首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Parkinson’s disease (PD) signs and symptoms regularly include tremor. Interestingly, the nucleoside guanosine (GUO) has already proven to be effective in reducing reserpine-induced tremulous jaw movements (TJMs) in rodent models, thus becoming a promising antiparkinsonian drug. Here, we aimed at revealing the mechanism behind GUO antiparkinsonian efficacy by assessing the role of adenosine A1 and A2A receptors (A1R and A2AR) on GUO-mediated anti-tremor effects in the reserpinized mouse model of PD. Reserpinized mice showed elevated reactive oxygen species (ROS) production and cellular membrane damage in striatal slices assessed ex vivo and GUO treatment reversed ROS production. Interestingly, while the simultaneous administration of sub-effective doses of GUO (5 mg/kg) and SCH58261 (0.01 mg/kg), an A2AR antagonist, precluded reserpine-induced TJMs, these were ineffective on reverting ROS production in ex vivo experiments. Importantly, GUO was able to reduce TJM and ROS production in reserpinized mouse lacking the A2AR, thus suggesting an A2AR-independent mechanism of GUO-mediated effects. Conversely, the administration of DPCPX (0.75 mg/kg), an A1R antagonist, completely abolished both GUO-mediated anti-tremor effects and blockade of ROS production. Overall, these results indicated that GUO anti-tremor and antioxidant effects in reserpinized mice were A1R dependent but A2AR independent, thus suggesting a differential participation of adenosine receptors in GUO-mediated effects.

  相似文献   

2.
Little is known about the mechanisms that regulate the expression of adenosine receptors during CNS development. We demonstrate here that retinas from chick embryos injected in ovo with selective adenosine receptor ligands show changes in A1 receptor expression after 48 h. Exposure to A1 agonist N6‐cyclohexyladenosine (CHA) or antagonist 8‐Cyclopentyl‐1, 3‐dipropylxanthine (DPCPX) reduced or increased, respectively, A1 receptor protein and [3H]DPCPX binding, but together, CHA+DPCPX had no effect. Interestingly, treatment with A2A agonist 3‐[4‐[2‐[[6‐amino‐9‐[(2R,3R,4S,5S)‐5‐(ethylcarbamoyl)‐3,4‐dihydroxy‐oxolan‐2‐yl]purin‐2‐yl]amino] ethyl]phenyl] propanoic acid (CGS21680) increased A1 receptor protein and [3H]DPCPX binding, and reduced A2A receptors. The A2A antagonists 7‐(2‐phenylethyl)‐5‐amino‐2‐(2‐furyl)‐pyrazolo‐[4,3‐e]‐1,2,4‐trizolo[1,5‐c] pyrimidine (SCH58261) and 4‐(2‐[7‐amino‐2‐[2‐furyl][1,2,4]triazolo[2,3‐a][1,3,5]triazo‐5‐yl‐amino]ethyl)phenol (ZM241385) had opposite effects on A1 receptor expression. Exposure to CGS21680 + CHA did not change A1 receptor levels, whereas CHA + ZM241385 or CGS21680 + DPCPX had no synergic effect. The blockade of adenosine transporter with S‐(4‐nitrobenzyl)‐6‐thioinosine (NBMPR) also reduced [3H]DPCPX binding, an effect blocked by DPCPX, but not enhanced by ZM241385. [3H]DPCPX binding kinetics showed that treatment with CHA reduced and CGS21680 increased the Bmax, but did not affect Kd values. CHA, DPCPX, CGS21680, and ZM241385 had no effect on A1 receptor mRNA. These data demonstrated an in vivo regulation of A1 receptor expression by endogenous adenosine or long‐term treatment with A1 and A2A receptors modulators.  相似文献   

3.
SCH 58261 is a reported adenosine A2A receptor antagonist, which is active in rat in vivo models of Parkinson’s Disease upon ip administration. However, it has poor selectivity versus the A1 receptor and does not demonstrate oral activity. We report the design and synthesis of biaryl and heteroaryl analogs of SCH 58261 which improve the A2A receptor binding selectivity as well as the pharmacokinetic properties of SCH 58261. In particular, the quinoline 25 has excellent A2A receptor in vitro binding affinity and selectivity, sustained rat plasma levels upon oral dosing, and is active orally in a rat behavioral assay.  相似文献   

4.
The aim of the present paper was to examine, in a comparative way, the occurrence and the mechanisms of the interactions between adenosine A2A receptors (A2ARs) and metabotropic glutamate 5 receptors (mGlu5Rs) in the hippocampus and the striatum. In rat hippocampal and corticostriatal slices, combined ineffective doses of the mGlu5R agonist 2-chloro-5-hydroxyphenylglycine (CHPG) and the A2AR agonist CGS 21680 synergistically reduced the slope of excitatory postsynaptic field potentials (fEPSPs) recorded in CA1 and the amplitude of field potentials (FPs) recorded in the dorsomedial striatum. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway appeared to be involved in the effects of CGS 21680 in corticostriatal but not in hippocampal slices. In both areas, a postsynaptic locus of interaction appeared more likely. N-methyl-D-aspartate (NMDA) reduced the fEPSP slope and FP amplitude in hippocampal and corticostriatal slices, respectively. Such an effect was significantly potentiated by CHPG in both areas. Interestingly, the A2AR antagonist ZM 241385 significantly reduced the NMDA-potentiating effect of CHPG. In primary cultures of rat hippocampal and striatal neurons (ED 17, DIV 14), CHPG significantly potentiated NMDA-induced lactate dehydrogenase (LDH) release. Again, such an effect was prevented by ZM 241385. Our results show that A2A and mGlu5 receptors functionally interact both in the hippocampus and in the striatum, even though different mechanisms seem to be involved in the two areas. The ability of A2ARs to control mGlu5R-dependent effects may thus be a general feature of A2ARs in different brain regions (irrespective of their density) and may represent an additional target for the development of therapeutic strategies against neurological disorders.  相似文献   

5.
SCH 58261 is a reported adenosine A2A receptor antagonist which is active in rat in vivo models of Parkinson’s Disease upon ip administration. However, it has poor selectivity versus the A1 receptor and does not demonstrate oral activity. Quinoline analogs have improved upon the selectivity and pharmacokinetics of SCH 58261, but were difficult to handle due to poor aqueous solubility. We report the design and synthesis of fused heterocyclic analogs of SCH 58261 with aqueous solubility as well as improved A2A receptor binding selectivity and pharmacokinetic properties. In particular, the tetrahydronaphthyridine 4s has excellent A2A receptor in vitro binding affinity and selectivity, is active orally in a rat in vivo model of Parkinson’s Disease, and has aqueous solubility of 100 μM at physiological pH.  相似文献   

6.
Adenosine, through A2A receptor (A2AR) activation, can act as a metamodulator, controlling the actions of other modulators, as brain-derived neurotrophic factor (BDNF). Most of the metamodulatory actions of adenosine in the hippocampus have been evaluated in excitatory synapses. However, adenosine and BDNF can also influence GABAergic transmission. We thus evaluated the role of A2AR on the modulatory effect of BDNF upon glutamate and GABA release from isolated hippocampal nerve terminals (synaptosomes). BDNF (30 ng/ml) enhanced K+-evoked [3H]glutamate release and inhibited the K+-evoked [3H]GABA release from synaptosomes. The effect of BDNF on both glutamate and GABA release requires tonic activation of adenosine A2AR since for both neurotransmitters, the BDNF action was blocked by the A2AR antagonist SCH 58261 (50 nM). In the presence of the A2AR agonist, CGS21680 (30 nM), the effect of BDNF on either glutamate or GABA release was, however, not potentiated. It is concluded that both the inhibitory actions of BDNF on GABA release as well as the facilitatory action of the neurotrophin on glutamate release are dependent on the activation of adenosine A2AR by endogenous adenosine. However, these actions could not be further enhanced by exogenous activation of A2AR.  相似文献   

7.
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, enhances synaptic transmission and regulates neuronal proliferation and survival. Functional interactions between adenosine A2A receptors (A2ARs) and BDNF have been recently reported. In this article, we report some recent findings from our group showing that A2ARs regulate both BDNF functions and levels in the brain. Whereas BDNF (10 ng/ml) increased the slope of excitatory postsynaptic field potentials (fEPSPs) in hippocampal slices from wild-type (WT) mice, it was completely ineffective in slices taken from A2AR knock-out (KO) mice. Furthermore, enzyme immunoassay studies showed a significant reduction in hippocampal BDNF levels in A2AR KO vs. WT mice. Having found an even marked reduction in the striatum of A2AR KO mice, and as both BDNF and A2ARs have been implicated in the pathogenesis of Huntington’s disease (HD), an inherited striatal neurodegenerative disease, we then evaluated whether the pharmacological blockade of A2ARs could influence striatal levels of BDNF in an experimental model of HD-like striatal degeneration (quinolinic acid-lesioned rats) and in a transgenic mice model of HD (R6/2 mice). In both QA-lesioned rats and early symptomatic R6/2 mice (8 weeks), the systemic administration of the A2AR antagonist SCH58261 significantly reduced striatal BDNF levels. These results indicate that the presence and the tonic activation of A2ARs are necessary to allow BDNF-induced potentiation of synaptic transmission and to sustain a normal BDNF tone. The possible functional consequences of reducing striatal BDNF levels in HD models need further investigation.  相似文献   

8.

Caffeine, a stimulant largely consumed around the world, is a non-selective adenosine receptor antagonist, and therefore caffeine actions at synapses usually, but not always, mirror those of adenosine. Importantly, different adenosine receptors with opposing regulatory actions co-exist at synapses. Through both inhibitory and excitatory high-affinity receptors (A1R and A2R, respectively), adenosine affects NMDA receptor (NMDAR) function at the hippocampus, but surprisingly, there is a lack of knowledge on the effects of caffeine upon this ionotropic glutamatergic receptor deeply involved in both positive (plasticity) and negative (excitotoxicity) synaptic actions. We thus aimed to elucidate the effects of caffeine upon NMDAR-mediated excitatory post-synaptic currents (NMDAR-EPSCs), and its implications upon neuronal Ca2+ homeostasis. We found that caffeine (30–200 μM) facilitates NMDAR-EPSCs on pyramidal CA1 neurons from Balbc/ByJ male mice, an action mimicked, as well as occluded, by 1,3-dipropyl-cyclopentylxantine (DPCPX, 50 nM), thus likely mediated by blockade of inhibitory A1Rs. This action of caffeine cannot be attributed to a pre-synaptic facilitation of transmission because caffeine even increased paired-pulse facilitation of NMDA-EPSCs, indicative of an inhibition of neurotransmitter release. Adenosine A2ARs are involved in this likely pre-synaptic action since the effect of caffeine was mimicked by the A2AR antagonist, SCH58261 (50 nM). Furthermore, caffeine increased the frequency of Ca2+ transients in neuronal cell culture, an action mimicked by the A1R antagonist, DPCPX, and prevented by NMDAR blockade with AP5 (50 μM). Altogether, these results show for the first time an influence of caffeine on NMDA receptor activity at the hippocampus, with impact in neuronal Ca2+ homeostasis.

  相似文献   

9.
Subchronic treatment with MAP (4.6 mg/kg, i.p., once daily for 11 days) significantly decreased the Kd, but not Bmax, values of [3H]1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX) binding to adenosine A1 receptors in the prefrontal cortex and hippocampus, but not striatum, of rat brain. However, subchronic treatment with PCP (10 mg/kg, i.p., once daily for 11 days) did not alter the Kd and Bmax values of [3H]DPCPX binding to adenosine A1 receptors in these three regions. Subchronic treatment with MAP or PCP did not alter the Bmax and Kd values of [3H]2-p-(2-carboxyehyl)phenethylamino-5-N-ethylcarboxyamidoadenosine ([3H]CGS21680) binding to adenosine A2A receptors in the striatum. Furthermore, subchronic treatment with MAP or PCP significantly decreased the specific binding of [3H]CGS21680 to adenosine A2A receptors in the hippocampus, but not in the prefrontal cortex. Thus, these results suggest that MAP and PCP may produce differential effects on the adenosine A2A receptors, but not adenosine A1 receptors in rat brain.  相似文献   

10.
In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs) by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.  相似文献   

11.
Chronic granulomatous disease (CGD) is caused by defects in the NADPH oxidase complex and is characterized by an increased susceptibility to infection. Other significant complications of CGD include autoimmunity and non-infectious hyperinflammatory disorders. We show that a gp91phox deficiency leads to the development of phenotypically altered T lymphocytes in mice and that this abnormal, hyperactive phenotype can be modulated by activation of the adenosine A2A receptor. T cells isolated from CGD mice produce significantly higher levels of the pro-inflammatory cytokines IFN-γ, IL-2, TNF-α, IL-4 and IL-13 than do WT cells after TCR-mediated activation; treatment with the selective adenosine A2A receptor agonist, CGS21680, potently inhibits this response. Additionally, the over exuberant inflammatory response elicited by thioglycollate challenge in gp91phox deficient mice is attenuated by CGS21680. These data suggest that treatment with A2AR agonists may be an effective therapy by which to regulate the immune system hyperactivity that results from a gp91phox deficiency.  相似文献   

12.
The anti-Parkinsonian effect of glutamate metabotropic group 5 (mGluR5) and adenosine A(2A) receptor antagonists is believed to result from their ability to postsynaptically control the responsiveness of the indirect pathway that is hyperfunctioning in Parkinson's disease. mGluR5 and A(2A) antagonists are also neuroprotective in brain injury models involving glutamate excitotoxicity. Thus, we hypothesized that the anti-Parkinsonian and neuroprotective effects of A(2A) and mGluR5 receptors might be related to their control of striatal glutamate release that actually triggers the indirect pathway. The A(2A) agonist, CGS21680 (1-30 nM) facilitated glutamate release from striatal nerve terminals up to 57%, an effect prevented by the A(2A) antagonist, SCH58261 (50 nM). The mGluR5 agonist, CHPG (300-600 mum) also facilitated glutamate release up to 29%, an effect prevented by the mGluR5 antagonist, MPEP (10 microm). Both mGluR5 and A(2A) receptors were located in the active zone and 57 +/- 6% of striatal glutamatergic nerve terminals possessed both A(2A) and mGluR5 receptors, suggesting a presynaptic functional interaction. Indeed, submaximal concentrations of CGS21680 (1 nM) and CHPG (100 microm) synergistically facilitated glutamate release and the facilitation of glutamate release by 10 nM CGS21680 was prevented by 10 microm MPEP, whereas facilitation by 300 microm CHPG was prevented by 10 nM SCH58261. These results provide the first direct evidence that A(2A) and mGluR5 receptors are co-located in more than half of the striatal glutamatergic terminals where they facilitate glutamate release in a synergistic manner. This emphasizes the role of the modulation of glutamate release as a likely mechanism of action of these receptors both in striatal neuroprotection and in Parkinson's disease.  相似文献   

13.
In a previous work we have shown that exposure to aluminum (Al) chloride (AlCl3) enhanced the neurotoxicity of the amyloid beta25-35 fragment (Abeta25-35) in neuroblastoma cells and affected the expression of Alzheimer's disease (AD)-related genes. Caffein, a compound endowed with beneficial effects against AD, exerts neuroprotection primarily through its antagonist activity on A2A adenosine receptors (A2AR), although it also inhibits A1Rs with similar potency. Still, studies on the specific involvement of these receptors in neuroprotection in a model of combined neurotoxicity (Abeta25-35 + AlCl3) are missing. To address this issue, cultured SH-SY5Y cells exposed to Abeta25-35 + AlCl3 were assessed for cell viability, morphology, intracellular ROS activity and expression of apoptosis-, stress- and AD-related proteins. To define the role of A1R and A2ARs, pretreatment with caffein, specific receptor antagonists (DPCPX or SCH58261) or siRNA-mediated gene knockdown were delivered. Results indicate that AlCl3 treatment exacerbated Abeta25-35 toxicity, increased ROS production, lipid peroxidation, β-secretase-1 (BACE1) and amyloid precursor protein (APP). Interestingly, SCH58261 successfully prevented toxicity associated to Abeta25-35 only, whereas pretreatment with both DPCPX and SCH58261 was required to fully avert Abeta25-35 + AlCl3-induced damage, suggesting that A1Rs might also be critically involved in protection during combined toxicity. The effects of caffein were mimicked by both N-acetyl cysteine, an antioxidant, and desferrioxamine, likely acting through distinct mechanisms. Altogether, our data establish a novel protective function associated with A1R inhibition in the setting of combined Abeta25-35 + AlCl3 neurotoxicity, and expand our current knowledge on the potential beneficial role of caffein to prevent AD progression in subjects environmentally exposed to aluminum.  相似文献   

14.
The release of the inhibitory amino acid taurine is markedly enhanced under ischemic conditions in both adult and developing brain stem, together with a pronounced increase in the release of the neuromodulator adenosine. We now studied the effects of adenosine receptor agonists and antagonists on [3H]taurine release in the brain stem in normoxia and ischemia, using a superfusion system. Under standard conditions, the adenosine A1 receptor agonist N6-cyclohexyladenosine (CHA) potentiated basal taurine release in adult mice, which response was blocked by the antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). CHA and the A2a receptor agonist 2-p-(2-carboxyethyl)phenylamino-5′-N-ethylcarboxaminoadenosinehydrochloride (CGS 21680) had no effect on the release in developing mice. In ischemia, CHA depressed both basal and K+-stimulated taurine release in developing mice in a receptor-mediated manner, blocked by DPCPX. The A2a receptor agonist CGS 21680 was also inhibitory. Taurine and adenosine may thus not cooperate in developing mice to prevent ischemic neuronal damage. On the other hand, CGS 21680 enhanced taurine release in the adult brain stem in ischemia, both basal and K+-stimulated release being affected. These effects were abolished by the antagonist 3,7-dimethyl-1-propargylxanthine (DMPX), indicating a receptor-mediated process. In this case elevated levels of taurine could be beneficial, protecting against hyperexcitation and excitotoxicity.  相似文献   

15.
Epilepsy is a chronic neurological disorder characterized by recurrent seizures. However, approximately one-third of epilepsy patients still suffer from uncontrolled seizures. Effective treatments for epilepsy are yet to be developed. N 6-(3-methoxyl-4-hydroxybenzyl) adenine riboside (B2) is a N6-substitued adenosine analog. Here we describe an investigation of the effects and mechanisms of B2 on chemical convulsant-induced seizures. Seizures were induced in mice by administration of 4-aminopyridine (4-AP), pentylenetetrazol (PTZ), picrotoxin, kainite acid (KA), or strychnine. B2 has a dose-related anticonvulsant effect in these chemical-induced seizure models. The protective effects of B2 include increased latency of seizure onset, decreased seizure occurrence, shorter seizure duration and reduced mortality rate. Radioligand binding and cAMP accumulation assays indicated that B2 might be a functional ligand for both adenosine A1 and A2A receptors. Furthermore, DPCPX, a selective A1 receptor antagonist, but not SCH58261, a selective A2A receptor antagonist, blocked the anticonvulsant effect of B2 on PTZ-induced seizure. c-Fos is a cellular marker for neuronal activity. Immunohistochemical and western blot analyses indicated that B2 significantly reversed PTZ-induced c-Fos expression in the hippocampus. Together, these results indicate that B2 has significant anticonvulsant effects. The anticonvulsant effects of B2 may be attributed to adenosine A1 receptor activation and reduced neuronal excitability in the hippocampus. These observations also support that the use of adenosine receptor agonist may be a promising approach for the treatment of epilepsy.  相似文献   

16.
Benign prostatic hypertrophy has been related with glandular ischemia processes and adenosine is a potent vasodilator agent. This study investigates the mechanisms underlying the adenosine-induced vasorelaxation in pig prostatic small arteries. Adenosine receptors expression was determined by Western blot and immunohistochemistry, and rings were mounted in myographs for isometric force recording. A2A and A3 receptor expression was observed in the arterial wall and A2A-immunoreactivity was identified in the adventitia–media junction and endothelium. A1 and A2B receptor expression was not obtained. On noradrenaline-precontracted rings, P1 receptor agonists produced concentration-dependent relaxations with the following order of potency: 5′-N-ethylcarboxamidoadenosine (NECA) = CGS21680 > 2-Cl-IB-MECA = 2-Cl-cyclopentyladenosine = adenosine. Adenosine reuptake inhibition potentiated both NECA and adenosine relaxations. Endothelium removal and ZM241385, an A2A antagonist, reduced NECA relaxations that were not modified by A1, A2B, and A3 receptor antagonists. Neuronal voltage-gated Ca2+ channels and nitric oxide (NO) synthase blockade, and adenylyl cyclase activation enhanced these responses, which were reduced by protein kinase A inhibition and by blockade of the intermediate (IKCa)- and small (SKCa)-conductance Ca2+-activated K+ channels. Inhibition of cyclooxygenase (COX), large-conductance Ca2+-activated-, ATP-dependent-, and voltage-gated-K+ channel failed to modify these responses. These results suggest that adenosine induces endothelium-dependent relaxations in the pig prostatic arteries via A2A purinoceptors. The adenosine vasorelaxation, which is prejunctionally modulated, is produced via NO- and COX-independent mechanisms that involve activation of IKCa and SKCa channels and stimulation of adenylyl cyclase. Endothelium-derived NO playing a regulatory role under conditions in which EDHF is non-functional is also suggested. Adenosine-induced vasodilatation could be useful to prevent prostatic ischemia.  相似文献   

17.
The objective of this study was to determine whether adenosine A1 or A2 receptor was responsible for the regulation of protein kinase C (PKC) in porcine coronary artery and its coupling to G-protein. Endothelium denuded arterial rings were incubated with PDBu (200nM) in the presence or absence of adenosine receptor agonists and antagonists for 1 day. Following incubation, the arterial rings were contracted with increasing concentrations of endothelin-1 (ET-1) (10–10–10–7M). Arteries incubated with PDBu alone failed to produce contraction in response to ET-1. On the contrary, inclusion of A1 receptor agonist ENBA at 10–9M in the incubation media with PDBu protected against the PDBu induced blunting of the ET-1 contractions by 50%. Incubation with ENBA alone increased ET-1 dependent contractions by about 2 fold. Inclusion of A1 receptor antagonist, N0861 at 10–6 M along with PDBu and ENBA, completely blocked the protective effect of ENBA against the PDBu induced attenuation of ET-1 contractions. N0861 also completely blocked the increase in ET-1 contractions in the arterial rings incubated with ENBA alone. Another A1 receptor antagonist DPCPX also produced similar results as N0861. On the contrary, arterial rings incubated with relatively specific A2 receptor agonist CGS 21680 at 10–4M did not produce any protection against PDBu induced blunting of the ET-1 contractions. Incubation with CGS 21680 alone also did not significantly alter the ET-1 contractions. Interestingly, inclusion of A2 receptor antagonist DMPX at 10–4M in the incubation media along with CGS 21680 mimicked the effects of ENBA alone i.e. produced protection against PDBu and enhanced ET-1 contractions. Incubation of the arteries with ENBA alone caused an accumulation of PKC levels, whereas, incubation with CGS 21680 had no significant effect on PKC levels. To study the coupling of adenosine receptor with G-protein, the tissue was incubated for one day with cholera (CT) or pertussis toxin (PT) in the presence or absence or ENBA and PDBu as described above. Incubation with PT blocked the protective effect of ENBA against PDBu as well as the elevation of ET-1 response when incubated with ENBA alone. On the contrary, incubation with CT did not produce any significant effect on ENBA responses. These results indicate that PKC is modulated by adenosine via A1 adenosine receptors and through a PT sensitive G-protein.This work was supported by National Heart, Lung and Blood Institute Grant HL-27339.  相似文献   

18.
Adenosine can show anti-inflammatory as well as pro-inflammatory activities. The contribution of the specific adenosine receptor subtypes in various cells, tissues and organs is complex. In this study, we examined the effect of the adenosine A2A receptor agonist CGS 21680 and the A2BR antagonist PSB-1115 on acute inflammation induced experimentally by 2,4,6-trinitrobenzenesulfonic acid (TNBS) on rat ileum/jejunum preparations. Pre-incubation of the ileum/jejunum segments with TNBS for 30 min resulted in a concentration-dependent inhibition of acetylcholine (ACh)-induced contractions. Pharmacological activation of the A2AR with CGS 21680 (0.1–10 μM) pre-incubated simultaneously with TNBS (10 mM) prevented concentration-dependently the TNBS-induced inhibition of the ACh contractions. Stimulation of A2BR with the selective agonist BAY 60-6583 (10 μM) did neither result in an increase nor in a further decrease of ACh-induced contractions compared to the TNBS-induced inhibition. The simultaneous pre-incubation of the ileum/jejunum segments with TNBS (10 mM) and the selective A2BR antagonist PSB-1115 (100 μM) inhibited the contraction-decreasing effect of TNBS. The effects of the A2AR agonist and the A2BR antagonist were in the same range as the effect induced by 1 μM methotrexate. The combination of the A2AR agonist CGS 21680 and the A2BR antagonist PSB-1115 at subthreshold concentrations of both agents found a significant amelioration of the TNBS-diminished contractility. Our results demonstrate that the activation of A2A receptors or the blockade of the A2B receptors can prevent the inflammation-induced disturbance of the ACh-induced contraction in TNBS pre-treated small intestinal preparations. The combination of both may be useful for the treatment of inflammatory bowel diseases.  相似文献   

19.
It has been observed that a cytokine synthesis inhibitor, pentoxifylline, prevents the apoptotic processes taking place in the amygdala following myocardial infarction. However, it is unknown if the cardioprotective effect of A2A adenosine receptor agonist, CGS21680, which reduces cytokine synthesis, would lead to such amygdala apoptosis regression. Thus, this study was designed to investigate whether cardioprotective A2A adenosine receptor activation reduces apoptosis in the amygdala following myocardial infarction. Anesthetized rats were subjected to left anterior descending coronary artery occlusion for 40 min, followed by 72 h of reperfusion. The A2A agonist CGS21680 (0.2 μg/kg/min i.v.) was administered continuously for 120 min, starting (1) five minutes prior to instituting reperfusion (Early) or (2) five minutes after the beginning of reperfusion (Late). After reperfusion, myocardial infarct size was determined and the amygdala was dissected from the brain. Infarct size was reduced significantly in the Early compared to the Control group (34.6 ± 1.8% and 52.3 ± 2.8% respectively; p < 0.05), with no difference com-pared to the Late group (40.1 ± 6.1%). Apoptosis regressi-on was documented in the amygdala of the Early group by an enhanced phosphatidylinositol 3-kinase-Akt pathway activation and Bcl-2 expression concurrently to a caspase-3 activation limitation and reduction in TUNEL-positive cells staining. On the other hand, amygdala TUNEL-positive cell numbers were not reduced in the Late group. Moreover, TNFα was significantly reduced in the amygdala of the Early group compared to the Control and Late groups. These results indicate that A2A adenosine receptor stimulation is associated with apoptosis regression in the amygdala following myocardial infarction. This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC).  相似文献   

20.
It has been detected that hepatic adenosine A(2A) receptors play an active role in the pathogenesis of hepatic fibrosis and suggest a novel therapeutic target in the treatment and prevention of hepatic cirrhosis. In this paper we examined if our new triazine derivative (IMT) can inhibit ethanol-induced activation of HSCs measured as increased α-SMA, collagen synthesis and enhanced oxidative stress in rat liver stellate cells. We also investigated its influence on cytokines (TGF-β, TNF-α) synthesis, MMP-2 and TIMP-1 production and ethanol-induced intracellular signal transduction. Moreover, with using of known adenosine A(2A) receptor agonist (CGS 21680), and antagonist (SCH 58261) we examined if this triazine derivative acts on adenosine receptors. We detected a strong antagonistic action of new triazine derivative (IMT) on ethanol-induced rat liver stellate cells activation, observed as a significant decrease in α-SMA, collagen synthesis, reactive oxygen species production, TGF-β, TNF-α, MMP-2 and TIMP-1 production as well as JNK, p38MAPK, NFκB, IκB, Smad3 phosphorylation. Moreover, IMT strongly inhibited activation of stellate cells by known selective agonist of adenosine A(2A) receptor (CGS 21680). When known A(2A) receptor antagonist (SCH 58261) was used together with IMT this effect was not spectacular. Additionally, only slight enhancement of inhibition was observed when cells were pretreated both IMT with SCH 58261, hence we suppose that IMT acts as nonselective antagonist of A(2A) receptors, and, besides its antioxidant activity, also by this way inhibited ethanol-induced stellate cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号