首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colloidal liquid aphrons (CLAs) are surfactant-stabilized solvent droplets which have recently been explored for predispersed solvent extraction (PDSE). We have compared the equilibrium distribution of lactic acid with solvent alone and with CLAs. In spite of the short contact time in the PDSE process with CLAs, there was little difference in equilibrium distribution with solvent alone. The toxicity of extractants and diluents on Lactobacillus rhamnosus was measured for in situ extraction. Long chain alcohols such as 1-octanol and 1-decanol were less toxic among diluents. CLAs reduced the toxicity of solvents on Lactobacillus rhamnosus.  相似文献   

2.
A study of the PDSE (predispersed solvent extraction) for succinic acid by colloidal liquid aphrons was conducted. The organic phase contaning TOA (tri-n-octylamine) and 1-octanol permits a selective extraction of succinic acid from its aqueous solution. There was no difference of the extractability of PDSE and that of conventional mixer-settler type extraction. Taking into account the no mechanical mixing in PDSE, it was concluded that the PDSE process is more adaptive than the conventional mixer-settler type extraction process. From mass transfer analysis at the various concentration of TOA in counter-current continuous operation, the concentration of TOA had no influence on the mass transfer coefficient. The loading values in continuous PDSE were almost same as those in batch operation.  相似文献   

3.
Biotechnologically produced succinic acid has the potential to displace maleic acid and its uses and to become an important feedstock for the chemical industry. In addition to optimized production strains and fermentation processes, an efficient separation of succinic acid from the aqueous fermentation broth is indispensable to compete with the current petrochemical production processes. In this context, high molecular weight amines are known to be effective extractants for organic acids. For this reason, as a first step of isolation and purification, the reactive extraction of succinic acid was studied by mixing aqueous succinic acid solutions with 448 different amine–solvent mixtures as extraction agents (mixer-settler studies). The extraction agents consist either of one amine and one solvent (208 reactive extraction systems) or two amines and two solvents (240 reactive extraction systems). Maximum extraction yields of succinic acid from an aqueous solution with 423 mM succinic acid at pH 2.0 were obtained with more than 95% yield with trihexylamine solved in 1-octanol or with dihexylamine and diisooctylamine solved in 1-octanol and 1-hexanol. Applying these optimized reactive extraction systems with Escherichia coli fermentation broth resulted in extraction yields of 78–85% due to the increased ionic strength of the fermentation supernatant and the co-extraction of other organic acids (e.g., lactic acid and acetic acid), which represent typical fermentation byproducts.  相似文献   

4.
《Process Biochemistry》2014,49(3):506-511
In this study, salting-out extraction (SOE) and crystallization were combined to recover succinic acid from fermentation broths. Of the different SOE systems investigated, the system consisting of organic solvents and acidic salts appeared to be more favorable. A system using acetone and ammonium sulfate was investigated to determine the effect of phase composition and pH. The highest partition coefficient (8.64) and yield of succinic acid (90.05%) were obtained by a system composed of 30% (w/w) acetone and 20% (w/w) ammonium sulfate at a pH of 3.0. Additionally, 99.03% of cells, 90.82% of soluble proteins, and 94.89% of glucose could be simultaneously removed from the fermentation broths. Interestingly, nearly 40% of the pigment was removed using the single-step salting-out extraction process. The analysis of the effect of pH on salting-out extraction indicates that a pH lower than the pK of succinic acid is beneficial for the recovery of succinic acid in an SOE system. Crystallization was performed for the purification of succinic acid at 4 °C and pH 2.0. By combining salting-out extraction with crystallization, an identical total yield (65%) and a higher purity (97%) of succinic acid were obtained using a synthetic fermentation broth compared with the actual fermentation broth (65% and 91%, respectively).  相似文献   

5.
In production of succinic acid by fermentation, succinic acid and acetic acid are co-produced. To purify the succinic acid from binary-acid mixture of succinic acid and acetic acid, the tertiary amine-based extraction was used. In 1-octanol, the selectivity for succinic acid was proportional to the chain length of tertiary amine. But, the distribution of acids into organic phase was low in n-heptane. These results are due to the different degree of intramolecular hydrogen bonding of succinic acid and hydrophobicity of each acid.  相似文献   

6.
Biotechnologically produced succinic acid has the potential to displace maleic acid and its uses. Therefore, it is of high interest for the chemical, pharmaceutical, and food industry.In addition to optimized production strains and fermentation processes, an efficient separation of succinic acid from the aqueous fermentation broth is indispensable to compete with the current petrochemical production of succinic acid. Isolation and purification of succinic acid from an Escherichia coli fermentation broth were studied with two amine-based reactive extraction systems: (i) trihexylamine in 1-octanol and (ii) diisooctylamine and dihexylamine in a mixture of 1-octanol and 1-hexanol. Back extraction of succinic acid from the organic phase was carried out using an aqueous trimethylamine solution. The trimethylammonium succinate generated after back extraction was split with an evaporation-based crystallization.The focus was on process integration, for example, reuse of the applied amines for extraction and back extraction. It was shown that the maximum trimethylamine concentration for back extraction should not exceed the stoichiometric amount (2 mol trimethylamine/mol the succinic acid in the organic phase) to ensure maximal extraction yields with the reused organic phase in subsequent extractions. Moreover, mixer-settler extraction and back extraction of succinic acid were scaled up from the milliliter- to the liter-scale making use of liquid–liquid centrifuges. The overall yield was 83.5% of the succinic acid from thefermentation supernatant. The final purity of the succinic acid crystals was 99.5%. Organic phase and amines can easily be recycled and reused.  相似文献   

7.
Acetic acid is by-product from fermentation processes for producing succinic acid using Mannheimia succiniciproducens . To obtain pure succinic acid from the final fermentation broth, acetic acid was selectively removed based on the different extractability of succinic acid and acetic acid with pH using tri-n-octylamine (TOA) as extractant. When successive batch extractions were performed using 0.25 mol TOA kg(-1) dissolved in 1-octanol at pH 5, the mol ratio of succinic acid to acetic acid before extraction was 4.9 and the final ratio after the fourth batch was 9.4.  相似文献   

8.
There have recently been much advances in the production of succinic acid, an important four-carbon dicarboxylic acid for many industrial applications, by fermentation of several natural and engineered bacterial strains. Mannheimia succiniciproducens MBEL55E isolated from bovine rumen is able to produce succinic acid with high efficiency, but also produces acetic, formic and lactic acids just like other anaerobic succinic acid producers. We recently reported the development of an engineered M. succiniciproducens LPK7 strain which produces succinic acid as a major fermentation product while producing much reduced by-products. Having an improved succinic acid producer developed, it is equally important to develop a cost-effective downstream process for the recovery of succinic acid. In this paper, we report the development of a simpler and more efficient method for the recovery of succinic acid. For the recovery of succinic acid from the fermentation broth of LPK7 strain, a simple process composed of a single reactive extraction, vacuum distillation, and crystallization yielded highly purified succinic acid (greater than 99.5% purity, wt%) with a high yield of 67.05wt%. When the same recovery process or even multiple reactive extraction steps were applied to the fermentation broth of MBEL55E, lower purity and yield of succinic acid were obtained. These results suggest that succinic acid can be purified in a cost-effective manner by using the fermentation broth of engineered LPK7 strain, showing the importance of integrating the strain development, fermentation and downstream process for optimizing the whole processes for succinic acid production.  相似文献   

9.
The possibility of creating a biorefinery using inexpensive biomass has attracted a great deal of attention, which is mainly focused on the improvement of strains and fermentation, whereas few resources have been spent on downstream processing. Bio‐based chemical downstream processing can become a bottleneck in industrial production because so many impurities are introduced into the fermentation broth. This review introduces a technique referred to as salting‐out extraction, which is based on the partition difference between chemicals in two phases consisting of salts and polymers or hydrophilic solvents, hydrophobic solvents, and amphipathic chemicals. The effects of solvents and salts on the formation of two phases were discussed, as was the use of this method to recover bio‐based chemicals. This review focused on the separation of hydrophilic chemicals (1,3‐propanediol, 2,3‐butanediol, acetoin, and lactic acid) from fermentation broths. Diols could be recovered at a high yield from fermentation broths without pretreatment especially with a hydrophilic solvent‐based system, whereas the recovery of organic acids was slightly lower. Most of the impurities (cells and proteins) were removed during the same step. Extractive fermentations were also used for polymer‐based aqueous two‐phase systems.  相似文献   

10.
盐析萃取生物基化学品的研究进展   总被引:1,自引:0,他引:1  
廉价生物质的生物炼制研究主要集中在菌种和发酵方面,对下游分离研究较少。廉价生物质资源的利用导致发酵液中引入更多杂质,成分较单糖发酵更复杂,致使生物基化学品的下游分离过程成为其工业化生产亟需解决的关键问题。文中介绍了一种基于两相分配差异分离亲水性生物基化学品的盐析萃取技术及其在生物基化学品分离方面的应用,重点阐述了短链醇和盐对双水相形成的影响,并对1,3-丙二醇、2,3-丁二醇、乙偶姻、乳酸等的盐析萃取研究进展进行了总结和展望。盐析萃取技术可有效地回收发酵液中的小分子亲水性产品,同时除去大多数的杂质 (细胞和蛋白质等),在生物基化学品的分离过程中将是一种有前景的分离技术。  相似文献   

11.
A capnophilic rumen bacterium Mannheimia succiniciproducens produces succinic acid as a major fermentation end product under CO(2)-rich anaerobic condition. Since succinic acid is produced by carboxylation of C3 compounds during the fermentation, intracellular CO(2) availability is important for efficient succinic acid formation. Here, we investigated the metabolic responses of M. succiniciproducens to the different dissolved CO(2) concentrations (0-260 mM). Cell growth was severely suppressed when the dissolved CO(2) concentration was below 8.74 mM. On the other hand, cell growth and succinic acid production increased proportionally as the dissolved CO(2) concentration increased from 8.74 to 141 mM. The yields of biomass and succinic acid on glucose obtained at the dissolved CO(2) concentration of 141 mM were 1.49 and 1.52 times higher, respectively, than those obtained at the dissolved CO(2) concentration of 8.74 mM. It was also found that the additional CO(2) source provided in the form of NaHCO(3), MgCO(3), or CaCO(3) had positive effects on cell growth and succinic acid production. However, growth inhibition was observed when excessive bicarbonate salts were added. By the comparison of the activities of key enzymes, it was found that PEP carboxylation by PEP carboxykinase (PckA) is the most important for succinic acid production as well as the growth of M. succiniciproducens by providing additional ATP.  相似文献   

12.
Carboxylic acids are examples of compounds with wide industrial applications and high potential. This article presents the principles of reactive extraction along with the characteristics of tertiary amine extractants, while is given on considering the effect of the amine class and chain length. As such a brief overview the current research on reactive extraction, including the recovery of citric acid, selective amine-based extraction, and extractive fermentation is given. When discussing extractive fermentation, strategies for reducing solvent toxicity are also suggested based on specific examples. Finally, solvent regeneration and stripping of extracted acid are explained.  相似文献   

13.
Lactic acid has extensive uses in the food, pharmaceutical, cosmetic and chemical industry. Lately, its use in producing biodegradable polymeric materials (polylactate) makes the production of lactic acid from fermentation broths very important. The major part of the production cost accounts for the cost of separation from very dilute reaction media where productivity is low as a result of the inhibitory nature of lactic acid. The current method of extraction/separation is both expensive and unsustainable. Therefore, there is great scope for development of alternative technology that will offer efficiency, economic, and environmental benefits. One of the promising technologies for recovery of lactic acid from fermentation broth is reactive liquid-liquid extraction. In this paper the extraction and recovery of lactic acid based on reactive processes is examined and the performance of a hydrophobic microporous hollow-fiber membrane module (HFMM) is evaluated. First, equilibrium experiments were conducted using organic solutions consisting of Aliquat 336/trioctylamine (as a carrier) and tri-butyl phosphate (TBP)/sunflower oil (as a solvent) The values of the distribution coefficient were obtained as a function of feed pH, composition of the organic phase (ratio of carrier to solvent), and temperature (range 8-40 degrees C). The optimum extraction was obtained with the organic phase consisting of a mixture of 15 wt % tri-octylamine (TOA) and 15% Aliquat 336 and 70% solvent. The organic phase with TBP performed best but is less suitable because of its damaging properties (toxicity and environmental impact) and cost. Sunflower oil, which performed moderately, can be regarded as a better option as it has many desirable characteristics (nontoxic, environment- and operator-friendly) and it costs much less. The percentage extraction was approximately 33% at pH 6 and at room temperature (can be enhanced by operating at higher temperatures) at a feed flow rate of 15-20 L/h. These results suggest that the hollow-fiber membrane process yields good percentage extraction at the fermentation conditions and its in situ application could improve the process productivity by suppressing the inhibitory effect of lactic acid.  相似文献   

14.
Lactic acid fermentations were performed with plastic-composite-support (PCS) disks in solvent-saturated media with Lactobacillus casei subsp. rhamnosus (ATCC 11443). The PCS disks contained 50% (w/w) polypropylene, 35% (w/w) ground soybean hulls, 5% (w/w) yeast extract, 5% (w/w) soybean flour, and 5% (w/w) bovine albumin. Bioassays were performed by growing L. casei in solvent-saturated media after soaking the PCS disks. Eighteen different solvent and carrier combinations were evaluated. Overall, L. casei biofilm fermentation demonstrated the same lactic acid production in solvent-saturated medium as suspended cells in medium without solvents (control). To evaluate PCS solvent-detoxifying properties, two bioassays were developed. When solvent-saturated medium in consecutive equal volumes (10 mL then 10 mL) was exposed to PCS, both media demonstrated lactic acid fermentation equal to the control. However, when solvent-saturated medium with two consecutive unequal volumes (10 mL then 90 mL) was exposed to PCS, some degree of toxicity was observed. Furthermore, iso-octane, tributylphosphate (TBP), and Span 80 were optimized for recovery as 91%, 5%, and 4% (v/v), respectively, with a 1:1 ratio of 1.2 M Na(2)CO(3) stripping solution. Also, recovery by emulsion liquid extraction in the hollow-fiber contactor was minimal due to low recovery at pH 5.0 and incompatibility of the solvent and hollow-fiber material. These results suggest that PCS biofilm reactors can benefit lactic acid fermentation by eliminating the toxic effect from solvent leakage into the fermentation medium from liquid-liquid extractive integrated fermentations.  相似文献   

15.
Production of ethanol by coupling fermentation and solvent extraction   总被引:2,自引:0,他引:2  
Summary A new technology of fermentation is proposed. The inhibitor product is removed continuously by coupling fermentation and solvent extraction. Applied to ethanol fermentation this technology is suitable to any case where the terminal product is inhibitory.The proposed technology uses both plug flow reactor and liquid-liquid extraction to achieve continuously the extractive fermentation of ethanol. The solvent used for liquid-liquid extraction is dodecanol. A new reactor was used. It is a column packed with a porous material . The fermentation broth is pulsed (a) to increase the interfacial area between the liquid medium and the dodecanol, and (b) to: decrease the gas hold up.Alcoholic fermentations were performed on glucose syrup at 35°C using Saccharomyces cerevisiae, with adsorbed cells as reference, with adsorbed cells and extractive fermentation. The results show that the fermentation is substantially improved. By this new method the ethanol productivity was multiplied by 5 and a solution of 407 g/l of glucose was totally fermented with a yeast which cannot normally transform more than 200 g/l glucose.  相似文献   

16.
Kinetic studies for the extraction of succinic acid from aqueous solution with 1-octanol solutions of tri-n-octylamine (TOA) were carried out using a stirred cell with a microporous hydrophobic membrane. The interfacial concentrations of species were correlated and thus the intrinsic kinetics was obtained. The overall extraction process was controlled by the chemical reaction at or near the interface between the aqueous and organic phases. The formation reaction of succinic acid-TOA complex was found to be first order with respect to the concentration of succinic acid in the aqueous phase and the order of 0.5 with respect to that of TOA in the organic phase with a rate constant of (3.14 +/- 0.6) x 10(-8) m(2.5) x mol(-0.5) x s(-1). The dissociation reaction of succinic acid-TOA complex was found to be the second-order with respect to that of succinic acid-TOA complex in the organic phase and the order of -2 with respect to that of TOA in the organic phase with a rate constant of (1.44 +/- 1.4) x 10(-4) mol x m(-2) x s(-1).  相似文献   

17.
Clostridium carboxidivorans ferments CO, CO2, and H2 via the Wood-Ljungdahl pathway. CO, CO2, and H2 are unique substrates, unlike other carbon sources like glucose, so it is necessary to analyze intracellular metabolite profiles for gas fermentation by C. carboxidivorans for metabolic engineering. Moreover, it is necessary to optimize the metabolite extraction solvent specifically for C. carboxidivorans fermenting syngas. In comparison with glucose media, the gas media allowed significant abundance changes of 38 and 34 metabolites in the exponential and stationary phases, respectively. Especially, C. carboxidivorans cultivated in the gas media showed changes of fatty acid metabolism and higher levels of intracellular fatty acid synthesis possibly due to cofactor imbalance and slow metabolism. Meanwhile, the evaluation of extraction solvents revealed the mixture of water-isopropanol-methanol (2:2:5, v/v/v) to be the best extraction solvent, which showed a higher extraction capability and reproducibility than pure methanol, the conventional extraction solvent. This is the first metabolomic study to demonstrate the unique intracellular metabolite profiles of the gas fermentation compared to glucose fermentation, and to evaluate water-isopropanol-methanol as the optimal metabolite extraction solvent for C. carboxidivorans on gas fermentation.  相似文献   

18.
In this study, a novel generic feedstock production strategy based on solid-state fermentation (SSF) has been developed and applied to the fermentative production of succinic acid. Wheat was fractionated into bran, gluten and gluten-free flour by milling and gluten extraction processes. The bran, which would normally be a waste product of the wheat milling industry, was used to produce glucoamylase and protease enzymes via SSF using Aspergillus awamori and Aspergillus oryzae, respectively. The resulting solutions were separately utilised for the hydrolysis of gluten-free flour and gluten to generate a glucose-rich stream of over 140gl(-1) glucose and a nitrogen-rich stream of more than 3.5gl(-1) free amino nitrogen. A microbial feedstock consisting of these two streams contained all the essential nutrients required for succinic acid fermentations using Actinobacillus succinogenes. In a fermentation using only the combined hydrolysate streams, around 22gl(-1) succinic acid was produced. The addition of MgCO(3) into the wheat-derived medium improved the succinic acid production further to more than 64gl(-1). These results demonstrate the SSF-based strategy is a successful approach for the production of a generic feedstock from wheat, and that this feedstock can be efficiently utilised for succinic acid production.  相似文献   

19.
Carboxylic acids such as citric, lactic, succinic and itaconic acids are useful products and are obtained on large scale by fermentation. This review describes the options for recovering these and other fermentative carboxylic acids. After cell removal, often a primary recovery step is performed, using liquid–liquid extraction, adsorption, precipitation or conventional electrodialysis. If the carboxylate is formed rather than the carboxylic acid, the recovery process involves a step for removing the cation of the formed carboxylate. Then, bipolar electrodialysis and thermal methods for salt splitting can prevent that waste inorganic salts are co-produced. Final carboxylic acid purification requires either distillation or crystallization, usually involving evaporation of water.  相似文献   

20.
Extraction can successfully be used for in-situ alcohol recovery in butanol fermentations to increase the substrate conversion. An advantage of extraction over other recovery methods may be the high capacity of the solvent and the high selectivity of the alcohol/water separation. Extraction, however, is a comprehensive operation, and the design of an extraction apparatus can be complex. The aim of this study is to assess the practical applicability of liquid-liquid extraction and membrane solvent extraction in butanol fermentations. In this view various aspects of extraction processes were investigated.Thirty-six chemicals were tested for the distribution coefficient for butanol, the selectivity of alcohol/water separation and the toxicity towards Clostridia. Convenient extractants were found in the group of esters with high molar mass.Liquid-liquid extraction was carried out in a stirred fermenter and a spray column. The formation of emulsions and the fouling of the solvent in a fermentation broth causes problems with the operation of this type of equipment. With membrane solvent extraction, in which the solvent is separated from the broth by a membrane, a dispersion-free extraction is possible, leading to an easy operation of the equipment. In this case the mass transfer in the membrane becomes important.With membrane solvent extraction the development of a process is emphasized in which the extraction characteristics of the solvent are combined with the property of silicone rubber membranes to separate butanol from water. In the case of apolar solvents with a high molar mass, the characteristics of the membrane process are determined completely by the solvent. In the case of polar solvents (e.g. ethylene glycol), the permselectivity of the membrane can profitably be used. This concept leads to a novel type of extraction process in which alcohol is extracted with a water-soluble solvent via a hydrophobic semipermeable membrane. This extraction process has been investigated for the recovery of butanol and ethanol from water. A major drawback in all processes with membrane solvent extraction was the permeation of part of the solvent to the aqueous phase.The extraction processes were coupled to batch, fed batch and continuous butanol fermentations to affirm the applicability of the recovery techniques in the actual process. In the batch and fed batch fermentations a three-fold increase in the substrate consumption could be achieved, in the continuous fermentation about 30% increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号