首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
fw2.2 is one of the few QTLs thus far isolated from plants and the first one known to control fruit size. While it has been established that FW2.2 is a regulator (either directly or indirectly) of cell division, FW2.2 does not share sequence homology to any protein of known function (Frary et al. Science 289:85–88, 2000; Cong et al. Proc Natl Acad Sci USA 99:13606–13611, 2002; Liu et al. Plant Physiol 132:292–299, 2003). Thus, the mechanism by which FW2.2 mediates cell division in developing fruit is currently unknown. In an effort to remedy this situation, a combination of yeast two-hybrid screens, in vitro binding assays and cell bombardment studies were performed. The results provide strong evidence that FW2.2 physically interacts at or near the plasma membrane with the regulatory (beta) subunit of a CKII kinase. CKII kinases are well-studied in both yeast and animals where they form part of cell cycle related signaling pathway. Thus while FW2.2 is a plant-specific protein and regulates cell division in a specialized plant organ (fruit), it appears to participate in a cell-cycle control signal transduction pathway that predates the divergence of single- and multi-cellular organisms. These results thus provide a glimpse into how ancient and conserved regulatory processes can be co-opted in the evolution of novel organs such as fruit.  相似文献   

4.
Fruit phenotype is a resultant of inherent genetic potential in interaction with impact of environment experienced during crop and fruit growth. The aim of this study was to analyze the genetic and physiological basis for the difference in fruit size between a small (‘Brioso’) and intermediate (‘Cappricia’) sized tomato cultivar exposed to different fruit temperatures. It was hypothesized that fruit heating enhances expression of cell cycle and expansion genes, rates of carbon import, cell division and expansion, and shortens growth duration, whereas increase in cell number intensifies competition for assimilates among cells. Unlike previous studies in which whole‐plant and fruit responses cannot be separated, we investigated the temperature response by varying fruit temperature using climate‐controlled cuvettes, while keeping plant temperature the same. Fruit phenotype was assessed at different levels of aggregation (whole fruit, cell and gene) between anthesis and breaker stage. We showed that: (1) final fruit fresh weight was larger in ‘Cappricia’ owing to more and larger pericarp cells, (2) heated fruits were smaller because their mesocarp cells were smaller than those of control fruits and (3) no significant differences in pericarp carbohydrate concentration were detected between heated and control fruits nor between cultivars at breaker stage. At the gene level, expression of cell division promoters (CDKB2, CycA1 and E2Fe‐like) was higher while that of the inhibitory fw2.2 was lower in ‘Cappricia’. Fruit heating increased expression of fw2.2 and three cell division promoters (CDKB1, CDKB2 and CycA1). Expression of cell expansion genes did not corroborate cell size observations.  相似文献   

5.
The rhizobitoxine analog, L-2-amino-4-(2-aminoethoxy)-trans-3-butenoic acid (Ro), which effectively inhibits ethylene production in apple (Malus domestica Borkh.) and other tissues at concentrations at about 68 micromolar, inhibited ethylene production by about 50 to 70% in green tomato (Lycopersicon esculentum Mill.) fruit slices but only by about 15% in pink and ripe tomato tissue slices. Ethylene production in climacteric-rise and postclimacteric avocado slices was likewise relatively insensitive to 68 micromolar Ro. At 340 micromolar Ro, inhibition of ethylene production increased up to 50% in pink tomato slices, whereas 680 micromolar Ro was required to inhibit ethylene production by 30% in avocado slices. Incorporation of 14C from [14C]methionine into ethylene in green and pink tomato tissues was inhibited by Ro to about the same extent as inhibition of total ethylene production. Results thus far are inconclusive as to the mechanism of Ro resistance in tomato and avocado tissues. At 1 millimolar, free radical scavengers such as benzoate, propyl gallate, nordihydroguaiaretic acid, and to a lesser extent, eugenol, inhibited ethylene production in both Ro-sensitive (green tomato and apple) tissues and Ro-resistant (pink tomato and avocado) tissues. Therefore, free radical steps are suggested in the ethylene-forming systems.  相似文献   

6.
7.
The tomato FW2.2 quantitative trait locus, which regulates tomato fruit size, was genetically and physically mapped around 15 years ago. Subsequently, the FW2.2 gene was cloned and shown to contain a PLAC8 domain, originally identified in mammalian placental proteins. Data suggest that FW2.2 likely controls tomato cell size, perhaps by direct interaction with casein kinase II. Several FW2.2-like (FWL) genes have now been identified from a variety of plant species, but until recently only the tomato FW2.2 gene had been the subject of detailed investigation. Recently, soybean and maize FWL genes were identified and shown to have a role in plant organogenesis. It is now apparent that the FWL genes in plants are a large gene family, which is even larger given inclusion of genes for the various eukaryotic PLAC8-domain proteins. Although overall the protein sequence identity/similarity among the family members is relatively low, there is strong conservation of key domains, suggesting a conservation of the core biochemical function of these proteins. In this Addendum Article, we highlight the similarities and differences exiting between plant FWL genes and enlarge this comparison to the mammalian PLAC8 genes. These comparisons suggest the possible conservation of biological function for FWL proteins.Key words: FW2.2, PLAC8, cys-rich domain, soybean, tomato, maize, plant organ development, nodule  相似文献   

8.
9.
10.
Striking increases in fruit size distinguish cultivated descendants from small-fruited wild progenitors for fleshy fruited species such as Solanum lycopersicum (tomato) and Prunus spp. (peach, cherry, plum, and apricot). The first fruit weight gene identified as a result of domestication and selection was the tomato FW2.2 gene. Members of the FW2.2 gene family in corn (Zea mays) have been named CNR (Cell Number Regulator) and two of them exert their effect on organ size by modulating cell number. Due to the critical roles of FW2.2/CNR genes in regulating cell number and organ size, this family provides an excellent source of candidates for fruit size genes in other domesticated species, such as those found in the Prunus genus. A total of 23 FW2.2/CNR family members were identified in the peach genome, spanning the eight Prunus chromosomes. Two of these CNRs were located within confidence intervals of major quantitative trait loci (QTL) previously discovered on linkage groups 2 and 6 in sweet cherry (Prunus avium), named PavCNR12 and PavCNR20, respectively. An analysis of haplotype, sequence, segregation and association with fruit size strongly supports a role of PavCNR12 in the sweet cherry linkage group 2 fruit size QTL, and this QTL is also likely present in sour cherry (P. cerasus). The finding that the increase in fleshy fruit size in both tomato and cherry associated with domestication may be due to changes in members of a common ancestral gene family supports the notion that similar phenotypic changes exhibited by independently domesticated taxa may have a common genetic basis.  相似文献   

11.
Sugar transporters are necessary to transfer hexose from cell wall spaces into parenchyma cells to boost hexose accumulation to high concentrations in fruit. Here, we have identified an apple hexose transporter (HTs), MdHT2.2, located in the plasma membrane, which is highly expressed in mature fruit. In a yeast system, the MdHT2.2 protein exhibited high 14C‐fructose and 14C‐glucose transport activity. In transgenic tomato heterologously expressing MdHT2.2, the levels of both fructose and glucose increased significantly in mature fruit, with sugar being unloaded via the apoplastic pathway, but the level of sucrose decreased significantly. Analysis of enzyme activity and the expression of genes related to sugar metabolism and transport revealed greatly up‐regulated expression of SlLIN5, a key gene encoding cell wall invertase (CWINV), as well as increased CWINV activity in tomatoes transformed with MdHT2.2. Moreover, the levels of fructose, glucose and sucrose recovered nearly to those of the wild type in the sllin5‐edited mutant of the MdHT2.2‐expressing lines. However, the overexpression of MdHT2.2 decreased hexose levels and increased sucrose levels in mature leaves and young fruit, suggesting that the response pathway for the apoplastic hexose signal differs among tomato tissues. The present study identifies a new HTs in apple that is able to take up fructose and glucose into cells and confirms that the apoplastic hexose levels regulated by HT controls CWINV activity to alter carbohydrate partitioning and sugar content.  相似文献   

12.
13.
14.
15.
16.
Auxin is one of the most prominent phytohormones regulating many aspects of fleshy fruit development including fruit set, fruit size through the control of cell division and cell expansion, and fruit ripening. To shed light on the role of auxin fruit ripening, we have previously shown that Sl-ARF4 is a major player in mediating the auxin control of sugar metabolism in tomato fruit (cv MicroTom). Further extending this study, we show here that down-regulation of Sl-ARF4 in tomato alters some ripening-related fruit quality traits including enhanced fruit density at mature stage, increased firmness, prolonged shelf-life and reduced water (weight) loss at red ripe stage. These findings suggest that Sl-ARF4 plays a role in determining fruit cell wall architecture and thus providing a potential genetic marker for improving post-harvest handling and shelf life of tomato fruits.  相似文献   

17.
18.
Summary Cyclin proteins and cyclin-dependent kinases play a key role in the regulation of cell division. We have therefore studied the relationship of the level of four mitotic cyclin proteins and the Cdc2a kinase protein to cell division in maize root tissue with respect to cessation of division as cells leave the primary meristem region, resumption of division in formation of lateral-root primordia, and induced division following wounding. All four mitotic cyclins and Cdc2a were most abundant in dividing cells. The only examined cell cycle protein which was restricted to dividing tissue was cyclin ZmCycB1;2 (previously ZmIb) and may thus be a limiting factor for cell division. All other cyclin proteins, i.e., ZmCycB1;1 (previously ZmIa), ZmCycA1;1 (previously ZmII), and ZmCycB2;1 (previously ZmIII), and the Cdc2a kinase declined shortly after cells had ceased division. The distance from the root tip at which cells ceased division was tissue-specific and reflected the distance at which decrease of cell cycle proteins was detected. Whereas cyclin ZmCycB1;2 rapidly declined to a hardly detectable level in either nucleus or cytoplasm, in the nuclei of nondividing cells there was persistence of Cdc2a and of cyclins ZmCycB1;1, ZmCycCA1;1, and ZmCycB2;1, indicating that there are plant cyclins which are tightly linked to cell division and others that persist, especially in the nuclei, in nondividing cells. The transition from division to differentiation may thus partly be triggered and enforced by the decrease of the cell cycle proteins and especially the decline of cyclins in the cytoplasm. In the resumption of cell division, both in lateral-root formation and in wound response, high nuclear and low cytoplasmic accumulation of cyclin ZmCycB2;1 was the first visible sign of cell dedifferentiation, implying a role for cyclin ZmCycB2;1 in the G0–G1 phase transition. Next, cytoplasmic accumulation of cyclin ZmCycA1;1, followed by a rearrangement of cortical microtubules, was observed and since both the cyclins ZmCycA1;1 and ZmCycB2;1 were found at places of high tubulin concentration, they may function in the microtubule rearrangement for cell division. When the nuclei of dedifferentiating cells had visibly enlarged, all cyclins and Cdc2a accumulated there, possibly contributing to DNA replication and preparation for mitosis. Later, presumably during G2 phase, cytoplasmic accumulation was observed for Cdc2a at low levels, as observed in G2 phase cells of the primary meristem, and for cyclins ZmCycB1;1 and ZmCycB1;2 accumulation was observed above the levels found in undisturbed meristems, suggesting special contributions to late dedifferentiation processes in both wound-induced and lateral meristems.Abbreviations CDK cyclin-dependent kinase - LRP lateral-root primordium - Mt microtubule - FITC fluorescein isothiocyanate - TRITC tetramethylrhodamine isothiocyanate Dedicated to Professor Walter Gustav Url on the occasion of his 70th birthday  相似文献   

19.
20.
TheRSI-1 gene is expressed in pericycle cells just prior to the first round of cell division for lateral root development in tomato. We transformed tomato plants with theRSI-1 gene promoter linked to a GUS reporter gene. GUS activity was detected not only at the sites of initiation for lateral and adventitious roots, but also at the primary root tip. Expression of the fusion gene was also regulated at various stages of tissue development: in particular, during the formation of reproductive organs such as pollen and fruit Overexpression of theRSI-1 gene in either the sense or antisense orientation resulted in arrest of fruit development and seed germination. TheRSI-1 gene product, therefore, may play a role in auxin-induced cell division in various developing tissues. Inter and intramolecular disulfide bridges between cysteines rich in the RSI-1 protein might be involved in cell-wall modifications that are essential for new cell division. These hypotheses for the role of theRSI-1 gene in lateral-root and reproductive-organ development remain to be tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号