首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Microbial lipids produced by oleaginous microorganisms, also called microbial oils and single cell oils (SCOs), are very promising sources for several oil industries. The exploration of efficient oleaginous yeast strains, meant to produce both high-quantity and high-quality lipids for the production of biodiesel, oleochemicals, and the other high value lipid products, have gained much attention. At present, the number of oleaginous yeast species that have been discovered is 8.2% of the total number of known yeast species, most of which have been isolated from their natural habitats. To explore high lipid producing yeasts, different methods, including high-throughput screening methods using colorimetric or fluorometric measures, have been developed. Understanding of the fatty acid composition profiles of lipids produced by oleaginous yeasts would help to define target lipid-related products. For lipid production, the employment of low-cost substrates suitable for yeast growth and lipid accumulation, and efficient cultivation processes are key factors for successfully increasing the amount of the accumulated lipid yield while decreasing the cost of production.  相似文献   

2.
With the depletion of global petroleum and its increasing price, biodiesel has been becoming one of the most promising biofuels for global fuels market. Researchers exploit oleaginous microorganisms for biodiesel production due to their short life cycle, less labor required, less affection by venue, and easier to scale up. Many oleaginous microorganisms can accumulate lipids, especially triacylglycerols (TAGs), which are the main materials for biodiesel production. This review is covering the related researches on different oleaginous microorganisms, such as yeast, mold, bacteria and microalgae, which might become the potential oil feedstocks for biodiesel production in the future, showing that biodiesel from oleaginous microorganisms has a great prospect in the development of biomass energy. Microbial oils biosynthesis process includes fatty acid synthesis approach and TAG synthesis approach. In addition, the strategies to increase lipids accumulation via metabolic engineering technology, involving the enhancement of fatty acid synthesis approach, the enhancement of TAG synthesis approach, the regulation of related TAG biosynthesis bypass approaches, the blocking of competing pathways and the multi-gene approach, are discussed in detail. It is suggested that DGAT and ME are the most promising targets for gene transformation, and reducing PEPC activity is observed to be beneficial for lipid production.  相似文献   

3.
The reserves of fossil-based fuels, which currently seem sufficient to meet the global demands, is inevitably on the verge of exhaustion. Contemporary raw material for alternate fuel like biodiesel is usually edible plant commodity oils, whose increasing public consumption rate raises the need of finding a non-edible and fungible alternate oil source. In this quest, single cell oils (SCO) from oleaginous yeasts and fungi can provide a sustainable alternate of not only functional but also valuable (polyunsaturated fatty acids (PUFA)-rich) lipids. Researches are been increasingly driven towards increasing the SCO yield in order to realize its commercial importance. However, bulk requirement of expensive synthetic carbon substrate, which inflates the overall SCO production cost, is the major limitation towards complete acceptance of this technology. Even though substrate cost minimization could make the SCO production profitable is uncertain, it is still essential to identify suitable cheap and abundant substrates in an attempt to potentially reduce the overall process economy. One of the most sought-after in-expensive carbon reservoirs, agro-industrial wastes, can be an attractive replacement to expensive synthetic carbon substrates in this regard. The present review assess these possibilities referring to the current experimental investigations on oleaginous yeasts, and fungi reported for conversion of agro-industrial feedstocks into triacylglycerols (TAGs) and PUFA-rich lipids. Multiple associated factors regulating lipid accumulation utilizing such substrates and impeding challenges has been analyzed. The review infers that production of bulk oil in combination to high-value fatty acids, co-production strategies for SCO and different microbial metabolites, and reutilization and value addition to spent wastes could possibly leverage the high operating costs and help in commencing a successful biorefinery. Rigorous research is nevertheless required whether it is PUFA-rich oil production (for competing with algal omega oils) or neutral bulk oil production (for overcoming yield limitations and managing process economy) to establish this potential source as future resource.  相似文献   

4.
广谱碳源产油酵母菌的筛选   总被引:17,自引:1,他引:16  
对10株酵母菌利用不同单糖为碳源条件下菌体内积累油脂的能力进行了初步考察,并对菌油进行了分离和脂肪酸组成分析。实验发现,以葡萄糖为唯一碳源时有9株菌油脂含量超过自身细胞干重的20%,可以界定为产油微生物。其中6#菌(T.cutaneumAS2.571)利用葡萄糖发酵菌体油脂含量达到65%(W/W)。所有实验菌株都能同化多种单糖,其中1#菌(L.starkeyiAS2.1390)、4#菌(R.toruloidesAS2.1389)和11#菌(L.starkeyiAS2.1608)表现出对碳源利用的广谱性,能转化五碳糖木糖和阿拉伯糖并在菌体内积累油脂,油脂含量最高达到26%。脂肪酸组成分析结果表明,菌油富含饱和及低度不饱和长链脂肪酸,其中棕榈酸、油酸和亚油酸三者之和占总脂肪酸组成的90%以上,脂肪酸组成分布类似于常见的植物油。这些结果对利用产油微生物转化木质纤维素水解混合糖获取油脂资源的研究具有重要意义。  相似文献   

5.
Microbial oil is a potential alternative to food/plant-derived biodiesel fuel. Our previous screening studies identified a wide range of oleaginous yeast species, using a defined laboratory medium known to stimulate lipid accumulation. In this study, the ability of these yeasts to grow and accumulate lipids was further investigated in synthetic hydrolysate (SynH) and authentic ammonia fiber expansion (AFEX?)-pretreated corn stover hydrolysate (ACSH). Most yeast strains tested were able to accumulate lipids in SynH, but only a few were able to grow and accumulate lipids in ACSH medium. Cryptococcus humicola UCDFST 10-1004 was able to accumulate as high as 15.5 g/L lipids, out of a total of 36 g/L cellular biomass when grown in ACSH, with a cellular lipid content of 40 % of cell dry weight. This lipid production is among the highest reported values for oleaginous yeasts grown in authentic hydrolysate. Preculturing in SynH media with xylose as sole carbon source enabled yeasts to assimilate both glucose and xylose more efficiently in the subsequent hydrolysate medium. This study demonstrates that ACSH is a suitable medium for certain oleaginous yeasts to convert lignocellullosic sugars to triacylglycerols for production of biodiesel and other valuable oleochemicals.  相似文献   

6.
Eighteen new oleaginous yeast species   总被引:1,自引:0,他引:1  
Of 1600 known species of yeasts, about 70 are known to be oleaginous, defined as being able to accumulate over 20 % intracellular lipids. These yeasts have value for fundamental and applied research. A survey of yeasts from the Phaff Yeast Culture Collection, University of California Davis was performed to identify additional oleaginous species within the Basidiomycota phylum. Fifty-nine strains belonging to 34 species were grown in lipid inducing media, and total cell mass, lipid yield and triacylglycerol profiles were determined. Thirty-two species accumulated at least 20 % lipid and 25 species accumulated over 40 % lipid by dry weight. Eighteen of these species were not previously reported to be oleaginous. Triacylglycerol profiles were suitable for biodiesel production. These results greatly expand the number of known oleaginous yeast species, and reveal the wealth of natural diversity of triacylglycerol profiles within wild-type oleaginous Basidiomycetes.  相似文献   

7.
In the present scenario of depleting oil reservoir, microbial oil has gained much attention over plant and animal based sources. Among different microorganisms, yeast strains are considered superior source for oil production. The cost of oil produced by yeast could further be lowered using cheaper agro-waste and biomass as substrate. This review focuses on key topics which will help in gaining better understanding to enhance lipid production using yeast strains. The effects of oleaginous yeast co-culturing with microalgae, different cheap carbon sources of biomass, and types of yeast species on oil production were highlighted in the review. An overview of mechanisms of oil production from biomass, viz. pretreatment of biomass, fermentation and oil recovery are also provided. Constraints encountered during the oleogenesis or microbial oil accumulation and their probable solutions along with a section on different by-products obtained during oleo-genesis are also discussed.  相似文献   

8.
Lipids created via microbial biosynthesis are a potential raw material to replace plant-based oil for biodiesel production. Oleaginous microbial species currently available are capable of accumulating high amount of lipids in their cell biomass, but rarely can directly utilize lignocellulosic biomass as substrates. Thus this research focused on the screening and selection of new fungal strains that generate both lipids and hydrolytic enzymes. To search for oleaginous fungal strains in the soybean plant, endophytic fungi and fungi close to the plant roots were studied as a microbial source. Among 33 endophytic fungal isolates screened from the soybean plant, 13 have high lipid content (>20 % dry biomass weight); among 38 fungal isolates screened from the soil surrounding the soybean roots, 14 have high lipid content. Also, five fungal isolates with both high lipid content and promising biomass production were selected for further studies on their cell growth, oil accumulation, lipid content and profile, utilization of various carbon sources, and cellulase production. The results indicate that most strains could utilize different types of carbon sources and some strains accumulated >40 % of the lipids based on the dry cell biomass weight. Among these promising strains, some Fusarium strains specifically showed considerable production of cellulase, which offers great potential for biodiesel production by directly utilizing inexpensive lignocellulosic material as feedstock.  相似文献   

9.
High energy prices, depletion of crude oil supplies, and price imbalance created by the increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives such as lubricants, adhesives, and plastics have given rise to heated debates on land-use practices and to environmental concerns about oil production strategies. However, commercialization of microbial oils with similar composition and energy value to plant and animal oils could have many advantages, such as being non-competitive with food, having shorter process cycle and being independent of season and climate factors. This review focuses on the ongoing research on different oleaginous yeasts producing high added value lipids and on the prospects of such microbial oils to be used in different biotechnological processes and applications. It covers the basic biochemical mechanisms of lipid synthesis and accumulation in these organisms, along with the latest insights on the metabolic processes involved. The key elements of lipid accumulation, the mechanisms suspected to confer the oleaginous character of the cell, and the potential metabolic routes enhancing lipid production are also extensively discussed.  相似文献   

10.
Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers’ community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.  相似文献   

11.
Perspectives of microbial oils for biodiesel production   总被引:7,自引:0,他引:7  
Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed.  相似文献   

12.
Microbial lipid produced using yeast fermentation with inexpensive carbon sources such as lignocellulosic hydrolyzate can be an alternative feedstock for biodiesel production. Several inhibitors that can be generated during acid hydrolysis of lignocellulose were added solely or together into the culture medium to study their individual inhibitory actions and their synergistic effects on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides. When the inhibitors were present in isolation in the medium, to obtain a high cell biomass accumulation, the concentrations of formic acid, acetic acid, furfural and vanillin should be lower than 2, 5, 0.5 and 1.5 g/L, respectively. However, the synergistic effects of these compounds could dramatically decrease the minimum critical inhibitory concentrations leading to significant growth and lipid production inhibitions. Unlike the above-cited inhibitors, sodium lignosulphonate had no negative influence on biomass accumulation when its concentration was in the range of 0.5-2.0 g/L; in effect, it was found to facilitate cell growth and sugar-to-lipid conversion. The fatty acid compositional profile of the yeast lipid was in the compositional range of various plant oils and animal tallow. Finally, the crude yeast lipid from bagasse hydrolyzate could be well converted into fatty acid methyl ester (FAME, biodiesel) by enzymatic transesterification in a tert-butanol system with biodiesel yield of 67.2% and lipid-to-biodiesel conversion of 88.4%.  相似文献   

13.
Production of microbial lipids using crude glycerol from the biodiesel industry is reviewed in this paper. Approximately 10 wt.% of crude glycerol is obtained for every batch of biodiesel. The crude glycerol accumulated contains various impurities and hence cannot be used for any commercial applications without further purification. Its conversion via biological and chemical routes into valuable products has been studied by different researchers. Varieties of fungal, yeasts, and algal species have been used to produce microbial lipids from crude glycerol. However, research focus on screening a robust industrial oleaginous strain capable of doing this is still on-going. Due to its chemical similarity to vegetable oils, microbial lipids are considered a potential renewable feedstock for biodiesel production and for applications in food and pharmaceutical industries. Its conversion to polyols and subsequently to biobased polymers is also being explored. The rising price of vegetable oils, increasing energy demands, growing environmental concerns, and availability of crude glycerol as a cheap carbon substrate result in considerable potential for the application of these processes in the future.  相似文献   

14.
Biodiesel is a renewable fuel produced mostly from edible and non‐edible vegetables, by transesterification of neutral lipids (triacylglycerols). However, vegetable oil‐based biodiesel production competes with food crops for arable land, increasing food prices and leading to biodiversity loss. The production of biodiesel from oleaginous microorganisms – particularly microalgae – has attracted attention due to the higher lipid productivity of these organisms, when compared with vegetables. Several environmental factors – including light, temperature, pH and the presence of nutrients (particularly nitrogen, phosphorus and iron) – influence directly the ability of microalgae to produce and store triacylglycerols and other lipids, and also modulate microalgal growth. Although some environmental factors affect several species in a similar manner, differential responses between species are frequent, highlighting the importance of identifying optimal cultivation conditions for each species, to balance growth and lipid productivity for biodiesel production. Here, we reviewed the particular influence of the physicochemical and nutritional factors on the growth and lipid productivity of different green oleaginous microalgae species.  相似文献   

15.
Utilization of microbial oil for biodiesel production has gained growing interest due to the increase in prices and the shortage of the oils and fats traditionally used in biodiesel production. However, it is still in the laboratory study stage due to the high cost of production. Employing organic wastes as raw materials to grow heterotrophic oleaginous microorganisms for further lipid production to produce biodiesel has been predicted to be a promising method for reducing costs. However, there are many obstacles including the low biodegradability of organic wastes, low lipid accumulation capacity of heterotrophic oleaginous microorganisms while using organic wastes, a great dependence on a high-energy consumption approach for biomass harvesting, utilization of toxic organic solvents for lipid extraction, and large amount of methanol required in trans-esterification and in-situ trans-esterifications. Ultra-sonication as a green technology has been extensively utilized to enhance bio-product production from organic wastes. In this article, ultra-sonication applications in biodiesel production steps with heterotrophic oleaginous microorganisms have been reviewed, and its impact, potential, and limitations on the process have been discussed.  相似文献   

16.
Process for biodiesel production from Cryptococcus curvatus   总被引:1,自引:0,他引:1  
The objective of the current report is process optimization for economical production of lipids by the well known oleaginous yeast Cryptococcus curvatus and conversion of the lipids to biodiesel. A high cell density fed-batch cultivation on low cost substrate viz. crude glycerol resulted in a dry biomass and oil yield of up to 69 g/L and 48% (w/w), respectively. The process was scaled up easily to 26 L. The oil extraction process was also optimized using environmentally safe solvents. The oil profile indicated a high oleic acid content followed by palmitic acid, stearic acid and linoleic acid. The oil was trans-esterified to biodiesel and thoroughly characterized. This is the first end to end report on production of biodiesel from the C. curvatus oil.  相似文献   

17.
微生物油脂是未来燃料和食品用油的重要潜在资源。近年来,随着系统生物学技术的快速发展,从全局角度理解产油微生物生理代谢及脂质积累的特征成为研究热点。组学技术作为系统生物学研究的重要工具被广泛用于揭示产油微生物脂质高效生产的机制研究中,这为产油微生物理性遗传改造和发酵过程控制提供了基础。文中对组学技术在产油微生物中的应用概况进行了综述,介绍了产油微生物组学分析常用的样品前处理及数据分析方法,综述了包括基因组、转录组、蛋白(修饰)组及代谢(脂质)组等在内的多种组学技术,以及组学数据基础上的数学模型在揭示产油微生物脂质高效生产机制中的研究,并对未来发展和应用进行了展望。  相似文献   

18.
生物柴油利用概况及其在中国的发展思路   总被引:41,自引:0,他引:41       下载免费PDF全文
石化燃料是当前人类使用的主要能源,但其日益消耗殆尽,同时造成了严重的温室效应和环境污染问题,因此,生物柴油被当作石化燃料的绿色替代品,许多国家都在大力研发。该文阐述了生物柴油的本质及其较石化柴油咱使用上的优良特性,综述了生物柴油主要在欧美国家中的发展现状及其它国家的研发动态,特别是以大豆(Glycine max)和油菜(Brassica campestris)等油料作物为主的生物柴油原料生产状况。在分析了我国油料生产与食用消费现状、受国际生物柴油大力发展的影响的程度及油料作物与粮食生产对耕地资源的激烈竞争矛盾的基础上,提出了充分利用盐碱地、贫瘠、荒漠与退耕还林地,通过种植抗逆性强的油料植物发展我国生物柴油的思路。  相似文献   

19.
Environmental concerns and depletion of fossil fuels along with government policies have led to the search for alternative fuels from various renewable and sustainable feedstocks. This review provides a critical overview of the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, WCO, and CTO and their recent trends toward potential biofuel production. Plant oils with a high energy content are primarily composed of triglycerides (generally >?95%), accompanied by diglycerides, monoglycerides, and free fatty acids. The heat content of plant oils is close to 90% for diesel fuels. The oxygen content is the most important difference in chemical composition between fossil oils and plant oils. Triglycerides can even be used directly in diesel engines. However, their high viscosity, low volatility, and poor cold flow properties can lead to engine problems. These problems require that plant oils need to be upgraded if they are to be used as a fuel in conventional diesel engines. Biodiesel, biooil, and renewable diesel are the three major biofuels obtained from plant oils. The main constraint associated with the production of biodiesel is the cost and sustainability of the feedstock. The renewable diesel obtained from crude tall oil is more sustainable than biofuels obtained from other feedstocks. The fuel properties of renewable diesel are similar to those of fossil fuels with reduced greenhouse gas emissions. In this review, the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, and tall oil, are presented. Both their major and minor components are discussed. Their compositions and fuel properties are compared to both fossil fuels and biofuels.  相似文献   

20.
Heterotrophic oleaginous microorganisms are capable of producing over 20% of their weight in single cell oils (SCOs) composed of triacylglycerols (TAGs). These TAGs contain fatty acids, such as palmitic, stearic and oleic acids, that are well-suited for biodiesel applications. Although some of these microbes are able to accumulate SCOs while growing on inexpensive agro-industrial biomass, the competition with plant oil resources means that a significant increase in productivity is desired. The present review aims to summarize recent details in lipid metabolism research and engineering (e.g. direct fatty acid ethyl ester production), as well as culture condition optimization and innovations, such as solid-state or semi-solid-state fermentation, that can all contribute to higher productivity and further advancement of the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号