首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coastal systems, such as rocky shores, are among the most heavily anthropogenically-impacted marine ecosystems and are also among the most productive in terms of ecosystem functioning. One of the greatest impacts on coastal ecosystems is nutrient enrichment from human activities such as agricultural run-off and discharge of sewage. The aim of this study was to identify and characterise potential effects of sewage discharges on the biotic diversity of rocky shores and to test current tools for assessing the ecological status of rocky shores in line with the EU Water Framework Directive (WFD). A sampling strategy was designed to test for effects of sewage outfalls on rocky shore assemblages on the east coast of Ireland and to identify the scale of the putative impact. In addition, a separate sampling programme based on the Reduced algal Species List (RSL), the current WFD monitoring tool for rocky shores in Ireland and the UK, was also completed by identifying algae and measuring percent cover in replicate samples on rocky shores during Summer. There was no detectable effect of sewage outfalls on benthic taxon diversity or assemblage structure. However, spatial variability of assemblages was greater at sites proximal or adjacent to sewage outfalls compared to shores without sewage outfalls present. Results based on the RSL, show that algal assemblages were not affected by the presence of sewage outfalls, except when classed into functional groups when variability was greater at the sites with sewage outfalls. A key finding of both surveys, was the prevalence of spatial and temporal variation of assemblages. It is recommended that future metrics of ecological status are based on quantified sampling designs, incorporate changes in variability of assemblages (indicative of community stability), consider shifts in assemblage structure and include both benthic fauna and flora to assess the status of rocky shores.  相似文献   

2.
Processes occurring at the end of the larval stage are of major importance in shaping spatial structure of fish assemblages in coral reefs. However, because of the difficulty in identifying larvae to species, many studies dealing with these stages are limited to the family level. It remains unknown if variation in the spatial structure of coral‐reef fish assemblages across life stages can be detected at such a coarse taxonomic level. Two different surveys conducted in a similar area of New Caledonia, Southwest Pacific, provided the opportunity to compare the structure of coral‐reef fish assemblages collected as pre‐settlement larvae, juveniles and adults along a coast to barrier reef gradient. Adult and juvenile fish were sampled using underwater visual counts (UVC) during the warm seasons of 2004 and 2005. Pre‐settlement larvae were sampled with light‐traps during the same seasons. In order to standardize data between sampling methods, analyses were conducted on the relative abundance (for larvae) and density (for juveniles and adults) of 21 families commonly collected with both methods. Relative abundances/densities of families were analysed as a function of life stage (larvae, juveniles or adults), large‐scale spatial location (coast, lagoon or barrier) and years (2004, 2005) using non‐parametric multidimensional scaling (nMDS) and permutational multivariate analysis of variance (permanova ). Kruskal–Wallis tests were then used to examine differences among life stages and locations for individual families. Different levels of spatial and temporal variability characterized fish assemblages from different life stages, and differences among life stages were detected at all locations and years. Differences among life stages were also significant at the level of individual families. Overall results indicate that studies conducted at the family level may efficiently reveal changes in coral‐reef fish spatial structure among successive life stages when large spatial scales are considered.  相似文献   

3.
The influence of oceanographic features on ichthyoplankton assemblages in the warm temperate nearshore region of Algoa Bay, South Africa, was assessed. The nearshore ichthyoplankton comprised 88 taxa from 34 families. Samples were collected at six stations between August 2010 and July 2012 using a plankton ring net of 750 mm diameter and 500 µm mesh aperture. The majority of larvae collected were in a preflexion stage, indicating the potential importance of the nearshore for newly hatched larvae. Engraulidae dominated the catch (38·4%), followed by Cynoglossidae (28·1%) and Sparidae (8·4%). Larval fish abundance was highest during austral spring and summer (September to February). Unique patterns in responses of each dominant fish species to oceanographic features in the nearshore indicate the sensitivity of the early developmental stage to environmental variables. Using generalized linear models, ichthyoplankton abundance responded positively to upwelling and when warm water plumes originating from an Agulhas Current meander entered Algoa Bay. Highest abundances of Engraulis encrasicolus and Sardinops sagax were observed during Agulhas Plume intrusions into Algoa Bay. When a mixed and stratified water column persisted in the nearshore region of Algoa Bay, larval fish abundance decreased. The nearshore region of Algoa Bay appears to serve as a favourable environment for the accumulation of ichthyoplankton.  相似文献   

4.
The behavior of reef fish larvae, equipped with a complex toolbox of sensory apparatus, has become a central issue in understanding their transport in the ocean. In this study pelagic reef fish larvae were monitored using an unmanned open-ocean tracking device, the drifting in-situ chamber (DISC), deployed sequentially in oceanic waters and in reef-born odor plumes propagating offshore with the ebb flow. A total of 83 larvae of two taxonomic groups of the families Pomacentridae and Apogonidae were observed in the two water masses around One Tree Island, southern Great Barrier Reef. The study provides the first in-situ evidence that pelagic reef fish larvae discriminate reef odor and respond by changing their swimming speed and direction. It concludes that reef fish larvae smell the presence of coral reefs from several kilometers offshore and this odor is a primary component of their navigational system and activates other directional sensory cues. The two families expressed differences in their response that could be adapted to maintain a position close to the reef. In particular, damselfish larvae embedded in the odor plume detected the location of the reef crest and swam westward and parallel to shore on both sides of the island. This study underlines the critical importance of in situ Lagrangian observations to provide unique information on larval fish behavioral decisions. From an ecological perspective the central role of olfactory signals in marine population connectivity raises concerns about the effects of pollution and acidification of oceans, which can alter chemical cues and olfactory responses.  相似文献   

5.
I. Growns 《Hydrobiologia》2008,606(1):203-211
Freshwater fish are often used as an indicator of the response of the ecosystem to the restoration of river flows or the provision of environmental flows. The ability to model the biological response of fish depends on the capacity to establish clear relationships between changes in river hydrology and the fish assemblages in a river. The fish assemblage structure and the abundances of individual fish species were examined in relation to a hydrological index that described hydrological change in six regulated rivers in the Murray–Darling Basin. The hydrological index explained only a small amount of variation in fish assemblage structure. In addition, the abundances of individual fish species were only weakly correlated with the index of flow deviation. It is suggested that these results make the modelling of responses of fish assemblages to environmental water allocations unfeasible at a large scale and that future studies should concentrate on potentially more simple responses, such as the relationships of fish spawning and recruitment to specific aspects of river hydrology.  相似文献   

6.
Reef fish assemblages are exposed to a wide range of anthropogenic threats as well as chronic natural disturbances. In upwelling regions, for example, there is a seasonal influx of cool nutrient-rich waters that may shape the structure and composition of reef fish assemblages. Given that climate change may disrupt the natural oceanographic processes by altering the frequency and strength of natural disturbances, understanding how fish assemblages respond to upwelling events is essential to effectively manage reef ecosystems under changing ocean conditions. This study used the baited remote underwater video stations (BRUVS) and the traditional underwater visual census (UVC) to investigate the spatiotemporal patterns of reef fish assemblages in an upwelling region in the North Pacific of Costa Rica. A total of 183 reef fish species from 60 families were recorded, of which 166 species were detected using BRUVS and 122 using UVC. Only 66% of all species were detected using both methods. This study showed that the upwelling had an important role in shaping reef fish assemblages in this region, but there was also a significant interaction between upwelling and location. In addition, other drivers such as habitat complexity and habitat composition had an effect on reef fish abundances and species. To authors’ knowledge, this is the first study in the Eastern Tropical Pacific that combines BRUVS and UVC to monitor reef fish assemblages in an upwelling region, which provides more detailed information to assess the state of reef ecosystems in response to multiple threats and changing ocean conditions.  相似文献   

7.
The first step in building predictive models of larval fish assemblages is to identify the main environmental parameters which influence their spatial and temporal structure. In this study, multivariate regression trees (MRT) were used to classify hierarchically the effects of large-scale meteorological factors and small-scale water column factors on pre-settlement larval fish assemblages at two sites in the lagoon at New Caledonia, southwest Pacific. The environmental conditions at one site were highly variable spatially and temporally, but varied little at the other. In spite of these differences, MRT models revealed that identical forcing factors influenced the structure of larval fish assemblages at both sites, with a similar hierarchy, but a different statistical efficiency. At a large spatial scale, the seasonal variabilities in sun hours and wind (speed and/or direction) explained 14% and 64% of the structure of larval fish assemblages at the sites of high and low variability, respectively. At a small spatial scale, the seasonal variability in mean surface water temperature, followed by the concentration in Chl a, explained 22% and 62% of the structure of assemblages at the sites of high and low variability, respectively. The Dufrêne–Legendre index matched characteristic families of larvae to each set of environmental conditions, and illustrated the role of sheltered, Chl a enriched, coastal waters in producing a families-rich assemblage of fish larvae, some species of which are targeted by fishing. This study shows that it may be possible to use environmental data, and predictions computed from MRT to design spatially explicit models of larval fish distribution in coral-reef lagoons.  相似文献   

8.
In streams, physical and biotic conditions change from the headwaters to the mouth, shaping longitudinal patterns in community structure. We examined how fish foraging effects on periphyton and benthic invertebrates changed along a longitudinal gradient of a warm-temperate stream in southwestern Japan. We established three study sites according to changes in the composition of fish feeding guilds (upper site characterized by drifting-invertebrate feeders, Oncorhynchus masou ; middle site by benthic invertebrate feeders, Rhinogobius spp.; lower site by the presence of periphyton grazers, Sicyopterus japonicus ), and performed two manipulative experiments to examine effects of different fish assemblages on periphyton and benthic invertebrate abundances. Results of an exclosure experiment suggested that fishes had no effect on the benthic assemblages at the upper and middle sites whereas fishes reduced the abundances of both periphyton and invertebrates on stone surfaces at the lower site, where both benthic invertebrate feeders and grazers inhabited. A subsequent enclosure experiment showed that the reduction of invertebrate densities at the lower site was caused by the grazers rather than benthic invertebrate feeders. These experimental results suggested that effects of fishes on benthic assemblages are intensified downstream, owing to the occurrence of the grazing fish. Furthermore, observational data based on field sampling suggested that such grazing effects were reflected in longitudinal patterns in periphyton and invertebrate abundances. Overall results emphasize an important role of the grazing fish ( S. japonicus ) in shaping longitudinal patterns in benthic assemblage structure.  相似文献   

9.
Macrobenthos of the shallow (<10 m) nearshore marine waters of northern Kotzebue Sound was examined in 2002–2004 to (1) determine nearshore community structure and (2) assess the influence of sewage disposal. A variable number of benthic stations were sampled during three summers, with extensive effort at the disposal zone in 2003. The benthic community structure is similar to other nearshore Arctic locations, and was similar to a previous benthic study done in 1986–1987. The potential of sewage impact was assessed at the request of the community, because sewage is occasionally discharged into the Sound, in volumes of up to 38 million liters, typically through the ice in early spring. Only minimal effects of disposal on the benthos were evident and the effects could not be separated from the impacts of low salinity and relatively high water pigments. Low diversity (H′) and species richness (d) and high biomass characterized stations in the sewage area. Parameters often associated with extreme sewage pollution, particularly hypoxic and/or anoxic conditions and high abundance of opportunistic taxa, were not observed. Local traditional ecological knowledge was solicited throughout the study, and was used to help define the area potentially affected by sewage disposal.  相似文献   

10.
Mining impacts on stream systems have historically been studied over small spatial scales, yet investigations over large areas may be useful for characterizing mining as a regional source of stress to stream fishes. The associations between co-occurring stream fish assemblages and densities of various “classes” of mining occurring in the same catchments were tested using threshold analysis. Threshold analysis identifies the point at which fish assemblages change substantially from best available habitat conditions with increasing disturbance. As this occurred over large regions, species comprising fish assemblages were represented by various functional traits as well as other measures of interest to management (characterizing reproductive ecology and life history, habitat preferences, trophic ecology, assemblage diversity and evenness, tolerance to anthropogenic disturbance and state-recognized game species). We used two threshold detection methods: change-point analysis with indicator analysis and piecewise linear regression. We accepted only those thresholds that were highly statistically significant (p  0.01) for both techniques and overlapped within ≤5% error. We found consistent, wedge-shaped declines in multiple fish metrics with increasing levels of mining in catchments, suggesting mines are a regional source of disturbance. Threshold responses were consistent across the three ecoregions occurring at low mine densities. For 47.2% of the significant thresholds, a density of only ≤0.01 mines/km2 caused a threshold response. In fact, at least 25% of streams in each of our three study ecoregions have mine densities in their catchments with the potential to affect fish assemblages. Compared to other anthropogenic impacts assessed over large areas (agriculture, impervious surface or urban land use), mining had a more pronounced and consistent impact on fish assemblages.  相似文献   

11.
The Chinese government implemented the ambitious south‐north water transfer project (SNWTP), which aims to transport water from the Yangtze to the north of China where water shortages are severe. Although the ecological impacts of this project have been addressed publically, there remains a poor understanding of the effects of such large‐scale water transfers on the populations of aquatic species. The potential ecological impacts of such water transfers on the Hongze Lake fish assemblages are assessed here using Self‐Organizing Map (SOM) and Random Forest (RF) modeling. Using SOM, twenty‐three fish species in 15 sampling sites were classified into two assemblages and four sub‐assemblages corresponding to four distinct habitats (deep water macrophytes, deep water bare silt, shallow water bare silt, and shallow water macrophytes). The RF model further showed that water depth and transparency were the abiotic drivers underpinning fish assemblages in Hongze Lake. As the SNWTP is forecasted to modify the distribution of water depth and water clarity, major knock‐on effects are expected on downstream lake fish assemblages.  相似文献   

12.
Top–down impacts of avian predators are often overlooked in marine environments despite evidence from other systems that birds significantly impact animal distribution and behavior; instead, birds are typically recognized for the impacts of their nutrient rich guano. This is especially true in shallow seagrass meadows where restoration methods utilize bird perches or stakes to attract birds as a passive fertilizer delivery system that promotes the regrowth of damaged seagrasses. However, this method also increases the local density of avian piscivores that may have multiple unexplored non‐consumptive effects on fish behavior and indirect impacts to seagrass communities. We utilized laboratory and field experiments to investigate whether visual cues of avian predators impacted the behavior of the dominant demersal fish in seagrass habitats, the pinfish Lagodon rhomboides, and promoted cascading interactions on seagrass‐associated fauna and epiphytes. In laboratory mesocosms, pinfish displayed species specific responses to models of avian predators, with herons inducing the greatest avoidance behaviors. Avoidance patterns were confirmed in field seagrass meadows where heron models significantly reduced the number of fish caught in traps. In a long term field experiment, we investigated whether avian predators caused indirect non‐consumptive effects on seagrass communities by monitoring fish abundances, invertebrate epiphyte grazers, and the seagrass epiphytes in response to heron models, bird exclusions, and bird stakes. On average, more fish were recovered under bird exclusions and fewer fish under heron models. However, we found no evidence of cascading effects on invertebrate grazers or epiphytes. Bird stake treatments only displayed a simple nutrient effect where higher bird abundances resulted in higher epiphyte biomass. Our results indicate that although birds and their visual cues can affect fish and epiphyte abundance through non‐consumptive effects and nutrient enrichment, these impacts do not propagate beyond one trophic level, most likely because of dampening by omnivory and larger scale processes.  相似文献   

13.
Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment) and modified (rockwall and dredge channel) habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet) for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment.  相似文献   

14.
Parasites may have large effects on host population dynamics, marine fisheries and conservation, but a clear elucidation of their impact is limited by a lack of ecosystem-scale experimental data. We conducted a meta-analysis of replicated manipulative field experiments concerning the influence of parasitism by crustaceans on the marine survival of Atlantic salmon (Salmo salar L.). The data include 24 trials in which tagged smolts (totalling 283 347 fish; 1996–2008) were released as paired control and parasiticide-treated groups into 10 areas of Ireland and Norway. All experimental fish were infection-free when released into freshwater, and a proportion of each group was recovered as adult recruits returning to coastal waters 1 or more years later. Treatment had a significant positive effect on survival to recruitment, with an overall effect size (odds ratio) of 1.29 that corresponds to an estimated loss of 39 per cent (95% CI: 18–55%) of adult salmon recruitment. The parasitic crustaceans were probably acquired during early marine migration in areas that host large aquaculture populations of domesticated salmon, which elevate local abundances of ectoparasitic copepods—particularly Lepeophtheirus salmonis. These results provide experimental evidence from a large marine ecosystem that parasites can have large impacts on fish recruitment, fisheries and conservation.  相似文献   

15.
16.
Using a novel approach to the assessment of ecological quality status of estuarine ecosystems, this study hypothesizes that compared to adult fishes and other components, the younger fish stages will be more sensitive and act as an early warning and will reflect more effectively the ecological status of estuaries. Larval stages of fishes were used to assess the ecological quality status (EQS) of four NW Portuguese estuaries, with different types and magnitudes of human pressures. The larval fish assemblages, together with water column characteristics and pollution indicators (faecal contamination and nutrient load) were sampled in the Lima, Cávado, Ave and Douro estuaries, during spring and autumn 2009. The four estuaries were classified in terms of human pressures by a global pressure index that identified the Cávado estuary as the least impacted estuary, followed by the Ave and Lima, both classified as moderately impacted system, while the Douro was classified as a highly impacted system. The Ave emerged as the most polluted system, carrying the highest nutrient load and sewage contamination. Larval fish assemblages included estuarine species, marine migrants, marine stragglers and the larger estuaries had higher species richness. Compared to adult fishes, three multimetric fish-based indices classified the Cávado, Ave and Douro estuaries with a lower ecological status when fish larvae were used. Similarly, the EQS assessed by macroinvertebrates were equal or higher when compared with fish larvae results. The EQS assessed by fish larvae was negatively correlated with sewage contamination and nitrogen nutrients, but did not reflect other anthropogenic pressures expressed by the global pressure index, which was only detected by adult fish. Fish larvae assessments were able to detect short-time events of hydrological manipulations observed in the Cávado estuary, as well as a seasonal decrease of water quality especially evident in the Ave estuary. The indices used denoted some limitations to the use of fish larvae data, thus emphasising the need for new indices to test the observed tendency for lower EQS given by fish larvae. The advantages and disadvantages of using fish larvae as more sensitive and accurate bioindicators of ecosystem integrity is also discussed as a means of providing strategically important information for improved estuarine management.  相似文献   

17.
Protection from fishing generally results in an increase in the abundance and biomass of species targeted by fisheries within marine reserve boundaries. Natural refuges such as depth may also protect such species, yet few studies in the Indo Pacific have investigated the effects of depth concomitant with marine reserves. We studied the effects of artisanal fishing and depth on reef fish assemblages in the Kubulau District of Vanua Levu Island, Fiji, using baited remote underwater stereo-video systems. Video samples were collected from shallow (5–8 m) and deep (25–30 m) sites inside and outside of a large old marine reserve (60.6 km2, 13 years old) and a small new marine reserve (4.25 km2, 4 years old). Species richness tended to be greater in the shallow waters of the large old reserve when compared to fished areas. In the deeper waters, species richness appeared to be comparable. The difference in shallow waters was driven by species targeted by fisheries, indicative of a depth refuge effect. In contrast, differences in the abundance composition of the fish assemblage existed between protected and fished areas for deep sites, but not shallow. Fish species targeted by local fisheries were 89% more abundant inside the large old reserve than surrounding fished areas, while non-targeted species were comparable. We observed no difference in the species richness or abundance of species targeted by fisheries inside and outside of the small new reserve. This study suggests that artisanal fishing impacts on the abundance and species richness of coral reef fish assemblages and effects of protection are more apparent with large reserves that have been established for a long period of time. Observed effects of protection also vary with depth, highlighting the importance of explicitly incorporating multiple depth strata in studies of marine reserves.  相似文献   

18.
19.
The aim of this study was to investigate the species composition and distribution of fish larvae in relation to hydrographic conditions in the waters surrounding Taiwan Island (TI) in February 2003. In total, 242 kinds of fish larvae belonging to 127 genera and 75 families were recognized. Among these, 109 taxa were identified to the family or genus level, others to the species level. The 12 predominant types, which constituted 71% of the total fish larvae, were Engraulis japonica, Scomber sp., Diaphus spp., Benthosema pterotum, Carangoides ferdau, Embolichthys mitsukurii, Maurolicus sp., unidentified Myctophidae, Gonostoma gracile, Trichiurus lepturus, unidentified Gobiidae, and Myctophum asperum. The distribution of fish larvae showed a clear association with water masses around TI, with higher abundances and lower species richness northwest of TI where the China Coastal Current prevails, and lower abundances and higher species diversity east of TI where the Kuroshio Current dominates. Cluster analysis distinguished three station groups and four species groups, and the distribution patterns of fish larvae also corresponded to hydrographic conditions. The total abundances of fish larvae and eight of the 12 predominant taxa showed significant and positive correlations with zooplankton abundance, which suggests that food source might be a key factor determining the abundance and distribution of fish larvae during the winter.  相似文献   

20.
The species richness and composition of fish assemblages were examined in lentic soft waters in The Netherlands. The selected bodies of water reflected a large variation in geomorphological and limnological factors. In total, 24 fish species were encountered in Dutch soft waters. During 1983–1984 Esox lucius, Perca fluviatilis, Rutilus rutilus, Scardinius erythrophthalmus, Tinca tinca and Umbra pygmaea were quite common. In slightly acid and alkaline waters (pH≥5) Rutilus rutilus, Scardinius erythrophthalmus, Perca fluviatilis, Ictalurus nebulosus and Cyprinus carpio accounted for about 90% of the total number of specimens in the catches. Strongly acid waters (pH < 5) generally were fishless. If fish were present in these waters, however, the catches mainly consisted of Umbra pygmaea. Only in a few strongly acid systems were other species collected. The lowest pH at which certain fish species occurred varied from 3.1 to 7.0. In particular, Umbra pygmaea was extremely acid-tolerant. The percentage of waters which harboured fish as well as the average number offish species per water decreased steeply between pH 6 and 4. The sampled waters showed remarkable differences in their fish assemblages. With hierarchical classification, six groups of waters could be distinquished with respect to their fish fauna. The site groups are defined and characterized physico-chemically and their fish assemblages described. Multivariate analysis showed that the structure of fish communities is strongly related to the pH, the alkalinity, trophic level and the ionic composition of the water. Comparison of historical and recent data on the occurrence of fish strongly indicated that in many sampling sites fish species or even entire fish assemblages had disappeared. Ordination of available data also illustrated recent changes in community structure. At least 67% of the nowadays extremely acid waters formerly harboured fish populations. The impoverishment of fish communities or the total loss of fish were primarily caused by cultural acidification. Limited nutrient enrichment of soft waters only resulted in minor alterations of fish assemblages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号