccination. As TNF-alpha is commonly used as a DC maturation factor, we have examined the efficacy of treatment with DC matured with TNF-alpha (DC-TNF) in a murine model of melanoma. We have now shown that treatment with DC-TNF leads to an increase in the number of lung metastases as compared to mice treated with immature DC. No differences in the number of CD4+CD25+ T-regulatory cells were measured in the lungs of DC-TNF-treated mice. On examination of the infiltrating lymphocytes, an enhanced secretion of IL-10 and a higher percentage of CD4+IL-10+ T cells were measured in the lungs of DC-TNF-treated mice. However, treatment with DC-TNF did not enhance the number of melanoma lesions in the lungs of IL-10 knockout mice or in mice depleted of CD4+ T cells. Together, these studies indicate that treatment of melanoma-bearing mice with DC treated with TNF-alpha can induce IL-10 production by resident cells at the tumor site, leading to immune tolerance and exacerbation of disease.  相似文献   

4.
Dendritic cells (DCs) are the quintessential antigen-presenting cells of the human immune system and play a prime role in coordinating innate and adaptive immune responses, explaining the strong and still growing interest in their application for cancer immunotherapy. Much current research in the field of DC-based immunotherapy focuses on optimizing the culture conditions for in vitro DC generation in order to assure that DCs with the best possible immunogenic qualities are being used for immunotherapy. In this context, monocyte-derived DCs that are alternatively induced by interleukin-15 (IL-15 DCs) have attracted recent attention due to their superior immunostimulatory characteristics. In this study, we show that IL-15 DCs, in addition to potent tumor antigen-presenting function, possess tumoricidal potential and thus qualify for the designation of killer DCs. Notwithstanding marked expression of the natural killer (NK) cell marker CD56 on a subset of IL-15 DCs, we found no evidence of a further phenotypic overlap between IL-15 DCs and NK cells. Allostimulation and antigen presentation assays confirmed that IL-15 DCs should be regarded as bona fide myeloid DCs not only from the phenotypic but also from the functional point of view. Concerning their cytotoxic activity, we demonstrate that IL-15 DCs are able to induce apoptotic cell death of the human K562 tumor cell line, while sparing tumor antigen-specific T cells. The cytotoxicity of IL-15 DCs is predominantly mediated by granzyme B and, to a small extent, by tumor necrosis factor-α (TNF-α)-related apoptosis-inducing ligand (TRAIL) but is independent of perforin, Fas ligand and TNF-α. In conclusion, our data provide evidence of a previously unappreciated role for IL-15 in the differentiation of human monocytes towards killer DCs. The observation that IL-15 DCs have killer DC capacity lends further support to their implementation in DC-based immunotherapy protocols.  相似文献   

5.
The limited efficacy of the BCG vaccine against tuberculosis is partly due to the missing expression of immunogenic proteins. We analyzed whether the addition to BCG of ESAT-6 and HspX, two Mycobacterium tuberculosis (Mtb) antigens, could enhance its capacity to activate human dendritic cells (DCs). BCG showed a weak ability to induce DC maturation, cytokine release, and CD4+ lymphocytes and NK cells activation. The addition of ESAT-6 or HspX alone to BCG-stimulated DC did not improve these processes, whereas their simultaneous addition enhanced BCG-dependent DC maturation and cytokine release, as well as the ability of BCG-treated DCs to stimulate IFN-γ release and CD69 expression by CD4+ lymphocytes and NK cells. Addition of TLR2-blocking antibody decreased IL-12 release by BCG-stimulated DCs incubated with ESAT-6 and HspX, as well as IFN-γ secretion by CD4+ lymphocytes co-cultured with these cells. Moreover, HspX and ESAT-6 improved the capacity of BCG-treated DCs to induce the expression of memory phenotype marker CD45RO in naïve CD4+ T cells. Our results indicate that ESAT-6 and HspX cooperation enables BCG-treated human DCs to induce T lymphocyte and NK cell-mediated immune responses through TLR2-dependent IL-12 secretion. Therefore ESAT-6 and HspX represent good candidates for improving the effectiveness of BCG vaccination.  相似文献   

6.
Subclinical doses of Paclitaxel (PTX) given 1 day prior to a HER-2/neu (neu)-targeted, granulocyte-macrophage colony stimulating factor (GM-CSF)-secreting whole-cell vaccine enhances neu-specific T cell responses and slows neu+ tumor growth in tolerized HER-2/neu (neu-N) mice. We demonstrate that co-administration of PTX and Cyclophosphamide (CY) synergizes to slow tumor growth, and that in vitro, DC precursors exposed to PTX before LPS maturation results in greater co-stimulatory molecule expression, IL-12 production, and the ability to induce CD8+ T cells with enhanced lytic activity against neu+ tumors. PTX treatment also enhances maturation marker expression on CD11c+ DCs isolated from vaccine-draining lymph nodes. Ex vivo, these DCs activate CD8+ T cells with greater lytic capability than DC’s from vaccine alone-treated neu-N mice. Finally, PTX treatment results in enhanced antigen-specific, IFN-γ-secreting CD8+ T cells in vivo. Thus, administration of PTX with a tumor vaccine improves T cell priming through enhanced maturation of DC.  相似文献   

7.
 Dendritic cells (DCs) can be the principal initiators of antigen-specific immune responses. We analyzed the in vitro-responses against brain tumor cells using DCs from the peripheral blood of patients with brain tumors. Peripheral blood mononuclear cells (PBMC) were obtained from 19 patients with malignant brain tumors: 12 metastatic brain tumors of lung adenocarcinoma, 7 high-grade astrocytomas. PBMC were cultured with 100 ng/ml of GM-CSF and 10 ng/ml of IL-4 for 5–7 days in order to produce mature DCs. The autologous tumor lysate (5 mg/ml, containing 1 × 106 cells) was then added to the cultured DCs. Using the DCs generated by these treatments, we assessed the changes that occurred in their immune responses against brain tumor via 51Cr-release and lymphocyte proliferation assays. We found that the matured DCs displayed the typical surface phenotype of CD3+, CD45+, CD80+ and CD86+. After the pulsation treatment with tumor lysate, DCs were found to have strong cytotoxic T lymphocyte activity, showing 42.5 ± 12.7% killing of autologous tumor cells. We also found an enhancement of allogeneic T cell proliferation after pulsing the DC with tumor lysate. These data support the efficacy of DC-based immunotherapy for patients with malignant brain tumors. Received: 2 October 2000 / Accepted: 26 April 2001  相似文献   

8.
LIGHT is a recently identified member of the TNF superfamily that is up-regulated upon activation of T cells. Herpesvirus entry mediator, one of its receptors, is constitutively expressed on immature dendritic cells (DCs). In this report, we demonstrate that LIGHT induces partial DC maturation as demonstrated by Ag presentation and up-regulation of adhesion and costimulatory molecules. LIGHT-stimulated DCs show reduced macropinocytosis and enhanced allogeneic stimulatory capacity but fail to produce significant amounts of IL-12, IL-6, IL-1beta, or TNF-alpha compared with unstimulated DCs. However, LIGHT cooperates with CD154 (CD40 ligand) in DC maturation, with particular potentiation of allogeneic T cell proliferation and cytokine secretion of IL-12, IL-6, and TNF-alpha. Moreover, LIGHT costimulation allows DCs to prime in vitro-enhanced specific CTL responses. Our results suggest that LIGHT plays an important role in DC-mediated immune responses by regulating CD154 signals and represents a potential tool for DC-based cancer immunotherapy.  相似文献   

9.
Receptor for hyaluronan-mediated motility (RHAMM) is overexpressed in various tumors with high frequency, and was recently identified as an immunogenic antigen by serologic screening of cDNA expression libraries. In this study, we explored whether RHAMM is a potential target for dendritic cell (DC) immunotherapy. We constructed a plasmid for transduction of in vitro-transcribed mRNAs into DCs to efficiently transport the intracellular protein RHAMM into MHC class II compartments by adding a late endosomal/lysosomal sorting signal to the RHAMM gene. Immunization of mice with modified RHAMM mRNA-transfected DCs (DC/RHAMM) induced killing activity against RHAMM-positive tumor cells in splenocytes. To examine whether CD4+ and/or CD8+ T cells were required for this antitumor immunity, an anti-CD4 or anti-CD8 antibody was administered to mice after immunization with DC/RHAMM. Depletion of CD4+ T cells significantly diminished the induction of tumor cell-killing activity in splenocytes, whereas CD8+ T cell depletion had no effect. We then investigated the therapeutic effect of DC/RHAMM in a 3-day tumor model of EL4. DC/RHAMM was administered to mice on days 3, 7 and 10 after EL4 tumor inoculation. The treatment markedly inhibited tumor growth compared to control DCs. Moreover, antibody-mediated depletion of CD4+ T cells completely abrogated the therapeutic effect of DC/RHAMM, whereas depletion of CD8+ T cells had no effect. The results of this preclinical study indicate that DCs transfected with a modified RHAMM mRNA targeted to MHC class II compartments can induce CD4+ T cell-mediated antitumor activity in vivo.  相似文献   

10.
Mucus alterations are a feature of ulcerative colitis (UC) and can drive inflammation by compromising the mucosal barrier to luminal bacteria. The exact pathogenesis of UC remains unclear, but CD4+ T cells reacting to commensal antigens appear to contribute to pathology. Given the unique capacity of dendritic cells (DCs) to activate naive T cells, colon DCs may activate pathogenic T cells and contribute to disease. Using Muc2-/- mice, which lack a functional mucus barrier and develop spontaneous colitis, we show that colitic animals have reduced colon CD103+CD11b- DCs and increased CD103-CD11b+ phagocytes. Moreover, changes in colonic DC subsets and distinct cytokine patterns distinguish mice with distally localized colitis from mice with colitis spread proximally. Specifically, mice with proximally spread, but not distally contained, colitis have increased IL-1β, IL-6, IL-17, TNFα, and IFNγ combined with decreased IL-10 in the distal colon. These individuals also have increased numbers of CD103+CD11b+ DCs in the distal colon. CD103+CD11b+ DCs isolated from colitic but not noncolitic mice induced robust differentiation of Th17 cells but not Th1 cells ex vivo. In contrast, CD103-CD11b+ DCs from colitic Muc2-/- mice induced Th17 as well as Th1 differentiation. Thus, the local environment influences the capacity of intestinal DC subsets to induce T cell proliferation and differentiation, with CD103+CD11b+ DCs inducing IL-17-producing T cells being a key feature of extensively spread colitis.  相似文献   

11.
BackgroundThe maturation cocktail composed of interleukin (IL)-6, IL-1β, tumor necrosis factor-α and prostaglandin E2 is considered the “gold standard” for inducing the maturation of dendritic cells (DCs) for use in cancer immunotherapy. Nevertheless, although this maturation cocktail induces increased expression of several activation markers, such as CD83, the co-stimulation molecules CD80, CD86 and CD40 and the chemokine receptor involved in DC homing in lymph nodes CCR7, the DC immune stimulatory function in vivo contrasts with this mature phenotype, and good clinical outcomes in patients with cancer treated with DC-based vaccines remain rare.MethodsPhenotypic characterization of the immunosuppressive status of DCs differentiated from peripheral blood mononuclear cells of healthy volunteers and matured with the “gold standard” cocktail was performed. Glucocorticoid-induced leucine zipper (GILZ) targeting small interfering RNA (siRNA) was electroporated into DCs after maturation to increase their immunogenicity.ResultsThe mature phenotype of DCs treated for 48 h with this cocktail was associated with the expression of several immunosuppressive regulators, including programmed cell death 1 ligand 1 (PD-L1), IL-10 and GILZ. Electroporation is a very efficient and safe way to deliver siRNA into DCs (80% of DCs receive at least one molecule of siRNA). Silencing GILZ in clinical-grade DCs by siRNA leads to a decrease of the PD-L1 expression associated with an increase in their IL-12 secretion and T-cell induction capability.ConclusionsGILZ silencing is a promising approach to achieving complete clinical-grade DC maturation and avoiding the immunosuppressive effects of the maturation cocktail on DCs intended for clinical use.  相似文献   

12.
The dendritic cell (DC) is a potentially promising tool for cancer immunotherapy. To date, however, DC-based immunotherapy has not yielded data with which firm conclusions can be drawn. In the present study, we tested the dose-dependant enhancement of the anti-tumor effect induced by DCs. When large numbers of DCs were used, tumor growth was suppressed up to 41% when compared to control mice. Survival of the animals was prolonged to 54 days compared to the 33-day survival the control mice. The delayed-type hypersensitivity (DTH) response induced was 26-fold higher than in the controls. Larger numbers of DCs also led to higher expansion of IFN-γ-secreting-CD8+ T cells. Furthermore, the secretion of IL-12p70 and IFN-γ by spleen cells were enhanced in proportion to the dosage. However, the level of IL-4 secreted from spleen cells was negligible compared to the level of IFN-γ that was released. These results indicate that DCs induce Th1-dominant immune response and that more DCs could lead to better immunological results, a finding which was consistent with our therapeutic results.  相似文献   

13.
Since few leukemia-associated antigens (LAA) are characterized for acute myeloid leukemia (AML), apoptotic tumor cells constitute an attractive LAA source for DC-based vaccines, as they contain both characterized and unknown LAA. However, loading DC with apoptotic tumor cells may interfere with DC function. Previously, it was shown in mice that apoptotic blebs induce DC maturation, whereas apoptotic cell remnants (ACR) do not. Here, we analyzed human monocyte-derived DC (MoDC) functionality in vitro, after ingesting either allogeneic AML-derived ACR or blebs. We show that MoDC ingest blebs to a higher extent and are superior in migrating toward CCL19, as compared to ACR-loaded MoDC. Although MoDC cytokine production was unaffected, co-culturing bleb-loaded MoDC with T cells led to an increased T cell proliferation and IFNγ production. Moreover, antigen-specific CD8+ T cells frequencies increased to 0.63 % by priming with bleb-loaded MoDC, compared to 0.16 % when primed with ACR-loaded MoDC. Importantly, CD8+ T cells primed by bleb-loaded MoDC recognized their specific epitope at one to two orders of magnitude lower concentrations compared to ACR-loaded MoDC. In conclusion, superior ingestion efficiency and migration, combined with favorable T cell cytokine release and CD8+ T cell priming ability and avidity, point to blebs as the preferred component of apoptotic leukemic cells for LAA loading of DC for the immunotherapy of AML.  相似文献   

14.
Dendritic cell (DC)-based immunotherapy is a potent therapeutic modality for treating renal cell carcinoma (RCC), but development of antigens specific for tumor-targeting and anti-tumor immunity is of great interest for clinical trials. The present study investigated the ability of DCs pulsed with a combination of carbonic anhydrase IX (CA9) as an RCC-specific biomarker and Acinetobacter baumannii outer membrane protein A (AbOmpA) as an immunoadjuvant to induce anti-tumor immunity against murine renal cell carcinoma (RENCA) in a murine model. Murine bone-marrow-derived DCs pulsed with a combination of RENCA lysates and AbOmpA were tested for their capacity to induce DC maturation and T cell responses in vitro. A combination of RENCA lysates and AbOmpA up-regulated the surface expression of co-stimulatory molecules, CD80 and CD86, and the antigen presenting molecules, major histocompatibility (MHC) class I and class II, in DCs. A combination of RENCA lysates and AbOmpA also induced interleukin-12 (IL-12) production in DCs. Next, the immunostimulatory activity of DCs pulsed with a combination of CA9 and AbOmpA was determined. A combination of CA9 and AbOmpA up-regulated the surface expression of co-stimulatory molecules and antigen presenting molecules in DCs. DCs pulsed with a combination of CA9 and AbOmpA effectively secreted IL-12 but not IL-10. These cells interacted with T cells and formed clusters. DCs pulsed with CA9 and AbOmpA elicited the secretion of interferon-γ and IL-2 in T cells. In conclusion, a combination of CA9 and AbOmpA enhanced the immunostimulatory activity of DCs, which may effectively induce anti-tumor immunity against human RCC.  相似文献   

15.
Immature dendritic cells (DCs) appear to be involved in peripheral immune tolerance via induction of IL-10-producing CD4+ T cells. We examined the role of TNF-α in generation of the IL-10-producing CD4+ T cells by immature DCs. Immature bone marrow-derived DCs from wild type (WT) or TNF-α−/− mice were cocultured with CD4+ T cells from OVA specific TCR transgenic mice (OT-II) in the presence of OVA323-339 peptide. The WT DCs efficiently induced the antigen-specific IL-10-producing CD4+ T cells, while the ability of the TNF-α−/− DCs to induce these CD4+ T cells was considerably depressed. Addition of exogenous TNF-α recovered the impaired ability of the TNF-α−/− DCs to induce IL-10-producing T cells. However, no difference in this ability was observed between TNF-α−/− and WT DCs after their maturation by LPS. Thus, TNF-α appears to be critical for the generation of IL-10-producing CD4+ T cells during the antigen presentation by immature DCs.  相似文献   

16.
Dendritic cell (DC) vaccines have emerged as a promising strategy to induce antitumoral cytotoxic T cells for the immunotherapy of cancer. The maturation state of DC is of critical importance for the success of vaccination, but the most effective mode of maturation is still a matter of debate. Whereas immature DC carry the risk of inducing tolerance, extensive stimulation of DC may lead to DC unresponsiveness and exhaustion. In this study, we investigated how short-term versus long-term DC activation with a Toll-like receptor 9 agonist influences DC phenotype and function. Murine DC were generated in the presence of the hematopoietic factor Flt3L (FL-DC) to obtain both myeloid and plasmacytoid DC subsets. Short activation of FL-DC for as little as 4 h induced fully functional DC that rapidly secreted IL-12p70 and IFN-α, expressed high levels of costimulatory and MHC molecules and efficiently presented antigen to CD4 and CD8 T cells. Furthermore, short-term activated FL-DC overcame immune suppression by regulatory T cells and acquired high migratory potential toward the chemokine CCL21 necessary for DC recruitment to lymph nodes. In addition, vaccination with short-term activated DC induced a strong cytotoxic T-cell response in vivo and led to the eradication of tumors. Thus, short-term activation of DC generates fully functional DC for tumor immunotherapy. These results may guide the design of new protocols for DC generation in order to develop more efficient DC-based tumor vaccines.  相似文献   

17.

Background

Damage-associated molecular patterns (DAMPs) are associated with immunogenic cell death and have the ability to enhance maturation and antigen presentation of dendritic cells (DCs). Specific microtubule-depolymerizing agents (MDAs) such as colchicine have been shown to confer anti-cancer activity and also trigger activation of DCs.

Methods

In this study, we evaluated the ability of three MDAs (colchicine and two 2-phenyl-4-quinolone analogues) to induce immunogenic cell death in test tumor cells, activate DCs, and augment T-cell proliferation activity. These MDAs were further evaluated for use as an adjuvant in a tumor cell lysate-pulsed DC vaccine.

Results

The three test phytochemicals considerably increased the expression of DAMPs including HSP70, HSP90 and HMGB1, but had no effect on expression of calreticulin (CRT). DC vaccines pulsed with MDA-treated tumor cell lysates had a significant effect on tumor growth, showed cytotoxic T-lymphocyte activity against tumors, and increased the survival rate of test mice. In vivo antibody depletion experiments suggested that CD8+ and NK cells, but not CD4+ cells, were the main effector cells responsible for the observed anti-tumor activity. In addition, culture of DCs with GM-CSF and IL-4 during the pulsing and stimulation period significantly increased the production of IL-12 and decreased production of IL-10. MDAs also induced phenotypic maturation of DCs and augmented CD4+ and CD8+ T-cell proliferation when co-cultured with DCs.

Conclusions

Specific MDAs including the clinical drug, colchicine, can induce immunogenic cell death in tumor cells, and DCs pulsed with MDA-treated tumor cell lysates (TCLs) can generate potent anti-tumor immunity in mice. This approach may warrant future clinical evaluation as a cancer vaccine.  相似文献   

18.
Immunosuppression associated with chronic helminth infections has been documented in many studies and regulatory T (Treg) cells have been shown to mediate the nematode-induced immunosuppression, but the role of dendritic cells (DCs) in the induction of Treg cell response and immunosuppression has not yet been fully determined. We analysed the response and function of DCs in mesenteric lymph node (MLNs) of mice infected with a gastrointestinal nematode, Heligmosomoides polygyrus, and observed a substantial expansion of DCs in MLNs following the infection. The CD11c+ DCs in MLNs of infected mice showed reduced expression of co-stimulatory molecules CD40, CD86 and MHC-II, and production of inflammatory cytokines IL-12 and IL-6. Analysis of MLN DC subsets defined by CD11c and CD45RB expression showed that the CD11clowCD45RBmid subset increased rapidly following H. polygyrus infection and the CD11cmidCD45RBhigh subset expanded from the third week after infection. In the co-culture of sorted DC subsets with ovalbumin-(OVA-)specific T cell receptor (TCR) transgenic CD4+ T cells, CD11clowCD45RBmid DCs induced a low proliferation response and a high level of IL-10 production in CD4+ T cells, whereas CD11cmidCD45RBhigh DCs induced more IFN-γ and IL-4 producing CD4+ T cells. Intracellular staining revealed that CD11clowCD45RBmid DCs promoted CD4+ Foxp3+ differentiations. These results indicate that nematode infections selectively induce expansion of the CD11clowCD45RBmid regulatory DC subset that promotes development of Foxp3+ and IL-10 producing Treg cells. The Treg cell responses and immunoregulatory cytokines induced by this regulatory DC subset in turn play an important role in mediation of the nematode-induced immunosuppression.  相似文献   

19.
In this study, we demonstrate that tumor mRNA–loaded dendritic cells can elicit a specific CD8+ cytotoxic T-lymphocyte (CTL) response against autologous tumor cells in patients with malignant glioma. CTLs from three patients expressed strong cytolytic activity against autologous glioma cells, did not lyse autologous lymphoblasts or EBV-transformed cell lines, and were variably cytotoxic against the NK-sensitive cell line K-562. Also, DCs-pulsed normal brain mRNA failed to induce cytolytic activity against autologous glioma cells, suggesting the lack of autoimmune response. Two patients' CD8+ T cells expressed a modest cytotoxicity against autologous glioma cells. CD8+ T cells isolated during these ineffective primings secreted large amounts of IL-10 and smaller amounts of IFN- as detected by ELISA. Type 2 bias in the CD8+ T-cell response accounts for the lack of cytotoxic effector function from these patients. Cytotoxicity against autologous glioma cells could be significantly inhibited by anti-HLA class I antibody. These data demonstrate that tumor mRNA–loaded DC can be an effective tool in inducing glioma-specific CD8+ CTLs able to kill autologous glioma cells in vitro. However, high levels of tumor-specific tolerance in some patients may account for a significant barrier to therapeutic vaccination. These results may have important implications for the treatment of malignant glioma patients with immunotherapy. DCs transfected with total tumor RNA may represent a method for inducing immune responses against the entire repertoire of glioma antigens.  相似文献   

20.
Efficacy of antitumor vaccination depends to a large extent on antigen targeting to dendritic cells (DCs). Here, we assessed antitumor immunity induced by attenuated coronavirus vectors which exclusively target DCs in vivo and express either lymphocyte- or DC-activating cytokines in combination with a GFP-tagged model antigen. Tracking of in vivo transduced DCs revealed that vectors encoding for Fms-like tyrosine kinase 3 ligand (Flt3L) exhibited a higher capacity to induce DC maturation compared to vectors delivering IL-2 or IL-15. Moreover, Flt3L vectors more efficiently induced tumor-specific CD8+ T cells, expanded the epitope repertoire, and provided both prophylactic and therapeutic tumor immunity. In contrast, IL-2- or IL-15-encoding vectors showed a substantially lower efficacy in CD8+ T cell priming and failed to protect the host once tumors had been established. Thus, specific in vivo targeting of DCs with coronavirus vectors in conjunction with appropriate conditioning of the microenvironment through Flt3L represents an efficient strategy for the generation of therapeutic antitumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号