首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca2+ uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca2+ transport system (Bazhenova et al. J Biol Chem 273:4372–4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96–100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352–1356, 2000; Deryabina et al. J Biol Chem 276:47801–47806, 2001) were very resistant to Ca2+ overload. However, exposure of yeast mitochondria to 50–100 μM Ca2+ in the presence of the Ca2+ ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca2+/nH+-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca2+- ETH129-induced activation of the Ca2+/H+-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca2+ overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319–331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37–51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.  相似文献   

2.
3.
Identification and stability of QTLs for fruit quality traits in apple   总被引:1,自引:0,他引:1  
Breeding for fruit quality traits is complex due to the polygenic (quantitative) nature of the genetic control of these traits. Therefore, to improve the speed and efficiency of genotype selection, attention in recent years has focused on the identification of quantitative trait loci (QTLs) and molecular markers associated with these QTLs. However, despite the huge potential of molecular markers in breeding programmes, their implementation in practice has been limited by the lack of information on the stability of QTLs across different environments and within different genetic backgrounds. Here, we present the results from a comprehensive analysis of the inheritance of fruit quality traits within a population derived from a cross between the apple cultivars ‘Telamon’ and ‘Braeburn’ over two successive seasons. A total of 74 different QTLs were identified for all the major fruit physiological traits including fruit height, diameter, weight and stiffness, flesh firmness, rate of flesh browning, acidity, the oBrix content and harvest date. Seventeen of these QTLs were ‘major’ QTLs, accounting for over 20% of the observed population variance of the trait. However, only one third (26) of the identified QTLs were stable over both harvest years, and of these year-stable QTLs only one was a major QTL. A direct comparison with published QTL results obtained using other populations (King et al., Theor Appl Genet 102:1227–1235, 2001; Liebhard et al., Plant Mol Biol 52:511–526, 2003) is difficult because the linkage maps do not share a sufficient number of common markers and due to differences in the trait evaluation protocols. Nonetheless, our results suggest that for the six fruit quality traits which were measured in all populations, nine out of a total of 45 QTLs were common or stable across all population × environments combinations. These results are discussed in the framework of the development and application of molecular markers for fruit quality trait improvement.  相似文献   

4.
Invasive species trigger biodiversity losses and alter ecosystem functioning, with life history shaping invasiveness (Sakai et al., Annu Rev Ecol Syst 32:305–332, 2001). However, pinpointing the relation of a specific life history to invasion success is difficult. One approach may be comparing congeners. The two Palearctic pavement ants, Tetramorium sp.E (widely known as T. caespitum, Schlick-Steiner et al., Mol Phylogenet Evol 40:259–273, 2006) and T. tsushimae have invaded North America (Steiner et al., Biol Invasions 8:117–123, 2006). Their life histories differ in that T. sp.E has separate single-queened colonies but T. tsushimae multi-queened colonies scattered over large areas (Sanada-Morimura et al., Insect Soc 53:141–148, 2006; Schlick-Steiner et al., Mol Phylogenet Evol 40:259–273, 2006; Steiner et al., Biol Invasions 8:117–123, 2006). Comparison of the genetic diversity in the entire native and non-native ranges will elucidate the invasion histories. Here, we present 13 and 11 microsatellites, developed for T. sp.E and T. tsushimae, respectively, and characterize all for both species. Florian M. Steiner, Wolfgang Arthofer and Birgit C. Schlick-Steiner contributed equally to this work.  相似文献   

5.
Conservation strategies for populations of woodland caribou Rangifer tarandus caribou frequently emphasize the importance of predator–prey relationships and the availability of lichen-rich late seral forests, yet the importance of summer diet and forage availability to woodland caribou survival is poorly understood. In a recent article, Wittmer et al. (Can J Zool 83:407–418, 2005b) concluded that woodland caribou in British Columbia were declining as a consequence of increased predation that was facilitated by habitat alteration. Their conclusion is consistent with the findings of other authors who have suggested that predation is the most important proximal factor limiting woodland caribou populations (Bergerud and Elliot in Can J Zool 64:1515–1529, 1986; Edmonds in Can J Zool 66:817–826, 1988; Rettie and Messier in Can J Zool 76:251–259, 1998; Hayes et al. in Wildl Monogr 152:1–35, 2003). Wittmer et al. (Can J Zool 83:407–418, 2005b) presented three alternative, contrasting hypotheses for caribou decline that differed in terms of predicted differences in instantaneous rates of increase, pregnancy rates, causes of mortality, and seasonal vulnerability to mortality (Table 1, p 258). These authors rejected the hypotheses that food or an interaction between food and predation was responsible for observed declines in caribou populations; however, the use of pregnancy rate, mortality season and cause of mortality to contrast the alternative hypotheses is problematic. We argue here that the data employed in their study were insufficient to properly evaluate a predation-sensitive foraging hypothesis for caribou decline. Empirical data on seasonal forage availability and quality and plane of nutrition of caribou would be required to test the competing hypotheses. We suggest that methodological limitations in studies of woodland caribou population dynamics prohibit proper evaluation of the mechanism of caribou population declines and fail to elucidate potential interactions between top-down and bottom-up effects on populations. An erratum to this article can be found at  相似文献   

6.
Pheromones cause dramatic changes in behavior and physiology, and are critical for honey bee colony organization. Queen mandibular pheromone (QMP) regulates multiple behaviors in worker bees (Slessor et al. in J Chem Ecol 31(11):2731–2745, 2005). We also identified genes whose brain expression levels were altered by exposure to QMP (Grozinger et al. in Proc Natl Acad Sci USA 100(Suppl 2):14519–14525, 2003). Krüppel-homolog 1 (Kr-h1) RNA levels were significantly downregulated by QMP, and were higher in foragers than in nurses (Whitfield et al. in Science 302(5643):296–299, 2003). Here we report on results of behavioral and pharmacological experiments that characterize factors regulating expression of Kr-h1. Foragers have higher brain levels of Kr-h1 than in-hive bees, regardless of age and pheromone exposure. Furthermore, forager Kr-h1 levels were not affected by QMP. Since the onset of foraging is caused, in part, by increasing juvenile hormone blood titers and brain octopamine levels, we investigated the effects of octopamine and methoprene (a juvenile hormone analog) on Kr-h1 expression. Methoprene produced a marginal (not significant) increase in Kr-h1 expression, but Kr-h1 brain levels in methoprene-treated bees were no longer downregulated by QMP. Octopamine did not modulate Kr-h1 expression. Our results demonstrate that the gene expression response to QMP is not hard-wired in the brain but is instead dependent on worker behavioral state.  相似文献   

7.
Arnqvist L  Persson M  Jonsson L  Dutta PC  Sitbon F 《Planta》2008,227(2):309-317
Sitosterol and stigmasterol are major sterols in vascular plants. An altered stigmasterol:sitosterol ratio has been proposed to influence the properties of cell membranes, particularly in relation to various stresses, but biosynthesis of stigmasterol is poorly understood. Recently, however, Morikawa et al. (Plant Cell 18:1008–1022, 2006) showed in Arabidopsis thaliana that synthesis of stigmasterol and brassicasterol is catalyzed by two separate sterol C-22 desaturases, encoded by the genes CYP710A1 and CYP710A2, respectively. The proteins belong to a small cytochrome P450 subfamily having four members, denoted by CYP710A1-A4, and are related to the yeast sterol C-22 desaturase Erg5p acting in ergosterol synthesis. Here, we report on our parallel investigation of the Arabidopsis CYP710A family. To elucidate the function of CYP710A proteins, transgenic Arabidopsis plants were generated overexpressing CYP710A1 and CYP710A4. Compared to wild-type plants, both types of transformant displayed a normal phenotype, but contained increased levels of free stigmasterol and a concomitant decrease in the level of free sitosterol. CYP710A1 transformants also displayed higher levels of esterified forms of stigmasterol, cholesterol, 24-methylcholesterol and isofucosterol. The results confirm the findings of Morikawa et al. (Plant Cell 18:1008–1022, 2006) regarding the function of CYP710A1 in stigmasterol synthesis, and show that CYP710A4 also has this capacity. Furthermore, our results suggest that an increased stigmasterol level alone is sufficient to stimulate esterification of other major sterols.  相似文献   

8.
Conchospore germlings of Porphyra yezoensis were stained with a fluorescent dye for DNA and observed with confocal laser scanning microscopy (CLSM). Relative DNA values of the germling nuclei were obtained by measuring fluorescence intensities of nuclear regions of the optically sliced specimens, using the mean value of the smallest blade cells as a reference of the genomic n value. Such quantification revealed that the nuclear DNA amounts of the one-cell, two-cell, and four-cell-stage germlings are approximately 4 × n, 2 × n, and n ∼2 × n values respectively; these values agreed well with the expected ones from the hypothesis that meiosis corresponds to the first successive cell divisions after the conchospore germination. These results are consistent with a previous study on cytogenetic analysis of the chimaera blade formation (Ohme and Miura 1988, Plant Sci 57:135–140) and not consistent with a recent microscopic study (Wang et al. 2006, Phycol Res 54:201–207) which proposed that the first meiotic division occurs at the conchospore formation and the second division at the germination.  相似文献   

9.
Konishi T  Kotake T  Tsumuraya Y 《Planta》2007,226(3):571-579
Pectin is one of the major cell wall polysaccharides found in dicotyledonous plants. We have solubilized and partially purified a β-(1→4)-galactosyltransferase (GalT) involved in the synthesis of the β-(1→4)-galactan side chains of pectin. The enzyme protein was almost completely solubilized by mixing a crude microsomal preparation of etiolated 6-day-old soybean (Glycine max Merr.) hypocotyls with a detergent, Triton X-100 (0.75%, w/v), in buffer. The solubilized enzyme was partially purified by ion-exchange chromatography. The crude membrane-bound GalT transferred Gal from UDP-Gal onto 2-aminobenzamide (AB)-derivatized β-(1→4)-galactoheptaose (Gal7-AB), leading to the formation of Gal8–11-AB by attachment of a series of one to four galactosyl residues; this is similar to what has previously been observed for 2-aminopyridine-derivatized β-(1→4)-galactooligomer acceptors (Konishi et al. in Planta 218:833–842, 2004). The partially purified GalT, by contrast, was able to transfer more than 25 galactosyl residues and elongated the chains to about Gal35-AB, thus almost reaching the length (43–47 Gal units) of native β-(1→4)-galactan side chains found in pectic polysaccharides from soybean cotyledons (Nakamura et al. in Biosci Biotechnol Biochem 66:1301–1313, 2002). Enzyme activity increased with increasing chain length of β-(1→4)-galactooligomers and reached maximal activity at heptaose, whereas galactooligomers higher than heptaose showed lower acceptor efficiency. Sugars described in this paper belong to the d-series unless otherwise noted.  相似文献   

10.
A major scab resistance gene initially called Vr1 was identified in the apple cultivar “Regia” derived from the Malus scab resistance source R12740-7A (Russian seedling, RS). A codominant, multiallelic sequence characterized amplified region (SCAR) marker was developed from a random amplified polymorphic DNA marker identified by bulked-segregant analysis. Additional alleles of the AD13 marker locus proved to be informative for the analysis of genetic relationships within Malus including putative relatives of RS. Separate linkage maps were created for the two families derived from crosses with “Regia”. Using phenotypic data from the greenhouse scab tests, the recombination frequency between Vr1 and AD13-SCAR was between 6 and 17%. The Vr1 locus appeared to be closely linked to the Vx [Hemmat et al. J Am Soc Hortic Sci, 127:365–370, 2002], Vr2 [Patocchi et al. Theor Appl Genet, 109:1087–1092, 2004], and the Vh4 gene [Bus et al. Mol Breed, 15:103–116, 2005a]. Our linkage analysis of the molecular markers identified by Hemmat et al. [J Am Soc Hortic Sci, 127:365–370, 2002] for two scab resistance factors from RS (Vr and Vx) indicate that both genes are separated by a large distance on apple linkage group 2 [Boudichevskaia et al. Acta Hortic, 663:171–175, 2004]. This is in agreement with the results of Bus et al., [Mol Breed, 15:103–116, 2005a] who concluded that (1) the RS-derived gene Vh2 is identical to Vr, (2) the RS-derived gene Vh4 is identical to Vx and Vr1, (3) Vh2/Vr and Vh4/Vr1/Vx map on opposite sides of LG 2. One of our main goals was the verification of the Vr1-SCAR within a practical apple-breeding program. The utility of the AD13-SCAR was evident after 2 years under natural scab infection conditions in both families investigated. This is the first report about the confirmation of a molecular marker for a RS resistance factor in a 2-year field experiment. A multiplex polymerase chain reaction assay based on two codominant SCARs for Vf and Vr1 was tested in an apple progeny segregating for both genes. The result of the two-marker approach is discussed with respect to scab races, which are able to overcome the Vf resistance gene.  相似文献   

11.
The aim of this study was to evaluate the MPK1 (SLT2) gene deletion upon filamentous growth induced by isoamyl alcohol (IAA) in two haploid industrial strains of Saccharomyces cerevisiae using oligonucleotides especially designed for a laboratory S. cerevisiae strain. The gene deletion was performed by replacing part of the open reading frames from the target gene with the KanMX gene. The recombinant strains were selected by their resistance to G418, and after deletion confirmation by polymerase chain reaction, they were cultivated in a yeast extract peptone dextrose medium + 0.5% IAA to evaluate the filamentous growth in comparison to wild strains. Mpk1 derivatives were obtained for both industrial yeasts showing the feasibility of the oligonucleotides especially designed for a laboratory strain (Σ1278b) by Martinez-Anaya et al. (In yeast, the pseudohyphal phenotype induced by isoamyl alcohol results from the operation of the morphogenesis checkpoint. J Cell Sci 116:3423–3431, 2003). The filamentation rate in these derivatives was significantly lower for both strains, as induced by IAA. This drastic reduction in the filamentation ability in the deleted strains suggests that the gene MPK1 is required for IAA-induced filamentation response. The growth curves of wild and derivative strains did not differ substantially. It is not known yet whether the switch to filamentous growth affects the fermentative characteristics of the yeast or other physiological traits. A genetically modified strain for nonfilamentous growth would be useful for these studies, and the gene MPK1 could be a target gene. The feasibility of designed oligonucleotides for this deletion in industrial yeast strains is shown.  相似文献   

12.
Mutations in each of the genes mPer1, mPer2, mCry1 and mCry2 separately cause deviations from the wild type circadian system. Differences between these mutant strains have inspired the hypothesis that the duality of circadian genes (two mPer and two mCry genes involved) is related to the existence of two components in the circadian oscillator (Daan et al., J Biol Rhythms 16:105–116, 2001). We tested the predictions from this theory that the circadian period (τ) lengthens under constant illumination (LL) in mCry1 and mPer1 mutant mice, while it shortens in mCry2 and mPer2 mutants. mCry1 −/− and mCry2 −/− knockout mice both consistently increased τ with increasing light intensity, as did wild type mice. With increasing illumination, rhythmicity is reduced in mCry1, mCry2 and mPer1, but not in mPer2 deficient mice. Results for mPer mutant mice are in agreement with data reported on these strains earlier by Steinlechner et al. (J Biol Rhythms 17:202–209, 2002), and also with the predictions from the model. The increase in cycle length of the circadian system by light in the mCry2 deficient mice violates the predictions. The model is thereby rejected: the mCry genes do not play a differential role, although the opposite responses of mPer mutants to light remain consistent with a functional Evening–Morning differentiation.  相似文献   

13.
Hydrogen exchange experiments (Krishna et al. in J. Mol. Biol. 359:1410, 2006) reveal that folding–unfolding of cytochrome c occurs along a defined pathway in a sequential, stepwise manner. The simplified zipper-like model involving nonadditive coupling is proposed to describe the classical “on pathway” folding–unfolding behavior of cytochrome c. Using free energy factors extracted from HX experiments, the model can predict and explain cytochrome c behavior in spectroscopy studies looking at folding equilibria and kinetics. The implications of the proposed model are discussed for such problems as classical pathway vs. energy landscape conceptions, structure and function of a native fold, and interplay of secondary and tertiary interactions.  相似文献   

14.
In this study, 900-bp (signed as p including nucleotides –1 to –886) and partly deleted (signed as dp including nucleotides –1 to –414) COMT (caffeate/5-hydroxyferulate O-methyltransferase) promoters from Populus tremuloides Michx. were fused to the GUS reporter gene, and the tissue-specific expression patterns of the promoters were determined in Betula pendula Roth along the growing season, and as a response to mechanical bending and wounding. The main activity of the PtCOMTp- and PtCOMTdp-promoters, determined by the histochemical GUS assay, was found in the developing xylem of stems during the 8th–13th week and in the developing xylem of roots in the 13th week of the growing season. The GUS expression patterns did not differ among the xylem cell types. The PtCOMT promoter-induced GUS expression observed in phloem fibres suggests a need for PtCOMT expression and thus syringyl (S) lignin synthesis in fibre lignification. However, the PtCOMTdp-promoter induced GUS expression in stem trichomes, which may contribute to the biosynthesis of phenylpropanoid pathway-derived compounds other than lignin. Finally, a strong GUS expression was induced by the PtCOMT promoters in response to mechanical stem bending but not to wounding. The lack of major differences between the PtCOMTp- and PtCOMTdp-promoters suggests that the deleted promoter sequence (including nucleotides −415 to −886) did not contain a significant regulatory element contributing to the GUS expression in young B. pendula trees.  相似文献   

15.
Ishimaru M  Smith DL  Mort AJ  Gross KC 《Planta》2009,229(2):447-456
The open reading frames of tomato β-galactosidase (TBG) 4 and 5 cDNAs were expressed in yeast, and the enzymes properties and substrate specificities were investigated. The two enzymes had peak activities between pH 4–4.5 and 37–45°C. TBG4 specifically hydrolyzed β-(1→4) and 4-linked galactooligosaccharides. TBG5 had a strong preference to hydrolyze β-(1→3) and β-(1→6)-linked galactooligosaccharides. Exo-β-galactanase activity of the TBG enzymes was measured by determining the release of galactosyl residues from native tomato cell wall fractions throughout fruit development and ripening. Both TBGs released galactose from all of the fractions and stages tested. TBG4 activity was highest using chelator soluble pectin and alkali soluble pectin at the turning stage of ripening. Using aminopyrene trisulfonate labeled substrates, TBG4 was the only enzyme with strong exo-β-(1→4)-galactanase activity on 5 mer or greater galactans. TBG4 and TBG5 were both able to degrade galactosylated rhamnogalacturonan. Neither enzyme was able to degrade galactosylated xyloglucan.  相似文献   

16.
Candida shehatae gene xyl1 and Pichia stipitis gene xyl2, encoding xylose reductase (XR) and xylitol dehydrogenase (XD) respectively, were amplified by PCR. The genes xyl1 and xyl2 were placed under the control of promoter GAL in vector pYES2 to construct the recombinant expression vector pYES2-P12. Subsequently the vector pYES2-P12 was transformed into S. cerevisiae YS58 by LiAc to produce the recombinant yeast YS58-12. The alcoholic ferment indicated that the recombinant yeast YS58-12 could convert xylose to ethanol with the xylose consumption rate of 81.3%. __________ Translated from Microbiology, 2006, 33(3): 104–108 [译自:微生物学通报]  相似文献   

17.
The objective of this study was to compare the efficacy of eight Blastomyces dermatitidis yeast phase lysate antigens (T-58: dog, Tennessee; T-27: polar bear, Tennessee; ERC-2: dog, Wisconsin; B5894: human, Minnesota; SOIL: soil, Canada; B5896: human, Minnesota; 48089: human, Zaire; 48938: bat, India) in the detection of the immunoglobulins IgG and IgM in serum specimens from canines with blastomycosis. An indirect enzyme-linked immunosorbent assay (ELISA, peroxidase system) was used to analyze sera collected during four different intervals post-infection. The yeast lysate antigen 48938 was a reactive antigen for the detection of both IgG (mean absorbance value range: 1.198–2.934) and IgM (mean absorbance value range: 0.505–0.845). For the same sera, antigen T-27 was also effective in the detection of IgG (mean absorbance value range: 0.904–3.356) and antigen 48089 was useful for the detection of IgM (mean absorbance value range: 0.377–0.554). The yeast lysate antigen B5894 proved to be a poor antigen for the detection of both IgG and IgM (mean absorbance value ranges: 0.310–0.744 for IgG, 0.025–0.069 for IgM). Inherent variations in yeast lysate antigens such as these may be utilized to develop improved immunoassay procedures for the specific detection of IgG or IgM in cases of blastomycosis.  相似文献   

18.
Wild-type plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803 does not form any kinetically detectable transient complex with Photosystem I (PS I) during electron transfer, but the D44R/D47R double mutant of copper protein does [De la Cerda et al. (1997) Biochemistry 36: 10125–10130]. To identify the PS I component that is involved in the complex formation with the D44R/D47R plastocyanin, the kinetic efficiency of several PS I mutants, including a PsaF–PsaJ-less PS I and deletion mutants in the lumenal H and J loops of PsaB, were analyzed by laser flash absorption spectroscopy. The experimental data herein suggest that some of the negative charges at the H loop of PsaB are involved in electrostatic repulsions with mutant plastocyanin. Mutations in the J loop demonstrate that this region of PsaB is also critical. The interaction site of PS I is thus not as defined as first expected but much broader, thereby revealing how complex the evolution of intermolecular electron transfer mechanisms in photosynthesis has been. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Mutants of Rhodobacter (Rba.) sphaeroides are described which were designed to study electron transfer along the so-called B-branch of reaction center (RC) cofactors. Combining the mutation L(M214)H, which results in the incorporation of a bacteriochlorophyll, β, for HA [Kirmaier et al. (1991) Science 251: 922–927] with two mutations, G(M203)D and Y(M210)W, near BA, we have created a double and a triple mutant with long lifetimes of the excited state P* of the primary donor P, viz. 80 and 160 ps at room temperature, respectively. The yield of P+QA formation in these mutants is reduced to 50 and 30%, respectively, of that in wildtype RCs. For both mutants, the quantum yield of P+HB formation was less than 10%, in contrast to the 15% B-branch electron transfer demonstrated in RCs of a similar mutant of Rba. capsulatus with a P* lifetime of 15 ps [Heller et al. (1995) Science 269: 940–945]. We conclude that the lifetime of P* is not a governing factor in switching to B-branch electron transfer. The direct photoreduction of the secondary quinone, QB, was studied with a triple mutant combining the G(M203)D, L(M214)H and A(M260)W mutations. In this triple mutant QA does not bind to the reaction center [Ridge et al. (1999) Photosynth Res 59: 9–26]. It is shown that B-branch electron transfer leading to P+QB formation occurs to a minor extent at both room temperature and at cryogenic temperatures (about 3% following a saturating laser flash at 20 K). In contrast, in wildtype RCs P+QB formation involves the A-branch and does not occur at all at cryogenic temperatures. Attempts to accumulate the P+QB state under continuous illumination were not successful. Charge recombination of P+QB formed by B-branch electron transfer in the new mutant is much faster (seconds) than has been previously reported for charge recombination of P+QB trapped in wildtype RCs (105 s) [Kleinfeld et al. (1984b) Biochemistry 23: 5780–5786]. This difference is discussed in light of the different binding sites for QB and QB that recently have been found by X-ray crystallography at cryogenic temperatures [Stowell et al. (1997) Science 276: 812–816]. We present the first low-temperature absorption difference spectrum due to P+QB . This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
During the latest years medium-sized (15–30 μm), single-celled dinoflagellates have been reported to form blooms in the northern Baltic Proper and the Gulf of Finland in winter and spring. Recent studies (Kremp et al., 2003. Proceedings of the 7th International conference of Modern and Fossil Dinoflagellates, September 21–25, Nagasaki, Japan, 66 pp.) indicate that those blooms are caused by two isomorphic species – Scrippsiella hangoei (Schiller) Larsen, and a new species, tentatively belonging to the genus Woloszynskia. Until now there has been no report on how widely distributed these phytoplankton species are in the Baltic Sea. In this study, the occurrence of Scrippsiella/Woloszynskia complex in the entire Baltic Sea was investigated, by using monitoring data from 1997 to 2003. The species occurred in a salinity range from 2 to 8 PSU. Highest concentrations were observed at salinity 4.5–6.5 PSU. Maximum cell densities of Scrippsiella/Woloszynskia complex in the water column were mainly obtained in April or in the beginning of May by the water temperature <3 °C prior to stratification was formed. In the central Gulf of Finland, the second maximum was found in 1999 and 2002 by the temperature >6 °C. Bloom formations in the Baltic Proper and in the Gulf of Finland may not only be explained by optimum temperature and salinity, but also with other factors e.g. high nutrient concentrations and good seeding conditions from the sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号