首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
ZFP245 is a cold- and drought-responsive gene that encodes a zinc finger protein in rice. The ZFP245 protein localizes in the nucleus and exhibits trans-activation activity. Transgenic rice plants overexpressing ZFP245 were generated and found to display high tolerance to cold and drought stresses. The transgenic plants did not exhibit growth retardation, but showed growth sensitivity against exogenous abscisic acid, increased free proline levels and elevated expression of rice pyrroline-5-carboxylatesynthetase and proline transporter genes under stress conditions. Overproduction of ZFP245 enhanced the activities of reactive oxygen species-scavenging enzymes under stress conditions and increased the tolerance of rice seedlings to oxidative stress. Our data suggest that ZFP245 may contribute to the tolerance of rice plants to cold and drought stresses by regulating proline levels and reactive oxygen species-scavenging activities, and therefore may be useful for developing transgenic crops with enhanced tolerance to abiotic stress.  相似文献   

4.
Xu DQ  Huang J  Guo SQ  Yang X  Bao YM  Tang HJ  Zhang HS 《FEBS letters》2008,582(7):1037-1043
We previously identified a salt and drought stress-responsive TFIIIA-type zinc finger protein gene ZFP252 from rice. Here we report the functional analysis of ZFP252 using gain- and loss-of-function strategies. We found that overexpression of ZFP252 in rice increased the amount of free proline and soluble sugars, elevated the expression of stress defense genes and enhanced rice tolerance to salt and drought stresses, as compared with ZFP252 antisense and non-transgenic plants. Our findings suggest that ZFP252 plays an important role in rice response to salt and drought stresses and is useful in engineering crop plants with enhanced tolerance to salt and drought stresses.  相似文献   

5.
6.
7.
8.
锌指蛋白在调控植物生长发育和应对逆境过程中发挥着重要作用.为进一步研究锌指类蛋白参与植物非生物胁迫响应的分子机制,对水稻(Oryza sativa)中一个编码含有B-box锌指结构域蛋白的OsBBX25基因进行了功能分析.OsBBX25受盐、干旱和ABA诱导表达.异源表达OsBBX25的转基因拟南芥(Arabidopsis thaliana)与野生型相比对盐和干旱的耐受性增强,且盐胁迫条件下转基因植物中KIN1、RD29A和COR15的表达上调,干旱胁迫下KIN1、RD29A和RD22的表达上调.外源施加ABA时,转基因植物的萌发率与野生型之间没有明显差异.OsBBX25可能作为转录调控的辅助因子调节胁迫应答相关基因的表达,进而参与植物对非生物胁迫的响应.  相似文献   

9.
Nitric oxide (NO) has been shown to play an important role in the plant response to biotic and abiotic stresses in Arabidopsis mutants with lower or higher levels of endogenous NO. The exogenous application of NO donors or scavengers has also suggested an important role for NO in plant defense against environmental stress. In this study, rice plants under drought and high salinity conditions showed increased nitric oxide synthase (NOS) activity and NO levels. Overexpression of rat neuronal NO synthase (nNOS) in rice increased both NOS activity and NO accumulation, resulting in improved tolerance of the transgenic plants to both drought and salt stresses. nNOS-overexpressing plants exhibited stronger water-holding capability, higher proline accumulation, less lipid peroxidation and reduced electrolyte leakage under drought and salt conditions than wild rice. Moreover, nNOS-overexpressing plants accumulated less H2O2, due to the observed up-regulation of OsCATA, OsCATB and OsPOX1. In agreement, the activities of CAT and POX were higher in transgenic rice than wild type. Additionally, the expression of six tested stress-responsive genes including OsDREB2A, OsDREB2B, OsSNAC1, OsSNAC2, OsLEA3 and OsRD29A, in nNOS-overexpressing plants was higher than that in the wild type under drought and high salinity conditions. Taken together, our results suggest that nNOS overexpression suppresses the stress-enhanced electrolyte leakage, lipid peroxidation and H2O2 accumulation, and promotes proline accumulation and the expression of stress-responsive genes under stress conditions, thereby promoting increased tolerance to drought and salt stresses.  相似文献   

10.
Receptor‐like kinases (RLKs) play essential roles in plant growth, development and responses to environmental stresses. A putative RLK gene, OsSIK1, with extracellular leucine‐rich repeats was cloned and characterized in rice (Oryza sativa). OsSIK1 exhibits kinase activity in the presence of Mn2+, and the OsSIK1 kinase domain has the ability to autophosphorylate and phosphorylate myelin basic protein (MBP). OsSIK1 promoter‐GUS analysis revealed that OsSIK1 is expressed mainly in the stem and spikelet in rice. The expression of OsSIK1 is mainly induced by salt, drought and H2O2 treatments. Transgenic rice plants with overexpression of OsSIK1 show higher tolerance to salt and drought stresses than control plants. On the contrary, the knock‐out mutants sik1‐1 and sik1‐2, as well as RNA interference (RNAi) plants, are sensitive to drought and salt stresses. The activities of peroxidase, superoxide dismutase and catalase are enhanced significantly in OsSIK1‐overexpressing plants. Also, the accumulation of H2O2 in leaves of OsSIK1‐overexpressing plants is much less than that of the mutants, RNAi plants and control plants, as measured by 3,3′‐diamino benzidine (DAB) staining. We also show that OsSIK1 affects stomatal density in the abaxial and adaxial leaf epidermis of rice. These results indicate that OsSIK1 plays important roles in salt and drought stress tolerance in rice, through the activation of the antioxidative system.  相似文献   

11.
Redox homeostasis is important for plants to be able to maintain cellular metabolism, and disrupting cellular redox homeostasis will cause oxidative damage to cells and adversely affect plant growth. In this study, a cotton CCCH-type tandem zinc finger gene defined as GhTZF1, which was isolated from a cotton cell wall regeneration SSH library in our previous research, was characterized. GhTZF1 was predominantly expressed during early cell wall regeneration, and it was expressed in various vegetative and reproductive tissues. The expression of GhTZF1 was substantially up-regulated by a variety of abiotic stresses, such as PEG and salt. GhTZF1 also responds to methyl jasmonate (MeJA) and H2O2 treatment. Overexpression of GhTZF1 enhanced drought tolerance and delayed drought-induced leaf senescence in transgenic Arabidopsis. Subsequent experiments indicated that dark- and MeJA-induced leaf senescence was also attenuated in transgenic plants. The amount of H2O2 in transgenic plants was attenuated under both drought conditions and with MeJA-treatment. The activity of superoxide dismutase and peroxidase was higher in transgenic plants than in wild type plants under drought conditions. Quantitative real-time PCR analysis revealed that overexpression of GhTZF1 reduced the expression of oxidative-related senescence-associated genes (SAGs) under drought conditions. Overexpression of GhTZF1 also enhanced oxidative stress tolerance, which was determined by measuring the expression of a set of antioxidant genes and SAGs that were altered in transgenic plants during H2O2 treatment. Hence, we conclude that GhTZF1 may serve as a regulator in mediating drought stress tolerance and subsequent leaf senescence by modulating the reactive oxygen species homeostasis.  相似文献   

12.
Flooding is one of the threatening abiotic stresses in recent global warming. In order to understand flooding-caused low oxygen stress response at molecular level, microarray-linked isolation of the hypoxia inducible genes were conducted. Seventeen genes that were up-regulated by the factor of more than 3 fold, were confirmed as hypoxia inducible. Among them, a CCCH-type zinc finger protein gene, OsCCCH-Zn-1, was further characterized due to its novelty as a hypoxia-inducible zinc finger gene as well as its significant induction by hypoxia stress. OsCCCH-Zn-1 was also up-regulated by submergence, ABA and drought stresses. In the normal growth condition, OsCCCH-Zn-1 was expressed in the flag leaf sheath, highest internode and developing seeds. In rice, at least 12 CCCH-type zinc finger protein genes were retrieved by in silico analysis. Among these, we found that the zinc finger genes OsCCCH-Zn-1, -2, -6 were induced by hypoxia stress.  相似文献   

13.
14.
15.
Drought is one of the major abiotic stresses that directly implicate plant growth and crop productivity. Although many genes in response to drought stress have been identified, genetic improvement to drought resistance especially in food crops is showing relatively slow progress worldwide. Here, we reported the isolation of abscisic acid, stress and ripening (ASR) genes from upland rice variety, IRAT109 (Oryza sativa L. ssp. japonica), and demonstrated that overexpression of OsASR5 enhanced osmotic tolerance in Escherichia coli and drought tolerance in Arabidopsis and rice by regulating leaf water status under drought stress conditions. Moreover, overexpression of OsASR5 in rice increased endogenous ABA level and showed hypersensitive to exogenous ABA treatment at both germination and postgermination stages. The production of H2O2, a second messenger for the induction of stomatal closure in response to ABA, was activated in overexpression plants under drought stress conditions, consequently, increased stomatal closure and decreased stomatal conductance. In contrast, the loss‐of‐function mutant, osasr5, showed sensitivity to drought stress with lower relative water content under drought stress conditions. Further studies demonstrated that OsASR5 functioned as chaperone‐like protein and interacted with stress‐related HSP40 and 2OG‐Fe (II) oxygenase domain containing proteins in yeast and plants. Taken together, we suggest that OsASR5 plays multiple roles in response to drought stress by regulating ABA biosynthesis, promoting stomatal closure, as well as acting as chaperone‐like protein that possibly prevents drought stress‐related proteins from inactivation.  相似文献   

16.
A drought stress-responsive Cys2/His2-type zinc finger protein gene DgZFP3 was previously isolated (Liu et al., Afr J Biotechnol 11:7781–7788, 2012b) from chrysanthemum. To assess roles of DgZFP3 in plant drought stress responses, we performed gain-of-function experiment. The DgZFP3-overexpression tobacco plants showed significant drought tolerance over the wild type (WT). The transgenic lines exhibited less accumulation of H2O2 under drought stress, more accumulation of proline and greater activities of peroxidase (POD) and superoxide dismutase than the WT under both control conditions and drought stress. In addition, there was greater up-regulation of the ROS-related enzyme genes (NtSOD and NtPOD) and stress-related genes (NtLEA5 and NtDREB) in transgenic lines under normal or drought conditons. Thus DgZFP3 probably plays a positive regulatory role in drought stress response and has the potential to be utilized in transgenic breeding to improve drought stress tolerance in plants.  相似文献   

17.
In this work, we have overexpressed a vesicle trafficking protein, Rab7, from a stress-tolerant plant, Pennisetum glaucum, in a high-yielding but stress-sensitive rice variety Pusa Basmati-1 (PB-1). The transgenic rice plants were tested for tolerance against salinity and drought stress. The transgenic plants showed considerable tolerance at the vegetative stage against both salinity (200 mM NaCl) and drought stress (up to 12 days after withdrawing water). The protection against salt and drought stress may be by regulating Na+ ion homeostasis, as the transgenic plants showed altered expression of multiple transporter genes, including OsNHX1, OsNHX2, OsSOS1, OsVHA, and OsGLRs. In addition, decreased generation and maintenance of lesser reactive oxygen species (ROS), with maintenance of chloroplast grana and photosynthetic machinery was observed. When evaluated for reproductive growth, 89–96 % of seed setting was maintained in transgenic plants during drought stress; however, under salt stress, a 33–53 % decrease in seed setting was observed. These results indicate that PgRab7 overexpression in rice confers differential tolerance at the seed setting stage during salinity and drought stress and could be a favored target for raising drought-tolerant crops.  相似文献   

18.
Salinity and drought are two very important abiotic stressors that negatively impact the growth and yield of all sensitive crop plants. Genes from halophytes have been shown to be useful to engineer crop plants that can survive under adverse soil and water conditions. The present report establishes, for the first time, the physiological role of a class one ADP ribosylation factor gene (SaARF1) from the halophyte Spartina alterniflora (smooth cordgrass) in imparting salinity and drought stress tolerance when expressed in both monocot (rice) and dicot (Arabidopsis) systems. The Arabidopsis and rice plants overexpressing ARF1 are many-fold more tolerant to salt and drought than wild-type (WT) plants. The transgenics exhibited improved growth and productivity relative to WT through tissue tolerance by maintaining higher relative water content and membrane stability, and higher photosynthetic yield by retaining higher chlorophyll concentration and fluorescence under stress conditions compared to WT. These findings indicated that genes from halophyte resources can be useful to engineer and improve salt and drought stress tolerance in both monocot and dicot plants.  相似文献   

19.
A cDNA for the gene ZFP182, encoding a C2H2-type zinc finger protein, was cloned from rice by RT-PCR. ZFP182 codes an 18.2 kDa protein with two C2H2-type zinc finger motifs, one nuclear localization signal and one Leu-rich domain. The DLN-box/EAR-motif, which exists in most of plant C2H2-type zinc finger proteins, does not exist in ZFP182. The expression analysis showed that ZFP182 gene was constitutively expressed in leaves, culms, roots and spikes at the adult rice plants, and markedly induced in the seedlings by cold (4 °C), 150 mM NaCl and 0.1 mM ABA treatments. The approximate 1.4 kb promoter region of ZFP182 gene was fused into GUS reporter gene and transformed into tobacco. The histochemical analysis revealed that GUS expression could not be detected in transformed tobacco seedlings under normal conditions, but strongly observed in tobacco leaf discs and the vascular tissue of roots treated with NaCl or KCl. Expression of ZFP182 in transgenic tobacco and overexpression in rice increased plant tolerance to salt stress. These results demonstrated that ZFP182 might be involved in plant responses to salt stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号