首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
要以5年生雌、雄银杏为材料,研究了自然生长条件下银杏叶绿体光能转换特性的动态变化规律。结果表明:连体叶片的净光合速率在叶片生长40d达到最大值;随着叶片的展开,叶片叶绿素含量逐渐上升;叶绿体ATP含量伴随着光合磷酸化活力变化在叶片生长初期含量逐渐上升,叶片生长65d时最大;Mg^2+、Ca^2+-ATPase活力在叶片生长初期逐渐下降,生长50d后开始逐渐上升。实验结果也显示雌、雄银杏叶绿体光能转换能力比较相似,没有较大差异。  相似文献   

2.
利用SDS-PAGE电泳技术对不同季节银杏(Ginkgo bilobaL.)雌雄株叶片和枝条中的贮藏蛋白质组分和可溶性蛋白质含量进行了研究。结果表明,银杏叶片中的可溶性蛋白质含量从10月中旬开始逐渐减少,11月中旬降到最低;枝条中的可溶性蛋白质含量从秋末到整个冬季逐渐增加,进入早春后大幅度下降;同一季节内,叶片中的蛋白质含量明显高于枝条,且雄株叶片和枝条的蛋白质含量高于雌株。单向电泳结果表明,银杏雌雄株叶片中相对分子质量为55 000和32 000的蛋白质谱带均于11月中旬前消失,表明这些蛋白质在银杏落叶前发生了转移。在银杏雌雄株枝条中,相对分子质量为59 000、32 000和27 000的蛋白质谱带均在12月底染色最深,进入早春后消失;雄株枝条中相对分子质量为18 000的蛋白质谱带在12月底前稳定出现,进入早春后消失。表明银杏枝条中的这些蛋白质均表现出冬季积累而春季降解的动态过程。  相似文献   

3.
NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响   总被引:4,自引:0,他引:4  
随NaCl 胁迫浓度的提高,甘薯叶片叶绿体数目逐渐减少, 类囊体膜片层松散、扭曲、破裂并逐渐解体, 叶绿素含量下降。与此同时,H2O2 、MDA 含量增加, ASP、SOD 活性表现出先上升后下降的趋势。耐盐品种在NaCl 胁迫下能维持较强的H2O2 清除能力和较低的MDA 水平  相似文献   

4.
以5年生雌、雄银杏为材料,研究了自然生长条件下银杏叶绿体光能转换特性的动态变化规律。结果表明:连体叶片的净光合速率在叶片生长40 d达到最大值;随着叶片的展开,叶片叶绿素含量逐渐上升;叶绿体ATP含量伴随着光合磷酸化活力变化在叶片生长初期含量逐渐上升,叶片生长65 d时最大;Mg2+、Ca2+ ATPase活力在叶片生长初期逐渐下降,生长50 d后开始逐渐上升。实验结果也显示雌、雄银杏叶绿体光能转换能力比较相似,没有较大差异。  相似文献   

5.
NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响   总被引:36,自引:0,他引:36  
随NaCl胁迫浓度的提高,甘薯叶片叶绿体数目逐渐减少,类囊体膜片层松散、扭曲、破裂及逐渐解体膜片层检叶绿素含量下降。与此同时,H2O2、MDA含量增加,ASP、SOD活性表现先上升后下降的趋势。耐盐品种在NaCl胁迫下能维持较强的H2O2清除能力和较低的MDA水平。  相似文献   

6.
用示差扫描量热计测定了菜豆第一片真叶在衰老过程中叶绿体被膜相变温度与叶绿体总脂熔融温度的变化。15日龄成长叶片叶绿体被膜相变温度为-6.7~-3.6℃,当转向衰老后,在22,29和35日龄时的相变温度分别为3.2~8.8℃、18.7~24.1℃和27.3~37.8℃。叶绿体总脂的熔融温度在15至35日龄期间也逐渐升高,但升高幅度小于被膜相变温度的升高幅度。可是,叶绿体总脂熔融温度范围却大于相应时期被膜相变温度范围。蛋白质含量下降趋势发生在叶片15日龄前,而叶绿素含量下降趋势开始于叶片21日龄之后。  相似文献   

7.
蚕豆植株叶片随茎节自上而下表现出明显的发育与衰老顺序,可作为衰老特征的是叶绿素和蛋白质含量明显下降。蚕豆叶中SOD活性主要定位于12 000× g离心后所得的上清液和叶绿体组分。衰老叶片的SOD总活性和叶绿体组分的相对活性都有所下降,SOD同工酶谱也发生了改变。O_2~ 产生速率随叶龄增大而稍上升;而MDA含量在叶片外观表现枯黄衰老征兆前就急剧上升。可能因为衰老叶片过氧化氢酶活性大幅度下降与SOD之间的不平衡,致使O_2~ 代谢中间产物累积而引起膜的损伤.  相似文献   

8.
铅锌尾矿渣对蓖麻光合特性及抗氧化酶系统的影响   总被引:1,自引:0,他引:1  
采用盆栽试验,研究了不同铅锌尾矿渣掺比基质对蓖麻光合特性、活性氧清除系统、叶绿素含量以及叶绿体超微结构的影响。结果表明:随着尾矿渣比例的增加,植株叶片中叶绿素含量、光合参数、SOD、POD及CAT活性呈先升后降的趋势,尤其在A组(100%矿渣)基质中,植株的各项生理生化指标均下降明显;而D组(80%矿渣+20%黄土)植株叶绿素a、b及总量、POD、SOD活性显著升高(P0.05),较对照组G(50%黄土+50%泥炭土)分别提高了27%、33%、29%、98%和580%;电镜观测叶绿体超微结构发现,A组(100%矿渣)叶片叶绿体超微结构的损伤程度最深,片层系统解体,淀粉颗粒数量少,嗜锇颗粒增大、增多;当尾矿渣比例为80%时,叶绿体的基粒片层出现膨松,但仍具备光合能力,维持其个体生长;当尾矿渣比例低于60%时,叶绿体被膜、内部基粒及类囊体结构与对照相比无明显变化,且对光合特性及抗氧化酶系统具有一定的促进作用;说明蓖麻对Pb、Zn污染有一定的耐受性,具备修复铅锌污染土壤的潜力。  相似文献   

9.
对糜子不同生育时期、不同叶位叶片进行电镜观察.结果显示:(1)在籽粒灌浆中期以前,叶肉细胞排列整齐,细胞间隙小,细胞中叶绿体、线粒体等细胞器含量多.叶绿体、线粒体基质含量浓厚,高基粒片层数增加,胞问连丝畅通;(2)在籽粒灌浆中期以后,叶片迅速衰老,细胞解体,细胞间出现间隙,叶绿体减少,叶绿体基粒片层、基质片层解体.嗜锇颗粒变大增多.胞间连丝受到阻碍.(3)不同生育时期不同叶位叶绿体的高基粒片层数差异较大,其中在灌浆中期各叶位叶绿体高基粒片层数最高,在各生育时期旗叶的为最大.  相似文献   

10.
烟草叶片衰老期过程中的蛋白质组学分析   总被引:4,自引:0,他引:4  
大田烟叶生产过程中因打顶打叉的处理,改变了烟叶正常的衰老模式。为研究这一特殊的衰老机制,我们自旺长期开始,对‘云烟87’不同发育阶段烟株的中部叶片,进行形态观测、生理生化分析及蛋白质组学检测。结果显示:随着烟叶的逐渐成熟和衰老,烟草的叶色逐渐变黄,叶片逐渐变短、变窄,厚度减少;解剖结构清晰看到栅栏组织和海绵组织从最初的整齐排列到逐渐排列紊乱,组织细胞间轮廓不明显,细胞间隙明显增大;亚显微观测表明,淀粉粒在叶绿体中逐渐积累,类囊体片层结构被挤散,叶绿体膜被撑破。生理与生化分析表明衰老过程伴随着光合作用速率下降,光合色素降解加速,呼吸代谢的增加,这可能与衰老叶片中叶绿体逐渐崩塌和细胞膜透性增加相一致。iTRAQ标记方法共检测到不同发育阶段432个差异表达蛋白质,其中注释到308个与多种生命过程相关。蛋白差异富集分析表明,烟草叶片衰老过程中与光合作用等合成代谢相关蛋白多下调表达,而逆境反应及呼吸作用等分解代谢相关蛋白多上调表达。  相似文献   

11.
The activities NADH and NADPH dehydrogenases were measured with ferricyanide as electron-acceptor (NADH-FeCN-ox and NADPH-FeCN-ox, respectively) in mitochondria-free chloroplasts of barley leaf segments after receiving various treatments affecting senescence. NADPH-FeCN-ox declined during senescence in the dark, in a way similar to chlorophyll and Hill reaction, and increased when leaf segments were incubated at light. These results suggest that NADPH-FeCN-ox is related to some photosynthetic electron transporter activity (probably ferredoxin-NADP+ oxidoreductase). In contrast, NADH-FeCN-ox is notably stable during senescence in the dark and at light. This activity increased during incubation with kinetin or methyl-jasmonate (Me-JA) but decreased when leaf segments were treated with abscisic acid (ABA). The effects of the inhibitors of protein synthesis cycloheximide and chloramphenicol suggest that the changes of NAD(P)H dehydrogenase activities may depend on protein synthesis in chloroplasts. In senescent leaf, chloroplast NADH dehydrogenase might be a way to dissipate NADH produced in the degradation of excess carbon which is released from the degradation of amino acids.Abbreviations ABA abscisic acid - DCPIP 2,6-dichlorophenol-indo-phenol - DOC deoxycholate - Me-JA methyl jasmonate - NADH-FeCN-ox NADH ferricyanide oxidoreductase - NADPH-FeCN-ox NADPH ferricyanide oxidoreductase  相似文献   

12.
The abundances of chloroplasts in leaves on the main stems ofChenopodium album at different height levels were investigatedin relation to the photosynthetic capacity and light environmentof the leaves. (1) The number of chloroplasts per mesophyllcell decreased with descending position of leaves, except foryoung developing leaves at the top of plants that had smallerchloroplast numbers per cell than matured leaves beneath them.Contents of chlorophyll and ribulose-1,5-bisphosphate carboxylase/oxygenaseper leaf area that were highest in the topmost young leavesand decreased with decreasing height level indicate that thereis a vertical gradient of chloroplast abundance per leaf areadecreasing from the top of the leaf canopy with depth. (2) Light-saturatingrate of photosynthetic oxygen evolution per leaf area of maturedleaves decreased more steeply with decreasing leaf positionthan the chloroplast number per cell. Gradients of chlorophylland the enzyme protein contents were also steeper than thatof the chloroplast number. Loss of photosynthesis in lower leavesis, therefore, ascribed partly to loss of whole chloroplastsand partly to reduced photosynthetic capacities of the remainingchloroplasts. (3) The chloroplast number per cell in newly expandedsecond leaves was comparable to those in leaves that have developedat later stages of the plant growth but decreased graduallyduring leaf senescence both in the dark and light. The formationof the vertical gradient of chloroplast abundance is, therefore,ascribed to loss of whole chloroplasts during senescence ofleaves. (4) Irradiance a leaf receives decreased sharply fromthe top of the canopy with depth. The physiological or ecophysiologicalsignificance of the vertical distribution of chloroplasts amongleaves was discussed taking light environments of leaves intoconsideration. (Received July 31, 1995; Accepted October 20, 1995)  相似文献   

13.
One of the earliest events in the process of leaf senescence is dismantling of chloroplasts. Mesophyll cell chloroplasts from rosette leaves were studied in Arabidopsis thaliana undergoing natural senescence. The number of chloroplasts decreased by only 17% in fully yellow leaves, and chloroplasts were found to undergo progressive photosynthetic and ultrastructural changes as senescence proceeded. In ultrastructural studies, an intact tonoplast could not be visualized, thus, a 35S-GFP::δ-TIP line with a GFP-labeled tonoplast was used to demonstrate that chloroplasts remain outside of the tonoplast even at late stages of senescence. Chloroplast DNA was measured by real-time PCR at four different chloroplast loci, and a fourfold decrease in chloroplast DNA per chloroplast was noted in yellow senescent leaves when compared to green leaves from plants of the same age. Although chloroplast DNA did decrease, the chloroplast/nuclear gene copy ratio was still 31:1 in yellow leaves. Interestingly, mRNA levels for the four loci differed: psbA and ndhB mRNAs remained abundant late into senescence, while rpoC1 and rbcL mRNAs decreased in parallel to chloroplast DNA. Together, these data demonstrate that, during senescence, chloroplasts remain outside of the vacuole as distinct organelles while the thylakoid membranes are dismantled internally. As thylakoids were dismantled, Rubisco large subunit, Lhcb1, and chloroplast DNA levels declined, but variable levels of mRNA persisted.  相似文献   

14.
The effect of low concentration of some stress-inducing compounds of different toxicity and chemical nature like Pb and Ti salts or DCMU on the senescence of chloroplasts was investigated in detached primary leaves of barley (Hordeum vulgare cv. Omega). These agents stimulated chlorophyll accumulation, photosynthetic activity ((14)CO (2) fixation), and decreased the number of plastoglobuli in chloroplasts compared to the control, thus delaying senescence. Low-concentration stressors did not increase the level of active cytokinins of leaves during the treatment. Lithium and stearoylcarnitine chloride inhibited the stimulating effect of stressors. This points to the involvement of the PIP (2)-IP (3)/DAG signal transduction pathway in generation of the specific responses.  相似文献   

15.
Nonphotosynthetic retardation of chloroplast senescence by light   总被引:4,自引:3,他引:1       下载免费PDF全文
Haber AH  Thompson PJ  Walne PL  Triplett LL 《Plant physiology》1969,44(11):1619-1625,1627-1628
Excised apical portions of green wheat leaf sections were treated with aminotriazole to prevent formation of new chloroplasts. Illumination retarded the decline in chlorophyll content per leaf section, the disintegration of chloroplast ultrastructure, and the loss of capacity for photosynthetic carbon fixation. We interpret these 3 effects of illumination as facets of a single light effect in retarding chloroplast senescence. This light effect in retarding chloroplast senescence has features differing from characteristics of photosynthetic carbon fixation. For example, A) application of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1, 1-dimethylurea did not decrease, and may have even slightly increased, the effectiveness of light; B) although the action spectrum contains peaks in the blue and red regions, it differs from the action spectrum for photosynthetic CO2 assimilation in wheat; C) in nonphotosynthesizing tissue, application of sugars did not retard chloroplast senescence; D) light saturation was achieved by only a few hundred microwatts/cm2. Considered together with the well-known light requirement for chloroplast formation, our results indicate that light has a dual, photomorphogenetic control in maintaining the green status of the plant by also exerting a second effect: retarding of senescence of chloroplasts already present.  相似文献   

16.
Dilnawaz  F.  Mohapatra  P.  Misra  M.  Ramaswamy  N.K.  Misra  A.N. 《Photosynthetica》2001,39(4):557-563
Wheat (Triticum aestivum L. cv. Sonalika) seedlings were grown in Hoagland solution. Primary leaves were harvested at 8, 12, and 15 d and cut into five equal segments. Contents of photosynthetic pigments and proteins, and photosystem 2 (PS2) activity increased from base to apex of these leaves. Chlorophyll (Chl) content was maximum at 12 d in all the leaf segments, but PS2 activity showed a gradual decline from 8 to 15 d in all leaf segments. In sharp contrast, the CO2 fixation ability of chloroplasts increased from 8 to 15 d. CO2 fixation ability of chloroplasts started to decline from base to apex of 15-d-old seedlings, where the content of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBPCO-LSU) increased acropetally. RuBPCO-LSU content was maximum in all the leaf segments in 12-d-old seedlings. This shows a distinctive pattern of PS2, Chl, CO2 fixation ability of chloroplasts, and RuBPCO-LSU content along the axis of leaf lamina during development and senescence. RuBPCO-LSU (54 kDa) degraded to fragments of 45, 42, 37, 19, and 16 kDa products which accumulated along the leaf axis during ageing of chloroplasts. Thus the CO2 fixation ability of chloroplasts declines earlier than PS2 activity and photosynthetic pigment contents along the leaf lamina.  相似文献   

17.
Two types of experiment were carried out to examine whetheror not the inactivation of photosynthesis is related to lossof chloroplasts during foliar senescence of rice seedlings.Levels of both soluble and insoluble leaf proteins decreasedduring senescence, the loss of the soluble proteins being fasterthan that of the insoluble ones. There was a good positive correlationbetween the rate of oxygen evolution and the level of solubleproteins. The inactivation of photosynthesis was also linearlyrelated to the loss of a major fraction of insoluble proteins.Thus, the loss of photosynthetic ability is ascribable to thedegradation of relevant proteins and enzymes during leaf senescence.Electron microscopy revealed that senescence caused the disorientationof the grana and stroma thylakoids, a decrease in the numberof starch granules, and an increase in the size and number ofplastoglobuli. Large grana consisting 20 to 30 thylakoids appearedin aged leaves. In addition to these changes in ultrastructure,there was a significant decrease in the size of chloroplasts.Furthermore, the number of chloroplasts in mesophyll cells wasalso notably reduced during senescence. Thus, the loss of leafproteins and inactivation of photosynthesis are both relatedto the decrease in the total mass of chloroplasts during senescenceof rice seedlings. 3Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113 Japan. (Received January 4, 1989; Accepted April 19, 1989)  相似文献   

18.
The impact of photosynthesis on initiation of leaf senescence   总被引:1,自引:0,他引:1  
Senescence is the last stage of leaf development preceding the death of the organ, and it is important for nutrient remobilization and for feeding sink tissues. There are many reports on leaf senescence, but the mechanisms initiating leaf senescence are still poorly understood. Leaf senescence is affected by many environmental factors and seems to vary in different species and even varieties of plants, which makes it difficult to generalize the mechanism. Here, we give an overview on studies reporting about alterations in the composition of the photosynthetic electron transport chain in chloroplasts during senescence. We hypothesize that alternative electron flow and related generation of the proton motive force required for ATP synthesis become increasingly important during progression of senescence. We address the generation of reactive oxygen species (ROS) in chloroplasts in the initiation of senescence, retrograde signaling from the chloroplast to the nucleus and ROS‐dependent signaling associated with leaf senescence. Finally, a few ideas for increasing crop yields by increasing the chloroplast lifespan are presented.  相似文献   

19.
Senescence is an active process allowing the reallocation of valuable nutrients from the senescing organ towards storage and/or growing tissues. Using Arabidopsis thaliana leaves from both whole darkened plants (DPs) and individually darkened leaves (IDLs), we investigated the fate of mitochondria and chloroplasts during dark-induced leaf senescence. Combining in vivo visualization of fates of the two organelles by three-dimensional reconstructions of abaxial parts of leaves with functional measurements of photosynthesis and respiration, we showed that the two experimental systems displayed major differences during 6 d of dark treatment. In whole DPs, organelles were largely retained in both epidermal and mesophyll cells. However, while the photosynthetic capacity was maintained, the capacity of mitochondrial respiration decreased. In contrast, IDLs showed a rapid decline in photosynthetic capacity while maintaining a high capacity for mitochondrial respiration throughout the treatment. In addition, we noticed an unequal degradation of organelles in the different cell types of the senescing leaf. From these data, we suggest that metabolism in leaves of the whole DPs enters a 'stand-by mode' to preserve the photosynthetic machinery for as long as possible. However, in IDLs, mitochondria actively provide energy and carbon skeletons for the degradation of cell constituents, facilitating the retrieval of nutrients. Finally, the heterogeneity of the degradation processes involved during senescence is discussed with regard to the fate of mitochondria and chloroplasts in the different cell types.  相似文献   

20.
A protein-import system prepared with isolated chloroplastswas used to monitor changes in levels of mRNAs for chloroplast-targetedproteins during dark-induced leaf senescence. Biologically activechloroplasts were isolated from young (9-day-old) and aged (14-day-old)radish cotyledons. Poly(A)+-RNA was prepared from radish cotyledonsthat had been detached from seedlings and placed in darknessto accelerate senescence. The RNA was translated in a wheatgerm system, and the products were added to an import systemprepared with chloroplasts from young cotyledons. Electrophoreticanalysis of the imported proteins suggested that most chloroplast-targeted proteins decreased in abundance during dark treatmentof cotyledons. However, the relative abundance of 38 stromaland three thylakoid proteins increased transiently or continuouslyamong the products of translation of RNA isolated during thecourse of senescence. The efficiency of the uptake of precursorproteins by chloroplasts isolated from aged cotyledons was lowerthan that by chloroplasts from young tissue. The chloroplastsfrom aged cotyledons more efficiently imported at least onestromal protein and one thylakoid protein than chloroplastsfrom the young tissue. The relative abundance of these two proteinsincreased among the products of translation of RNA from senescingcotyledons when tested in the uptake system with chloroplastsfrom young cotyledons. These results suggest that some nucleargenes for chloroplast-targeted proteins are expressed in senescingcotyledons more efficiently than in young tissue, and that themachinery for import of proteins into chloroplasts changes duringaging of the tissue to allow more efficient import of certainproteins that may be responsible for the senescence of the chloroplasts. 1Present address: Kihara Institute for Biological Research,Yokohama City University, Mutsukawa 3-122-20, Minami-ku, Yokohama,232 Japan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号