首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive liquid-liquid extraction can be used to separate hydrophilic fermentation products that would not otherwise partition into nonpolar solvents. However, during extraction of the target solute other compounds present in the extraction medium will also react with the ion exchange reagent and are thus co-extracted. In this study the effect of co-extraction on the interfacial flux of the target solute phenylalanine has been investigated for reactive extraction using Aliquat 336. The effect of co-extracting compounds has been included in a new interfacial flux balance, and experimental results reveal that the interfacial concentrations are equal to the final equilibrium conditions of the system. Using this information a simple mass transfer model has been developed from which film mass transfer coefficients may be determined. Co-extraction of other compounds present in the feed was found to reduce the interfacial flux of the target solute by reducing the driving force. Co-extraction did not affect the value of the film mass transfer coefficient, and therefore, co-extraction does not effect the transport properties of the solute to the interface. Extraction from a multicomponent fermentation broth resulted in a reduced flux, which arises from a reduction in the driving force caused by high levels of co-extraction. Furthermore, the flux was also reduced as the result of a mass transfer resistance caused by soluble surface-active compounds present in the fermentation broth adsorbing to the interface. The biomass associated with the fermentation broth was also found to reduce the solute flux, and it is believed that this is due to blockage of the interfacial area.  相似文献   

2.
Lactic acid is an important commercial product and extracting it out of aqueous solution is a growing requirement in fermentation based industries and recovery from waste streams. The design of an amine extraction process requires (i) equilibrium and (ii) kinetic data for the acid-amine (solvent) system used. Equilibria for lactic acid extraction by alamine 336 in methyl-iso-butyl-ketone (MIBK) as a diluent have been determined. The extent to which the organic phase (amine +MIBK) may be loaded with lactic acid is expressed as a loading ratio, z=[HL](o)/[B](i,o). Calculations based on the stoichiometry of the reactive extraction and the equilibria involved indicated that more lactic acid is transferred to the organic phase than would be expected from the (1:1) stoichiometry of the reaction. The extraction equilibrium was interpreted as a result of consecutive formation of two acid-amine species with stoichiometries of 1:1 and 2:1. Equilibrium complexation constant for (1:1) and (2:1) has been estimated. Kinetics of extraction of lactic acid by alamine 336 in MIBK has also been determined. In a first study of its kind, the theory of extraction accompanied by a chemical reaction has been used to obtain the kinetics of extraction of lactic acid by alamine 336 in MIBK. The reaction between lactic acid and alamine 336 in MIBK in a stirred cell falls in Regime 3, extraction accompanied by a fast chemical reaction occurring in the diffusion film. The reaction has been found to be zero order in alamine 336 and first order in lactic acid with a rate constant of 1.38 s(-1). These data will be useful in the design of extraction processes.  相似文献   

3.
Selective extraction of a protein from a mixture can be accomplished using an adsorptive membrane and low displacement recuperative parametric pumping. Low displacement recuperative parametric pumping can lead to the preferential transport of an adsorbing solute and the rejection of nonadsorbing solutes by the adsorptive membrane. Using a protein mixture consisting of lysozyme and myoglobin, we have found the conditions under which lysozyme is preferentially transported through an ion-exchange membrane cartridge while myoglobin is rejected by the membrane. Trends observed when parameters such as the desorbent concentration, feed concentration, and flow rate are varied agree with the predictions of a mathematical model. Comparison with facilitated diffusion shows that preferential transport can lead to higher solute fluxes, albeit at lower selectivity. Additionally, preferential transport can be used to transport a solute up a concentration gradient and to selectively extract a solute from a feed that contains suspended solids. (c) 1996 John Wiley & Sons, Inc.  相似文献   

4.
In the present paper recent investigations on the applications of supercritical fluid extraction (SCE) from post fermentation biomass or in situ extraction of inhibitory fermentation products as a promising method for increasing the yield of extraction have been reviewed. Although supercritical CO2 (SC-CO2) is unfriendly, or even toxic, for some living cells and precludes direct fermentation in dense CO2, it does not rule out other useful applications for in situ extraction of inhibitory fermentation products and fractional extraction of biomass constituents. This technique is a highly desirable method for fractional extraction of biomass constituents, and intracellular metabolites due to the potential of system modification by physical parameters and addition of co-solvents to selectively extract compounds of different polarity, volatility and hydrophilicity without any contamination.  相似文献   

5.
Fermentation systems can contain may surface‐active compounds that can interfere with downstream separation processes. This work examines the interactions that can occur between surfactants and biomass during solute mass transfer in a liquid–liquid extraction system. Adding the surfactants sodium dodecyl sulfate and dodecyl trimethyl ammonium bromide to the aqueous phase caused a substantial increase in the mass transfer of chloramphenicol between water and octanol. Further investigation of the interfacial region using an optical Schlieren apparatus revealed that these increases were due to interfacial turbulence that gave rise to a rapid surface renewal convective mass transfer mechanism. When microbial biomass was present with sodium dodecyl sulfate, an increase in the mass transfer rate was again found, however, to a lesser extent. In contrast, dodecyl trimethyl ammonium bromide did not promote mass transfer and it is postulated that electrical interactions between the surfactant and the cell surface prevented adsorption of either at the interface. The interaction between the antifoaming agent polypropylene glycol 2000 and extraction system components was also investigated, with both positive and negative effects being recorded under varying conditions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
This work reports a novel method of recovering anthocyanin compounds from highly‐pigmented grapes via a fermentation based approach. It was hypothesized that batch growth of Zymomonas mobilis on simple medium would produce both ethanol and enzymes/biomass‐acting materials, the combination of which will provide a superior extraction when compared to simple alcohol extraction. To examine this hypothesis, Z. mobilis was fermented in a batch consisting of mashed Vitis vinifera and glucose, and the recovered anthocyanin pool was compared to that recovered via extraction with ethanol. Data indicated higher amounts of anthocyanins were recovered when compared to simple solvent addition. Additionally, the percent polymeric form of the anthocyanins could be manipulated by the level of aeration maintained in the fermentation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:601–605, 2016  相似文献   

7.
Toxicity of organic extraction reagents to anaerobic bacteria   总被引:1,自引:0,他引:1  
Various forms of liquid-liquid extraction systems are being developed to separate products, such as ethanol and volatile fatty acids (VFA), from fermentation liquids, since distillation is energetically expensive. Continuous extraction is advantageous, as product inhibition of the fermentation is minimized. However, some extraction solvents may be toxic or inhibitory to microorganisms.Thirty organic chemicals were examined by means of a small scale (60 mL) batch fermentation bioassay procedure for their toxicity to a commercial inoculum (Methanobac, W.B.E. Ltd.), which was a mixed culture of facultatively anaerobic, acid-producing bacteria. Gas production, pH change of medium, and the concentrations of ethanol, VFA, and lactic acid were measured after 75 h growth. The optimum experimental conditions for toxicity testing were alfalfa as substrate (2 g), a buffered nutrient medium (pH 6.8), "Methanobac" inoculum (10 mL), and test chemicals at levels between 10 and 100 muL/mL.Thirteen chemicals were nontoxic, and included the paraffins (C(6)-C(12)), phthalates, organophosphorus compounds, Freon 113 (1,1,2-trichloro-1,2,2-trifluoro ethane), Aliquat 336 (tricaprylylmethyl ammonium chloride), di-isoamyl ether, and trioctylamine. Other amine extractants were partially toxic. Alcohols (C(5)-C(12)), ketones (C(5)-C(8)), benzene derivatives, isoamyl acetate, and di-isopropyl ether were toxic. Generally, the chemicals were not toxic unless present at levels in excess of that expected to be required to saturate the aqueous phase.Total gas production was a good indicator of toxicity even within 24 h, but the presence of homofermentative (nongas producing) lactic acid bacteria complicated interpretation."Methanobac" inoculum was compared with an inoculum derived from a rumen culture for four test chemicals. The results were essentially the same. However, the toxicity of a chemical to bacteria is likely to vary considerably between bacterial species.  相似文献   

8.
Mass transfer rates in liquid-liquid extraction processes can be seriously affected by the presence of surface-active contaminants. This is especially true of applications of a biotechnological origin, where the microorganism used in the process may produce the surface-active contaminants. An investigation into the effects of soluble and insoluble fermentation broth components on mass transfer using chloramphenicol extraction into octanol as the model system was conducted. Soluble components produced during fermentation were found to adsorb to the interface, where they reduced the overall mass transfer coefficient by up to 70%. After fractionation it was found that components in the weight range from 10-30 kDa had the greatest effect on mass transfer. Protein and phospholipid compounds of similar size were found to reduce the overall mass transfer coefficient to a similar extent to the broth components at concentrations around 0.001mg/l. The biomass produced during the fermentation also reduced mass transfer substantially, and it is likely that this was due to physical blockage of the interface.  相似文献   

9.
The partitioning behaviour of endo-polygalacturonase (endo-PG) and total protein from a clarified Kluyveromyces marxianus fermentation broth in polyethylene glycol (PEG)-ammonium sulfate and PEG-potassium phosphate (pH=7) aqueous two-phase systems was experimentally investigated. Both the enzyme and total protein partitioned in the bottom phase for these two kinds of systems. The enzyme partitioning coefficient can be lower than 0.01 in PEG8000-(NH4)2SO4 ATPS with a large phase volume ratio and a moderate tie-line length, which implies the possibility of concentration operation using aqueous two phase partitioning. An ion-exchange separation of high purification efficiency was applied to analyze the clarified and dialyzed fermentation broth. A total purification factor of only 2.3 was obtained, which indicated the high enzyme protein content in the total protein of the fermentation broth. Consequently, the main purpose for separating endo-PG is concentration rather than purification. A separation scheme using an aqueous two-phase extraction process with polymer recycling and a dialysis was proposed to recover endo-PG from the fermentation supernatant of K. marxianus for commercial purpose. A high enzyme recovery up to 95% and a concentration factor of 5 to 8 with a purification factor of about 1.25 were obtained using the single aqueous two-phase extraction process. More than 95% polymer recycled will not affect the enzyme recovery and purification factor. Dialysis was used mainly to remove salts in the bottom phase. The dialysis step has no enzyme loss and can further remove small bulk proteins. The total purification factor for the scheme is about 1.7.  相似文献   

10.
Several compounds that are formed or released during hydrolysis of lignocellulosic biomass inhibit the fermentation of the hydrolysate. The use of a liquid extractive agent is suggested as a method for removal of these fermentation inhibitors. The method can be applied before or during the fermentation. For a series of alkanes and alcohols, partition coefficients were measured at low concentrations of the inhibiting compounds furfural, hydroxymethyl furfural, vanillin, syringaldehyde, coniferyl aldehyde, acetic acid, as well as for ethanol as the fermentation product. Carbon dioxide production was measured during fermentation in the presence of each organic solvent to indicate its biocompatibility. The feasibility of extractive fermentation of hydrolysate was investigated by ethanolic glucose fermentation in synthetic medium containing several concentrations of furfural and vanillin and in the presence of decanol, oleyl alcohol and oleic acid. Volumetric ethanol productivity with 6 g/L vanillin in the medium increased twofold with 30% volume oleyl alcohol. Decanol showed interesting extractive properties for most fermentation inhibiting compounds, but it is not suitable for in situ application due to its poor biocompatibility. Biotechnol. Bioeng. 2009;102: 1354–1360. © 2008 Wiley Periodicals, Inc.  相似文献   

11.
Production of ethanol by coupling fermentation and solvent extraction   总被引:2,自引:0,他引:2  
Summary A new technology of fermentation is proposed. The inhibitor product is removed continuously by coupling fermentation and solvent extraction. Applied to ethanol fermentation this technology is suitable to any case where the terminal product is inhibitory.The proposed technology uses both plug flow reactor and liquid-liquid extraction to achieve continuously the extractive fermentation of ethanol. The solvent used for liquid-liquid extraction is dodecanol. A new reactor was used. It is a column packed with a porous material . The fermentation broth is pulsed (a) to increase the interfacial area between the liquid medium and the dodecanol, and (b) to: decrease the gas hold up.Alcoholic fermentations were performed on glucose syrup at 35°C using Saccharomyces cerevisiae, with adsorbed cells as reference, with adsorbed cells and extractive fermentation. The results show that the fermentation is substantially improved. By this new method the ethanol productivity was multiplied by 5 and a solution of 407 g/l of glucose was totally fermented with a yeast which cannot normally transform more than 200 g/l glucose.  相似文献   

12.
王瑞  朱宴妍  朱相杨  王琦 《菌物学报》2015,34(4):787-793
通过碳源、氮源单因素实验和正交实验,对野生肺形侧耳进行发酵培养基优化。选取浸提时间、浸提温度及液料比3个因素,以胞内粗多糖提取率为指标,采用正交实验设计确定菌丝体胞内多糖提取的最佳工艺。结果表明,适宜肺形侧耳深层发酵的培养基为蔗糖1.5%,麸皮5%,蛋白胨0.6%,KH2PO4 0.15%,MgSO4 0.75%,VB1 0.01%。胞内多糖提取的最佳工艺为浸提时间2h,液料比50:1,浸提温度90℃,此条件下多糖提取率为34.35%。  相似文献   

13.
Inci I 《Biotechnology progress》2007,23(5):1171-1179
Equilibrium and kinetic studies for the extraction of succinic acid from aqueous solution with tridodecylamine diluted in MIBK are reported. All measurements were carried out at 298.15 K. The extent to which the organic phase may be loaded with succinic acid is expressed as a loading ratio, Z. The equilibrium data were also interpreted by a proposed mechanism of three reactions of complexation by which (1:1) and (2:1) acid-amine complexes are formed. Kinetics of extraction of succinic acid by tridodecylamine in MIBK has also been determined. Kinetic studies for the extraction of succinic acid from aqueous solution with tridodecylamine diluted in MIBK were carried out using a stirred cell for kinetic studies. The results of the liquid-liquid equilibrium measurements were correlated by a linear solvation energy relationship (LSER) model, which takes into account physical interactions. From the regression coefficients, information on the solvent-solute interaction is obtained and solvation models are proposed.  相似文献   

14.
Lactic acid has extensive uses in the food, pharmaceutical, cosmetic and chemical industry. Lately, its use in producing biodegradable polymeric materials (polylactate) makes the production of lactic acid from fermentation broths very important. The major part of the production cost accounts for the cost of separation from very dilute reaction media where productivity is low as a result of the inhibitory nature of lactic acid. The current method of extraction/separation is both expensive and unsustainable. Therefore, there is great scope for development of alternative technology that will offer efficiency, economic, and environmental benefits. One of the promising technologies for recovery of lactic acid from fermentation broth is reactive liquid-liquid extraction. In this paper the extraction and recovery of lactic acid based on reactive processes is examined and the performance of a hydrophobic microporous hollow-fiber membrane module (HFMM) is evaluated. First, equilibrium experiments were conducted using organic solutions consisting of Aliquat 336/trioctylamine (as a carrier) and tri-butyl phosphate (TBP)/sunflower oil (as a solvent) The values of the distribution coefficient were obtained as a function of feed pH, composition of the organic phase (ratio of carrier to solvent), and temperature (range 8-40 degrees C). The optimum extraction was obtained with the organic phase consisting of a mixture of 15 wt % tri-octylamine (TOA) and 15% Aliquat 336 and 70% solvent. The organic phase with TBP performed best but is less suitable because of its damaging properties (toxicity and environmental impact) and cost. Sunflower oil, which performed moderately, can be regarded as a better option as it has many desirable characteristics (nontoxic, environment- and operator-friendly) and it costs much less. The percentage extraction was approximately 33% at pH 6 and at room temperature (can be enhanced by operating at higher temperatures) at a feed flow rate of 15-20 L/h. These results suggest that the hollow-fiber membrane process yields good percentage extraction at the fermentation conditions and its in situ application could improve the process productivity by suppressing the inhibitory effect of lactic acid.  相似文献   

15.
Predispersed solvent extraction (PDSE) of succinic acid with Tri-n-octylamine (TOA) dissolved in 1-octanol from aqueous solutions of 50 g/L succinic acid was examined. It was found that the equilibrium data in PDSE was equal to that in conventional solvent extraction in spite of the lack of mechanical mixing in PDSE. The influence of salts on succinic acid extraction and the stability of colloidal liquid aphrons (CLAs) were also investigated. Results indicated that in the presence of sodium chloride, less succinic acid was extracted by CLAs and the stability of CLAs decreased. However, the stability of CLAs was sufficient to make PDSE practically applicable to real fermentation broth, considering the concentration range of salts in the fermentation process for succinic acid.  相似文献   

16.
A method is described for the chemical synthesis of homohypotaurine starting from homocystamine. By reaction of homohypotaurine with elemental sulfur, the corresponding thiosulfonic derivative, homothiotaurine, may be easily obtained. Homohypotaurine and homothiotaurine may be well separated from each other by paper or ion-exchange chromatography, and by paper electrophoresis, and are easily identified by some specific reactions.  相似文献   

17.
Summary The longitudinal concentration profiles of penicillin the continuous aqueous phase of a pilot plant Karr-column of 7.6 m height was calculated by a mathematic model consisting of reaction rate and cascase models. Satisfactory agreements between calculated and measured profiles were found. The identified mass transfer coefficients are identical in the bench-scale and pilot plant columns, in the model medium and fermentation medium as well as at different stroke frequencies. The specific interfacial area are strongly influenced by these parameters. The model can be used for calculation of penicillin extraction columns of different sizes. For the layout of the columns, hydrodynamic data are needed, which, however, cannot yet be calculated on a theoretical basis.  相似文献   

18.
The economics of Acetone-butanol-ethanol (ABE) fermentation is greatly affected by raw materials, and the use of readily available starchy materials from marginal farming lands could be a viable option for reducing costs. Kudzu, a rapidly growing perennial leguminous vine, has been planted on marginal farming land and widely distributed in Asia and America. This study investigated ABE fermentation by C. acetobutylicum ATCC 824 using kudzu roots and isoflavone extraction from kudzu fermentation residue (KFR). The kudzu roots could be used as a sole substrate for ABE fermentation without nutritional supplements. Batch culture containing 140 g kudzu/L produced 17.99 ± 1.08 g/L solvent (ABE), including 11.20 ± 0.79 g/L butanol, 5.54 ± 0.20 g/L acetone, and 1.15 ± 0.09 g/L ethanol, with a productivity of 0.19 g/(L/h) and a yield of 0.33 g solvent/g sugar after 96 h of fermentation. Isoflavone yield extracted from KFR was 1.90/100 g KFR, approximately 48% higher compared with that extracted from raw kudzu. A kinetic analysis of the extraction process showed that both the isoflavone yield and the extraction rate obtained from KFR were higher than the corresponding values obtained from raw kudzu. These results indicate that kudzu may provide a new potential raw material for ABE production and the process of ABE fermentation integrated with isoflavone extraction may provide a new way to reduce fermentable substrate costs.  相似文献   

19.
Many computational problems and methods have been proposed for analysis of biological pathways. Among them, this paper focuses on extraction of mapping rules of atoms from enzymatic reaction data, which is useful for drug design, simulation of tracer experiments, and consistency checking of pathway databases. Most of existing methods for this problem are based on maximal common subgraph algorithms. In this paper, we propose a novel approach based on graph partition and graph isomorphism. We show that this problem is NP-hard in general, but can be solved in polynomial time for wide classes of enzymatic reactions. We also present an O(n(1.5)) time algorithm for a special but fundamental class of reactions, where n is the maximum size of compounds appearing in a reaction. We develop practical polynomial-time algorithms in which the Morgan algorithm is used for computing the normal form of a graph, where it is known that the Morgan algorithm works correctly for most chemical structures. Computational experiments are performed for these practical algorithms using the chemical reaction data stored in the KEGG/LIGAND database. The results of computational experiments suggest that practical algorithms are useful in many cases.  相似文献   

20.
In this work soy and wheat bran were employed as raw materials for the production of pectinases by Aspergillus niger through solid-state fermentation. Several fermentation and recovery parameters were studied. The kinetics of enzyme synthesis was investigated in the range from 13 to 96 h with moisture contents varying from 25% to 70% (w/w). A medium moisture content of 40% and a fermentation time of 22 h were selected, as these conditions resulted in high pectolytic activity and enhanced polygalacturonase productivity. In order to optimise the recovery step, the best combination of temperature of extraction, contact time and solvent type was investigated. Acetate buffer (pH 4.4), 35°C and 30 min provided the best recovery. The present results show that optimising the extraction conditions is a simple way of obtaining more concentrated enzyme extracts and could be a useful instrument to extract more selectively a desired biomolecule from fermented solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号