首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two photobioreactors inoculated with microalgae from a lagoon containing aerobically treated swine slurry and with sludge from a membrane submerged bioreactor treating winery wastewater were established to treat fish processing wastewater (FPW) at 23 and 31 °C, respectively. The hydraulic retention time (HRT) was decreased in the photobioreactors from 10 to 5 days. Ammonium was completely exhausted in both photobioreactors; however, volatilization was the main removal mechanism for the highest applied load whereas biomass assimilation was the main mechanism for the lowest applied load. Approximately 70% of TCOD (total chemical oxygen demand) and phosphate removal was achieved regardless of temperature. Biomass productivity was as much as 55% higher at 31 °C than at 23 °C. These results suggested that fish processing wastewater could be effectively treated using this technology.  相似文献   

2.
Although production of biodiesels from microalgae is proved to be technically feasible, a commercially viable system has yet to emerge. High-cell-density fermentation of microalgae can be coupled with photoautotrophic cultivation to produce oils. In this study, by optimizing culturing conditions and employing a sophisticated substrate feed control strategy, ultrahigh-cell-density of 286 and 283.5 g/L was achieved for the unicellular alga Scenedesmus acuminatus grown in 7.5-L bench-scale and 1,000-L pilot-scale fermenters, respectively. The outdoor scale-up experiments indicated that heterotrophically grown S. acuminatus cells are more productive in terms of both biomass and lipid accumulation when they are inoculated in photobioreactors for lipid production as compared to the cells originally grown under photoautotrophic conditions. Technoeconomic analysis based on the pilot-scale data indicated that the cost of heterotrophic cultivation of microalgae for biomass production is comparable with that of the open-pond system and much lower than that of tubular PBR, if the biomass yield was higher than 200 g/L. This study demonstrated the economic viability of heterotrophic cultivation on large-scale microalgal inocula production, but ultrahigh-productivity fermentation is a prerequisite. Moreover, the advantages of the combined heterotrophic and photoautotrophic cultivation of microalgae for biofuels production were also verified in the pilot-scale.  相似文献   

3.
Closed photobioreactors for production of microalgal biomasses   总被引:1,自引:0,他引:1  
Microalgal biomasses have been produced industrially for a long history for application in a variety of different fields. Most recently, microalgae are established as the most promising species for biofuel production and CO(2) bio-sequestration owing to their high photosynthesis efficiency. Nevertheless, design of photobioreactors that maximize solar energy capture and conversion has been one of the major challenges in commercial microalga biomass production. In this review, we systematically survey the recent developments in this field.  相似文献   

4.
微藻细胞可以积累大量油脂、蛋白质、多糖、色素、不饱和脂肪酸等物质,在能源、食品、饵料、保健品及药品等行业有巨大的应用价值。然而,微藻在传统光自养模式下很难实现高密度培养来大量生产这些重要的物质,进而限制了微藻的实际应用。相反,微藻在异养模式下生长速度快、生物质浓度高,可以短时间内获得大量微藻生物质。因此,异养高密度培养微藻具备大规模、高效率培养微藻生产目标产物的巨大潜力。阐述微藻异养培养的优缺点及相应技术难点的解决思路、影响微藻异养生长及目标产物积累的主要营养因子和环境因子、微藻异养高密度培养的方式及微藻异养高密度培养的当前发展水平。结合文献报道分析微藻异养高密度培养的四个具有极大发展潜力的发展方向,以期更好地利用异养模式来高效率、低成本培养微藻生产大量目标产物,满足上述多个行业对微藻原材料的巨大需求,从而加速微藻产业的发展。  相似文献   

5.
Recovery of microalgal biomass and metabolites: process options and economics   总被引:25,自引:0,他引:25  
Commercial production of intracellular microalgal metabolites requires the following: (1) large-scale monoseptic production of the appropriate microalgal biomass; (2) recovery of the biomass from a relatively dilute broth; (3) extraction of the metabolite from the biomass; and (4) purification of the crude extract. This review examines the options available for recovery of the biomass and the intracellular metabolites from the biomass. Economics of monoseptic production of microalgae in photobioreactors and the downstream recovery of metabolites are discussed using eicosapentaenoic acid (EPA) recovery as a representative case study.  相似文献   

6.
The economic and/or energetic feasibility of processes based on using microalgae biomass requires an efficient cultivation system. In photobioreactors (PBRs), the adhesion of microalgae to the transparent PBR surfaces leads to biofouling and reduces the solar radiation penetrating the PBR. Light reduction within the PBR decreases biomass productivity and, therefore, the photosynthetic efficiency of the cultivation system. Additionally, PBR biofouling leads to a series of further undesirable events including changes in cell pigmentation, culture degradation, and contamination by invasive microorganisms; all of which can result in the cultivation process having to be stopped. Designing PBR surfaces with proper materials, functional groups or surface coatings, to prevent microalgal adhesion is essential for solving the biofouling problem. Such a significant advance in microalgal biotechnology would enable extended operational periods at high productivity and reduce maintenance costs. In this paper, we review the few systematic studies performed so far and applied the existing thermodynamic and colloidal theories for microbial biofouling formation in order to understand microalgal adhesion on PBR surfaces and the microalgae–microalgae cell interactions. Their relationship to the physicochemical properties of the solid PBR surface, the microalgae cell surfaces, and the ionic strength of the culture medium is discussed. The suitability and the applicability of such theories are reviewed. To this end, an example of biofouling formation on a commercial glass surface is presented for the marine microalgae Nannochloropsis gaditana. It highlights the adhesion dynamics and the inaccuracies of the process and the need for further refinement of previous theories so as to apply them to flowing systems, such as is the case for PBRs used to culture microalgae.  相似文献   

7.
The bioeconomy, and in particular, biorefining and bioenergy production, have received considerable attention in recent years as a shift to renewable bioresources to produce similar energy and chemicals derived from fossil energy sources, represents a more sustainable path. Membrane technologies have been shown to play a key role in process intensification and products recovery and purification in biorefining and bioenergy production processes. Among the various separation technologies used, membrane technologies provide excellent fractionation and separation capabilities, low chemical consumption, and reduced energy requirements. This article presents a state-of-the-art review on membrane technologies related to various processes of biorefining and bioenergy production, including: (i) separation and purification of individual molecules from biomass, (ii) removal of fermentation inhibitors, (iii) enzyme recovery from hydrolysis processes, (iv) membrane bioreactors for bioenergy and chemical production, such as bioethanol, biogas and acetic acid, (v) bioethanol dehydration, (vi) bio-oil and biodiesel production, and (vii) algae harvesting. The advantages and limitations of membrane technologies for these applications are discussed and new membrane-based integrated processes are proposed. Finally, challenges and opportunities of membrane technologies for biorefining and bioenergy production in the coming years are addressed.  相似文献   

8.
The production of biofuels from microalgae requires efficient photobioreactors in order to meet the tight constraints of energy efficiency and economic profitability. Current cultivation systems are designed for high-value products rather than for mass production of cheap energy carriers. Future bioreactors will imply innovative solutions in terms of energy efficiency, light and gas transfer or attainable biomass concentration to lower the energy demand and cut down production costs. A new generation of highly developed reactor designs demonstrates the enormous potential of photobioreactors. However, a net energy production with microalgae remains challenging. Therefore, it is essential to review all aspects and production steps for optimization potential. This includes a custom process design according to production organism, desired product and production site. Moreover, the potential of microalgae to synthesize valuable products additionally to the energetic use can be integrated into a production concept as well as waste streams for carbon supply or temperature control.  相似文献   

9.
Microalgal mass culture systems and methods: Their limitation and potential   总被引:15,自引:0,他引:15  
Cultivation of microalgae using natural and man-made open-ponds istechnologically simple, but not necessary cheap due to the high downstream processing cost. Products of microalgae cultured in open-pondscould only be marketed as value-added health food supplements, specialityfeed and reagents for research. The need to achieve higher productivityand to maintain monoculture of algae led to the development of enclosedtubular and flat plate photobioreactors. Despite higher biomassconcentration and better control of culture parameters, data accumulatedin the past 25 years have shown that the illuminated areal, volumetricproductivity and cost of production in these enclosed photobioreactors arenot better than those achievable in open-pond cultures. The technicaldifficulty in sterilizing these photobioreactors has hindered their applicationfor the production of high value pharmaceutical products. The alternativeof cultivating microalgae in heterotrophic mode in sterilizable fermentorshas achieved some commercial success. The maximum specific growth ratesof heterotrophic algal cultures are in general slower than those measured inphotosynthetic cultures. The biomass productivity of heterotrophic algalcultures has yet to achieve a level that is comparable to industrialproduction of yeast and other heterotrophic microrganisms. Mixotrophiccultivation of microalage takes advantage of their ability to utilise organicenergy and carbon substrates and perform photosynthesis concurrently. Moreover, production of some algal metabolites is light regulated. Futuredesign of sterilizable bioreactors for mixotrophic cultivation of microalgaemay have to consider the organic substrate the main source of energy andlight the supplemental source of energy, a change in mindset.  相似文献   

10.
Microalgae have the ability to mitigate CO2 emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production.  相似文献   

11.
Recently, microalgae have been considered as a promising alternative for the production of biofuels from CO2. For the efficient cultivation of these microalgae, several types of photobioreactors have been designed and Pilot scale photobioreactors have been used to assess the performance of these reactors. Therein the primarily investigated reactor type is the Raceway Pond. However, the less researched Thin‐Layer Cascade Photobioreactor (TLC) shows a high potential for efficient production processes. Unfortunately, for low‐value products like biofuels costs must be kept to a minimum for an economic operation. To facilitate this, 3D Computational Fluid Dynamic simulations can be employed to estimate performance of reactor variants e.g. with respect to power input and mixing. Since up to now little effort has been put into the modelling of TLC reactors, this report aims to present a simulation approach for these reactors types that allows simple adaptation to different geometric or operational boundary conditions. All models have been generated for a two‐phase mixture in OpenFOAM. To demonstrate its applicability, validation measurements with a physical unit have been performed and were compared to the simulation results. With errors in the order of 10 % a successful simulation of the reactor geometry could be proven.  相似文献   

12.
Microalgae can be used to produce versatile high-value fuels, such as methane, biodiesel, ethanol, or hydrogen gas. One of the most important factors that influence the economics of microalgae cultivation is the primary production of biomass per unit area. This is determined by productivity rates during cultivation, which are influenced by the local climate conditions (solar irradiation, temperature). To compare locations in different climate regions for microalgae cultivation, a mathematical model for an idealized closed photobioreactor was developed. The applied growth kinetics were based on theoretical maximum photon-conversion efficiencies (for the conversion of solar energy to chemical energy in the form of biomass). Known or estimated temperature effects for different algal strains were incorporated. The model was used to calculate hourly average areal productivity rates as well as annual primary production values under local conditions at seven example locations. Here, hourly weather data (solar irradiance and air temperature) were taken into account. According to these model calculations, maximum annual yields were achieved in regions with high irradiation and temperature patterns in or near the optimum range of the specific algal strain (here, desert and equatorial humid climates). The developed model can be used as a tool to assess and compare individual locations for microalgae cultivation.  相似文献   

13.
ABSTRACT

Microalgae have enormous potential as feedstock for biofuel production compared with other sources, due to their high areal productivity, relatively low environmental impact, and low impact on food security. However, high production costs are the major limitation for commercialization of algal biofuels. Strategies to maximize biomass and lipid production are crucial for improving the economics of using microalgae for biofuels. Selection of suitable algal strains, preferably from indigenous habitats, and further improvement of those ‘platform strains’ using mutagenesis and genetic engineering approaches are desirable. Conventional approaches to improve biomass and lipid productivity of microalgae mainly involve manipulation of nutritional (e.g. nitrogen and phosphorus) and environmental (e.g. temperature, light and salinity) factors. Approaches such as the addition of phytohormones, genetic and metabolic engineering, and co-cultivation of microalgae with yeasts and bacteria are more recent strategies to enhance biomass and lipid productivity of microalgae. Improvement in culture systems and the use of a hybrid system (i.e. a combination of open ponds and photobioreactors) is another strategy to optimize algal biomass and lipid production. In addition, the use of low-cost substrates such as agri-industrial wastewater for the cultivation of microalgae will be a smart strategy to reduce production costs. Such systems not only generate high algal biomass and lipid productivity, but are also useful for bioremediation of wastewater and bioremoval of waste CO2. The aim of this review is to highlight the advances in the use of various strategies to enhance production of algal biomass and lipids for biofuel feedstock.  相似文献   

14.
Worldwide, microalgal biofuel production is being investigated. It is strongly debated which type of production technology is the most adequate. Microalgal biomass production costs were calculated for 3 different micro algal production systems operating at commercial scale today: open ponds, horizontal tubular photobioreactors and flat panel photobioreactors. For the 3 systems, resulting biomass production costs including dewatering, were 4.95, 4.15 and 5.96 € per kg, respectively. The important cost factors are irradiation conditions, mixing, photosynthetic efficiency of systems, medium- and carbon dioxide costs. Optimizing production with respect to these factors, a price of € 0.68 per kg resulted. At this cost level microalgae become a promising feedstock for biodiesel and bulk chemicals.

Summary

Photobioreactors may become attractive for microalgal biofuel production.  相似文献   

15.
We describe a methodology to investigate the potential of given microalgae species for biodiesel production by characterizing their productivity in terms of both biomass and lipids. A multi-step approach was used: determination of biological needs for macronutrients (nitrate, phosphate and sulphate), determination of maximum biomass productivity (the “light-limited” regime), scaling-up of biomass production in photobioreactors, including a theoretical framework to predict corresponding productivities, and investigation of how nitrate starvation protocol affects cell biochemical composition and triggers triacylglycerol (TAG) accumulation. The methodology was applied to two freshwater strains, Chlorella vulgaris and Neochloris oleoabundans, and one seawater diatom strain, Cylindrotheca closterium. The highest total lipid content was achieved with N. oleoabundans (25-37% of DW), while the highest TAG content was found in C. vulgaris (11-14% of DW). These two species showed similar TAG productivities.  相似文献   

16.
Aquatic organisms, such as microalgae (Chlorella, Arthrospira (Spirulina), Tetrasselmis, Dunalliela etc.) and duckweed (Lemna spp., Wolffia spp. etc.) are a potential source for the production of protein-rich biomass and for numerous other high-value compounds (fatty acids, pigments, vitamins etc.). Their cultivation using agro-industrial wastes and wastewater (WaW) is of particular interest in the context of a circular economy, not only for recycling valuable nutrients but also for reducing the requirements for fresh water for the production of biomass. Recovery and recycling of nutrients is an unavoidable long-term approach for securing future food and feed production. Agro-industrial WaW are rich in nutrients and have been widely considered as a potential nutrient source for the cultivation of microalgae/duckweed. However, they commonly contain various hazardous contaminants, which could potentially taint the produced biomass, raising various concerns about the safety of their consumption. Herein, an overview of the most important contaminants, including heavy metals and metalloids, pathogens (bacteria, viruses, parasites etc.), and xenobiotics (hormones, antibiotics, parasiticides etc.) is given. It is concluded that pretreatment and processing of WaW is a requisite step for the removal of several contaminants. Among the various technologies, anaerobic digestion (AD) is widely used in practice and offers a technologically mature approach for WaW treatment. During AD, various organic and biological contaminants are significantly removed. Further removal of contaminants could be achieved by post-treatment and processing of digestates (solid/liquid separation, dilution etc.) to further decrease the concentration of contaminants. Moreover, during cultivation an additional removal may occur through various mechanisms, such as precipitation, degradation, and biotransformation. Since many jurisdictions regulate the presence of various contaminants in feed or food setting strict safety monitoring processes, it would be of particular interest to initiate a multi-disciplinary discussion whether agro-industrial WaW ought to be used to cultivate microalgae/duckweed for feed or food production and identify most feasible options for doing this safely. Based on the current body of knowledge it is estimated that AD and post-treatment of WaW can lower significantly the risks associated with heavy metals and pathogens, but it is yet unclear to what extent this is the case for certain persistent xenobiotics.  相似文献   

17.
微藻被认为是一种有潜力的、可被开发为再生能源的重要生物材料。一些微藻种类具有较强的异养和混养能力,能直接利用有机物作为碳源。工农业生产和城市生活中所排放的废水中通常含有大量的有机碳、氮、磷等营养物质。利用废水培养微藻,一方面可以将废水中的碳、氮、磷等营养物质转化为具有更高价值的微藻生物质,另一方面又可实现废水的净化和营养物质的再利用。本综述了不同种类废水的特点,讨论了两类微藻培养模式的优劣,同时还探讨了微藻对营养元素的利用,并总结了微藻培养需突破的瓶颈。  相似文献   

18.
Microalgae are a potential candidate for biofuel production and environmental treatment because of their specific characteristics (e.g. fast growth, carbon neutral, and rich lipid accumulations). However, several primary bottlenecks still exist in current technologies, including low biomass conversion efficiency, bio-invasion from the external environment, limited or costly nutrient sources, and high energy and capital input for harvest, and stalling its industrial progression. Coupling biofuel production with environmental treatment renders microalgae a more feasible feedstock. This review focuses on microalgae biotechnologies for both bioenergy generation and environmental treatment (e.g. CO2 sequestration and wastewater reclamation). Different intelligent technologies have been developed, especially during the last decade, to eliminate the bottlenecks, including mixotrophic/heterotrophic cultivation, immobilization, and co-cultivation. It has been realized that any single purpose for the cultivation of microalgae is not an economically feasible option. Combinations of applications in biorefineries are gradually reckoned to be necessary as it provides more economically feasible and environmentally sustainable operations. This presents microalgae as a special niche occupier linking the fields of energy and environmental sciences and technologies. The integrated application of microalgae is also proven by most of the life-cycle analysis studies. This study summarizes the latest development of primary microalgal biotechnologies in the two areas that will bring researchers a comprehensive view towards industrialization with an economic perspective.  相似文献   

19.
Microalgae are regarded as a potential biomass source for biofuel purposes. With regard to bioethanol production, microalgae seem to overcome traditional substrate drawbacks. Enzymatic activities are responsible for carbon allocation and hence for carbohydrate profiles. Enzyme activities may be manipulated by metabolic engineering; however, this goal may also be achieved by controlling environmental conditions of the culture system. We outline the key-enzymes as well as the main operational conditions applied to microalgae growth (inorganic nutrient supplementation, irradiance and temperature) that affect carbohydrate synthesis on microalgae and cyanobacteria. Normally, harsh conditions are needed for such a goal and thus, arrested microalgae growth may occur. Potential strategies to avoid arrested growth, while enhancing carbohydrate accumulation, were also pointed out in this review.  相似文献   

20.
Microalgae have been exploited for biofuel generation in the current era due to its enormous energy content, fast cellular growth rate, inexpensive culture approaches, accumulation of inorganic compounds, and CO2 sequestration. Currently, research is ongoing towards the advancement of the microalgae cultivation parameters to enhance the biomass yield. The main objective of this study was to delineate the progress of physicochemical parameters for microalgae cultivation such as gaseous transfer, mixing, light demand, temperature, pH, nutrients and the culture period. This review demonstrates the latest research trends on mass transfer coefficient of different microalgae culturing reactors, gas velocity optimization, light intensity, retention time, and radiance effects on microalgae cellular growth, temperature impact on chlorophyll production, and nutrient dosage ratios for cellulosic metabolism to avoid nutrient deprivation. Besides that, cultivation approaches for microalgae associated with mathematical modeling for different parameters, mechanisms of microalgal growth rate and doubling time have been elaborately described. Along with that, this review also documents potential lipid-carbohydrate-protein enriched microalgae candidates for biofuel, biomass productivity, and different cultivation conditions including open-pond cultivation, closed-loop cultivation, and photobioreactors. Various photobioreactor types, the microalgae strain, productivity, advantages, and limitations were tabulated. In line with microalgae cultivation, this study also outlines in detail numerous biofuels from microalgae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号