首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies, we have shown that the inactivation of the adenosine A2A receptor exacerbates chronic cerebral hypoperfusion-induced white matter lesions (WMLs) by enhancing neuroinflammatory responses. However, the molecular mechanism underlying the effect of the adenosine A2A receptor remains unknown. Recent studies have demonstrated that cystatin F, a potent endogenous cysteine protease inhibitor, is selectively expressed in immune cells in association with inflammatory demyelination in central nervous system diseases. To understand the expression of cystatin F and its potential role in the effect of A2A receptor on WMLs induced through chronic cerebral hypoperfusion, we investigated cystatin F expression in the WMLs of A2A receptor gene knockout mice, the littermate wild-type mice and wild-type mice treated daily with the A2A receptor agonist CGS21680 or both CGS21680 and A2A receptor antagonist SCH58261 after chronic cerebral hypoperfusion. The results of quantitative-PCR and western blot analysis revealed that cystatin F mRNA and protein expression were significantly up-regulated in the WMLs after chronic cerebral hypoperfusion. In addition, cystatin F expression in the corpus callosum was significantly increased in A2A receptor gene knockout mice and markedly decreased in mice treated with CGS21680 on both the mRNA and protein levels. Additionally, SCH58261 counteracted the attenuation of cystatin F expression produced by CGS21680 after chronic cerebral hypoperfusion. Moreover, double immunofluorescence staining revealed that cystatin F was co-localized with the activated microglia marker CD11b. In conclusion, the cystatin F expression in the activated microglia is closely associated with the effect of the A2A receptors, which may be related to the neuroinflammatory responses occurring during the pathological process.  相似文献   

2.
Abstract: We have characterized the new potent and selective nonxanthine adenosine A2A receptor antagonist SCH 58261 as a new radioligand for receptor autoradiography. In autoradiographic studies using agonist radioligands for A2A receptors ([3H]CGS 21680) or A1 receptors ( N 6-[3H]cyclohexyladenosine), it was found that SCH 58261 is close to 800-fold selective for rat brain A2A versus A1 receptors ( K i values of 1.2 n M versus 0.8 µ M ). Moreover, receptor autoradiography showed that [3H]SCH 58261, in concentrations below 2 n M , binds only to the dopamine-rich regions of the rat brain, with a K D value of 1.4 (0.8–1.8) n M . The maximal number of binding sites was 310 fmol/mg of protein in the striatum. Below concentrations of 3 n M , the nonspecific binding was <15%. Three adenosine analogues displaced all specific binding of [3H]SCH 58261 with the following estimated K i values (n M ): 2-hex-1-ynyl-5'- N -ethylcarboxamidoadenosine, 3.9 (1.8–8.4); CGS 21680, 130 (42–405); N 6-cyclohexyladenosine, 9,985 (3,169–31,462). The binding of low concentrations of SCH 58261 was not influenced by either GTP (100 µ M ) or Mg2+ (10 m M ). The present results show that in its tritium-labeled form, SCH 58261 appears to be a good radioligand for autoradiographic studies, because it does not suffer from some of the problems encountered with the currently used agonist radioligand [3H]CGS 21680.  相似文献   

3.
The anti-Parkinsonian effect of glutamate metabotropic group 5 (mGluR5) and adenosine A(2A) receptor antagonists is believed to result from their ability to postsynaptically control the responsiveness of the indirect pathway that is hyperfunctioning in Parkinson's disease. mGluR5 and A(2A) antagonists are also neuroprotective in brain injury models involving glutamate excitotoxicity. Thus, we hypothesized that the anti-Parkinsonian and neuroprotective effects of A(2A) and mGluR5 receptors might be related to their control of striatal glutamate release that actually triggers the indirect pathway. The A(2A) agonist, CGS21680 (1-30 nM) facilitated glutamate release from striatal nerve terminals up to 57%, an effect prevented by the A(2A) antagonist, SCH58261 (50 nM). The mGluR5 agonist, CHPG (300-600 mum) also facilitated glutamate release up to 29%, an effect prevented by the mGluR5 antagonist, MPEP (10 microm). Both mGluR5 and A(2A) receptors were located in the active zone and 57 +/- 6% of striatal glutamatergic nerve terminals possessed both A(2A) and mGluR5 receptors, suggesting a presynaptic functional interaction. Indeed, submaximal concentrations of CGS21680 (1 nM) and CHPG (100 microm) synergistically facilitated glutamate release and the facilitation of glutamate release by 10 nM CGS21680 was prevented by 10 microm MPEP, whereas facilitation by 300 microm CHPG was prevented by 10 nM SCH58261. These results provide the first direct evidence that A(2A) and mGluR5 receptors are co-located in more than half of the striatal glutamatergic terminals where they facilitate glutamate release in a synergistic manner. This emphasizes the role of the modulation of glutamate release as a likely mechanism of action of these receptors both in striatal neuroprotection and in Parkinson's disease.  相似文献   

4.
Adenosine is a neuromodulator that can control brain damage through activation of A(1), A(2A) and A(3) receptors, which are located in both neurons and other brain cells. We took advantage of cultured neurons to investigate the role of neuronal adenosine receptors in the control of neurotoxicity caused by kainate and cyclothiazide. Both A(1), A(2A) and A(3) receptors were immunocytochemically identified in cortical neurons. Activation of A(1) receptors with 100 nM CPA did not modify the extent of neuronal death whereas the A(1) receptor antagonist, DPCPX (50 nM), attenuated neurotoxicity by 28 +/- 5%, and effect similar to that resulting from the removal of endogenous adenosine with 2U/ml of adenosine deaminase (27 +/- 3% attenuation of neurotoxicity). In the presence of adenosine deaminase, DPCPX had no further effect and CPA now exacerbated neurotoxicity by 42 +/- 4%. Activation of A(2A) receptor with 30 nM CGS21680 attenuated neurotoxicity by 40 +/- 8%, an effect prevented by the A(2A) receptor antagonists, SCH58261 (50 nM) or ZM241385 (50 nM), which by themselves were devoid of effect. Finally, neither A(3) receptor activation with Cl-IB-MECA (100-500 nM) nor blockade with MRS1191 (5 microM) modified neurotoxicity. These results show that A(1) receptor activation enhances and A(2A) receptor activation attenuates neurotoxicity in cultured cortical neurons, indicating that these two neuronal adenosine receptors directly control neurodegeneration. Interestingly, the control by adenosine of neurotoxicity in cultured neurons is similar to that observed in vivo in newborn animals and is the opposite of what is observed in adult brain preparations where A(1) receptor activation and A(2A) receptor blockade are neuroprotective.  相似文献   

5.
Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation.  相似文献   

6.
Adenosine, through A2A receptor (A2AR) activation, can act as a metamodulator, controlling the actions of other modulators, as brain-derived neurotrophic factor (BDNF). Most of the metamodulatory actions of adenosine in the hippocampus have been evaluated in excitatory synapses. However, adenosine and BDNF can also influence GABAergic transmission. We thus evaluated the role of A2AR on the modulatory effect of BDNF upon glutamate and GABA release from isolated hippocampal nerve terminals (synaptosomes). BDNF (30 ng/ml) enhanced K+-evoked [3H]glutamate release and inhibited the K+-evoked [3H]GABA release from synaptosomes. The effect of BDNF on both glutamate and GABA release requires tonic activation of adenosine A2AR since for both neurotransmitters, the BDNF action was blocked by the A2AR antagonist SCH 58261 (50 nM). In the presence of the A2AR agonist, CGS21680 (30 nM), the effect of BDNF on either glutamate or GABA release was, however, not potentiated. It is concluded that both the inhibitory actions of BDNF on GABA release as well as the facilitatory action of the neurotrophin on glutamate release are dependent on the activation of adenosine A2AR by endogenous adenosine. However, these actions could not be further enhanced by exogenous activation of A2AR.  相似文献   

7.

6-Hydroxydopamine (6-OHDA) is the most used toxin in experimental Parkinson’s disease (PD) models. 6-OHDA shows high affinity for the dopamine transporter and once inside the neuron, it accumulates and undergoes non-enzymatic auto-oxidation, promoting reactive oxygen species (ROS) formation and selective damage of catecholaminergic neurons. In this way, our group has established a 6-OHDA in vitro protocol with rat striatal slices as a rapid and effective model for screening of new drugs with protective effects against PD. We have shown that co-incubation with guanosine (GUO, 100 μM) prevented the 6-OHDA-induced damage in striatal slices. As the exact GUO mechanism of action remains unknown, the aim of this study was to investigate if adenosine A1 (A1R) and/or A2A receptors (A2AR) are involved on GUO protective effects on striatal slices. Pre-incubation with DPCPX, an A1R antagonist prevented guanosine effects on 6-OHDA-induced ROS formation and mitochondrial membrane potential depolarization, while CCPA, an A1R agonist, did not alter GUO effects. Regarding A2AR, the antagonist SCH58261 had similar protective effect as GUO in ROS formation and mitochondrial membrane potential. Additionally, SCH58261 did not affect GUO protective effects. The A2AR agonist CGS21680, although, completely blocked GUO effects. Finally, the A1R antagonist DPCPX, and the A2AR agonist CGS21680 also abolished the preventive guanosine effect on 6-OHDA-induced ATP levels decrease. These results reinforce previous evidence for a putative interaction of GUO with A1R-A2AR heteromer as its molecular target and clearly indicate a dependence on adenosine receptors modulation to GUO protective effect.

  相似文献   

8.
9.
Little is known about the mechanisms that regulate the expression of adenosine receptors during CNS development. We demonstrate here that retinas from chick embryos injected in ovo with selective adenosine receptor ligands show changes in A1 receptor expression after 48 h. Exposure to A1 agonist N6‐cyclohexyladenosine (CHA) or antagonist 8‐Cyclopentyl‐1, 3‐dipropylxanthine (DPCPX) reduced or increased, respectively, A1 receptor protein and [3H]DPCPX binding, but together, CHA+DPCPX had no effect. Interestingly, treatment with A2A agonist 3‐[4‐[2‐[[6‐amino‐9‐[(2R,3R,4S,5S)‐5‐(ethylcarbamoyl)‐3,4‐dihydroxy‐oxolan‐2‐yl]purin‐2‐yl]amino] ethyl]phenyl] propanoic acid (CGS21680) increased A1 receptor protein and [3H]DPCPX binding, and reduced A2A receptors. The A2A antagonists 7‐(2‐phenylethyl)‐5‐amino‐2‐(2‐furyl)‐pyrazolo‐[4,3‐e]‐1,2,4‐trizolo[1,5‐c] pyrimidine (SCH58261) and 4‐(2‐[7‐amino‐2‐[2‐furyl][1,2,4]triazolo[2,3‐a][1,3,5]triazo‐5‐yl‐amino]ethyl)phenol (ZM241385) had opposite effects on A1 receptor expression. Exposure to CGS21680 + CHA did not change A1 receptor levels, whereas CHA + ZM241385 or CGS21680 + DPCPX had no synergic effect. The blockade of adenosine transporter with S‐(4‐nitrobenzyl)‐6‐thioinosine (NBMPR) also reduced [3H]DPCPX binding, an effect blocked by DPCPX, but not enhanced by ZM241385. [3H]DPCPX binding kinetics showed that treatment with CHA reduced and CGS21680 increased the Bmax, but did not affect Kd values. CHA, DPCPX, CGS21680, and ZM241385 had no effect on A1 receptor mRNA. These data demonstrated an in vivo regulation of A1 receptor expression by endogenous adenosine or long‐term treatment with A1 and A2A receptors modulators.  相似文献   

10.
This work aimed to investigate the molecular mechanisms involved in the interaction of alpha2-adrenoceptors and adenosine A2A-receptor-mediated facilitation of noradrenaline release in rat tail artery, namely the type of G-protein involved in this effect and the step or steps where the signalling cascades triggered by alpha2-adrenoceptors and A2A-receptors interact. The selective adenosine A2A-receptor agonist 2-p-(2-carboxy ethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 100 nM) enhanced tritium overflow evoked by trains of 100 pulses at 5 Hz. This effect was abolished by the selective adenosine A2A-receptor antagonist 5-amino-7-(2-phenyl ethyl)-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo [1,5-c]pyrimidine (SCH 58261; 20 nM) and by yohimbine (1 microM). CGS 21680-mediated effects were also abolished by drugs that disrupted G(i/o)-protein coupling with receptors, PTX (2 microg/ml) or NEM (40 microM), by the anti-G(salpha) peptide (2 microg/ml) anti-G(betagamma) peptide (10 microg/ml) indicating coupling of A2A-receptors to G(salpha) and suggesting a crucial role for G(betagamma) subunits in the A(2A)-receptor-mediated enhancement of tritium overflow. Furthermore, phorbol 12-myristate 13-acetate (PMA; 1 microM) or forskolin (1 microM), direct activators of protein kinase C and of adenylyl cyclase, respectively, also enhanced tritium overflow. In addition, PMA-mediated effects were not observed in the presence of either yohimbine or PTX. Results indicate that facilitatory adenosine A2A-receptors couple to G(salpha) subunits which is essential, but not sufficient, for the release facilitation to occur, requiring the involvement of G(i/o)-protein coupling (it disappears after disruption of G(i/o)-protein coupling, PTX or NEM) and/or G(betagamma) subunits (anti-G(betagamma)). We propose a mechanism for the interaction in study suggesting group 2 AC isoforms as a plausible candidate for the interaction site, as these isoforms can integrate inputs from G(salpha) subunits (released after adenosine A2A-receptor activation; prime-activation), G(betagamma) subunits (released after activation of G(i/o)-protein coupled receptors) which can directly synergistically stimulate the prime-activated AC or indirectly via G(betagamma) activation of the PLC-PKC pathway.  相似文献   

11.
Ischemia/reperfusion injury during liver transplantation is a major cause of primary nonfunctioning graft for which there is no effective treatment other than retransplantation. Adenosine prevents ischemia-reperfusion-induced hepatic injury via its A2A receptors. The aim of this study was to investigate the role of A2A receptor agonist on apoptotic ischemia/reperfusion-induced hepatic injury in rats. Isolated rat livers within University of Wisconsin solution were randomly divided into four groups: (1) continuous perfusion of Krebs-Henseleit solution through the portal vein for 165 minutes (control); (2) 30-minute perfusion followed by 120 minutes of ischemia and 15 minutes of reperfusion; (3) like group 2, but with the administration of CGS 21680, an A2A receptor agonist, 30 microg/100 ml, for 1 minute before ischemia; (4) like group 3, but with administration of SCH 58261, an A2A receptor antagonist. Serum liver enzyme levels were measured by biochemical analysis, and intrahepatic caspase-3 activity was measured by fluorometric assay; apoptotic cells were identified by morphological criteria, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) fluorometric assay, and immunohistochemistry for caspase-3. Results showed that at 1 minute of reperfusion, there was a statistically significant reduction in liver enzyme levels in the animals pretreated with CGS (p < 0.05). On fluorometric assay, caspase-3 activity was significantly decreased in group 3 compared to group 2 (p < 0.0002). The reduction in postischemic apoptotic hepatic injury in the CGS-treated group was confirmed morphologically, by the significantly fewer apoptotic hepatocyte cells detected (p < 0.05); immunohistochemically, by the significantly weaker activation of caspase-3 compared to the ischemic group (p < 0.05); and by the TUNEL assay (p < 0.05). In conclusion, the administration of A2A receptor agonist before induction of ischemia can attenuate postischemic apoptotic hepatic injury and thereby minimize liver injury. Apoptotic hepatic injury seems to be mediated through caspase-3 activity.  相似文献   

12.
Adenosine, a neuromodulator of the CNS, activates inhibitory-A1 receptors and facilitatory-A2A receptors; its synaptic levels are controlled by the activity of bi-directional equilibrative nucleoside transporters. To study the relationship between the extracellular formation/inactivation of adenosine and the activation of adenosine receptors, we investigated how A1 and A2A receptor activation modifies adenosine transport in hippocampal synaptosomes. The A2A receptor agonist, CGS 21680 (30 nm), facilitated adenosine uptake through a PKC-dependent mechanism, but A1 receptor activation had no effect. CGS 21680 (30 nm) also increased depolarization-induced release of adenosine. Both effects were prevented by A2A receptor blockade. A2A receptor-mediated enhancement of adenosine transport system is important for formatting adenosine neuromodulation according to the stimulation frequency, as: (1) A1 receptor antagonist, DPCPX (250 nm), facilitated the evoked release of [(3)H]acetylcholine under low-frequency stimulation (2 Hz) from CA3 hippocampal slices, but had no effect under high-frequency stimulation (50 Hz); (2) either nucleoside transporter or A2A receptor blockade revealed the facilitatory effect of DPCPX (250 nm) on [3H]acetylcholine evoked-release triggered by high-frequency stimulation. These results indicate that A2A receptor activation facilitates the activity of nucleoside transporters, which have a preponderant role in modulating the extracellular adenosine levels available to activate A1 receptors.  相似文献   

13.
The blockade of adenosine A(2A) receptors (A2AR) affords a robust neuroprotection in different noxious brain conditions. However, the mechanisms underlying this general neuroprotection are unknown. One possible mechanism could be the control of neuroinflammation that is associated with brain damage, especially because A2AR efficiently control peripheral inflammation. Thus, we tested if the intracerebroventricular injection of a selective A2AR antagonist (SCH58261) would attenuate the changes in the hippocampus triggered by intraperitoneal administration of lipopolysaccharide (LPS) that induces neuroinflammation through microglia activation. LPS administration triggers an increase in inflammatory mediators like interleukin-1β that causes biochemical changes (p38 and c-jun N-terminal kinase phosphorylation and caspase 3 activation) contributing to neuronal dysfunction typified by decreased long-term potentiation, a form of synaptic plasticity. Long-term potentiation, measured 30 min after the tetanus, was significantly lower in LPS-treated rats compared with control-treated rats, while SCH58261 attenuated the LPS-induced change. The LPS-induced increases in phosphorylation of c-jun N-terminal kinase and p38 and activation of caspase 3 were also prevented by SCH58261. Significantly, SCH58261 also prevented the LPS-induced recruitment of activated microglial cells and the increase in interleukin-1β concentration in the hippocampus, indicating that A2AR activation is a pivotal step in mediating the neuroinflammation triggered by LPS. These results indicate that A2AR antagonists prevent neuroinflammation and support the hypothesis that this mechanism might contribute for the ability of A2AR antagonists to control different neurodegenerative diseases known to involve neuroinflammation.  相似文献   

14.
The absence of adenosine A2A receptors, or its pharmacological inhibition, has neuroprotective effects. Experimental data suggest that glial A2A receptors participate in neurodegeneration induced by A2A receptor stimulation. In this study we have investigated the effects of A2A receptor stimulation on control and activated glial cells. Mouse cortical mixed glial cultures (75% astrocytes, 25% microglia) were treated with the A2A receptor agonist CGS21680 alone or in combination with lipopolysaccharide (LPS). CGS21680 potentiated lipopolysaccharide-induced NO release and NO synthase-II expression in a time- and concentration-dependent manner. CGS21680 potentiation of lipopolysaccharide-induced NO release was suppressed by the A2A receptor antagonist ZM-241385 and did not occur on mixed glial cultures from A2A receptor-deficient mice. In mixed glial cultures treated with LPS + CGS21680, the NO synthase-II inhibitor 1400W abolished NO production, and NO synthase-II immunoreactivity was observed only in microglia. Binding experiments demonstrated the presence of A2A receptors on microglial but not on astroglial cultures. However, the presence of astrocytes was necessary for CGS21680 potentiating effect. In light of the reported neurotoxicity of microglial NO synthase-II and the neuroprotection of A2A receptor inhibition, these data suggest that attenuation of microglial NO production could contribute to the neuroprotection afforded by A2A receptor antagonists.  相似文献   

15.
Caffeine, an unspecific antagonist of adenosine receptors, is commonly used to treat the apnea of prematurity. We have defined the effects of caffeine on the carotid body (CB) chemoreceptors, the main peripheral controllers of breathing, and identified the adenosine receptors involved. Caffeine inhibited basal (IC50, 210 microm) and low intensity (PO2 approximately 66 mm Hg/30 mm K+) stimulation-induced release of catecholamines from chemoreceptor cells in intact preparations of rat CB in vitro. Opposite to caffeine, 5'-(N-ethylcarboxamido)adenosine (NECA; an A2 agonist) augmented basal and low-intensity hypoxia-induced release. 2-p-(2-Carboxyethyl)phenethyl-amino-5'-N-ethylcaboxamido-adenosine hydrochloride (CGS21680), 2-hexynyl-NECA (HE-NECA) and SCH58621 (A2A receptors agents) neither affected catecholamine release nor altered the caffeine effects. The 8-cycle-1,3-dipropylxanthine (DPCPX; an A1/A2B antagonist) and 8-(4-{[(4-cyanophenyl)carbamoylmethyl]-oxy}phenyl)-1,3-di(n-propyl)xanthine (MRS1754; an A2B antagonist) mimicking of caffeine indicated that caffeine effects are mediated by A2B receptors. Immunocytochemical A2B receptors were located in tyrosine hydroxylase positive chemoreceptor cells. Caffeine reduced by 52% the chemosensory discharges elicited by hypoxia in the carotid sinus nerve. Inhibition had two components with pharmacological analysis indicating that A2A and A2B receptors mediate, respectively, the low (17 x 10(-9) m) and high (160 x 10(-6) m) IC50 effects. It is concluded that endogenous adenosine, via presynaptic A2B and postsynaptic A2A receptors, can exert excitatory effects on the overall output of the rat CB chemoreceptors.  相似文献   

16.
The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5'-N- ethylcarboxamidoadenos ine (CGS21680) was recently reported to be selective for the A2 adenosine receptor subtype, which mediates its hypotensive action. To investigate structure/activity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A2 adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A2 receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2 receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology.  相似文献   

17.
Adenosine, by acting on adenosine A(1) and A(2A) receptors, exerts opposite modulatory roles on striatal extracellular levels of glutamate and dopamine, with activation of A(1) inhibiting and activation of A(2A) receptors stimulating glutamate and dopamine release. Adenosine-mediated modulation of striatal dopaminergic neurotransmission could be secondary to changes in glutamate neurotransmission, in view of evidence for a preferential colocalization of A(1) and A(2A) receptors in glutamatergic nerve terminals. By using in vivo microdialysis techniques, local perfusion of NMDA (3, 10 microm), the selective A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680; 3, 10 microm), the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 300, 1000 microm), or the non-selective A(1)-A(2A) receptor antagonist in vitro caffeine (300, 1000 microm) elicited significant increases in extracellular levels of dopamine in the shell of the nucleus accumbens (NAc). Significant glutamate release was also observed with local perfusion of CGS 21680, CPT and caffeine, but not NMDA. Co-perfusion with the competitive NMDA receptor antagonist dl-2-amino-5-phosphonovaleric acid (APV; 100 microm) counteracted dopamine release induced by NMDA, CGS 21680, CPT and caffeine. Co-perfusion with the selective A(2A) receptor antagonist MSX-3 (1 microm) counteracted dopamine and glutamate release induced by CGS 21680, CPT and caffeine and did not modify dopamine release induced by NMDA. These results indicate that modulation of dopamine release in the shell of the NAc by A(1) and A(2A) receptors is mostly secondary to their opposite modulatory role on glutamatergic neurotransmission and depends on stimulation of NMDA receptors. Furthermore, these results underscore the role of A(1) vs. A(2A) receptor antagonism in the central effects of caffeine.  相似文献   

18.
Glial cell line-derived neurotrophic factor (GDNF) affords neuroprotection in Parkinson's disease in accordance with its ability to bolster nigrostriatal innervation. We previously found that GDNF facilitates dopamine release in a manner dependent on adenosine A2A receptor activation. As motor dysfunction also involves modifications of striatal glutamatergic innervation, we now tested if GDNF and its receptor system, Ret ( rearranged during transfection ) and GDNF family receptor α1 controlled the cortico-striatal glutamatergic pathway in an A2A receptor-dependent manner. GDNF (10 ng/mL) enhanced (by ≈13%) glutamate release from rat striatal nerve endings, an effect potentiated (up to ≈30%) by the A2A receptor agonist CGS 21680 (10 nM) and prevented by the A2A receptor antagonist, SCH 58261 (50 nM). Triple immunocytochemical studies revealed that Ret and GDNF family receptor α1 were located in 50% of rat striatal glutamatergic terminals (immunopositive for vesicular glutamate transporters-1/2), where they were found to be co-located with A2A receptors. Activation of the glutamatergic system upon in vivo electrical stimulation of the rat cortico-striatal input induced striatal Ret phosphorylation that was prevented by pre-treatment with the A2A receptor antagonist, MSX-3 (3 mg/kg). The results provide the first functional and morphological evidence that GDNF controls cortico-striatal glutamatergic pathways in a manner largely dependent on the co-activation of adenosine A2A receptors.  相似文献   

19.
At the rat motor endplate, pre-synaptic facilitatory adenosine A2A and muscarinic M1 receptors are mutually exclusive. We investigated whether these receptors share a common intracellular signalling pathway. Suppression of McN-A-343-induced M1 facilitation of [3H]ACh release was partially recovered when CGS21680C (an A2A agonist) was combined with the cyclic AMP antagonist Rp-cAMPS. Forskolin, rolipram and 8-bromo-cyclic AMP mimicked CGS21680C blockade of M1 facilitation. Both Rp-cAMPs and nifedipine reduced augmentation of [3H]ACh release by McN-A-343 and CGS21680C. Activation of M1 and A2A receptors enhanced Ca2+ recruitment through nifedipine-sensitive channels. Nifedipine inhibition revealed by McN-A-343 was prevented by chelerythrine (a PKC inhibitor) and Rp-cAMPS, suggesting that Ca(v)1 (L-type) channels phosphorylation by PKA and PKC is required. Rp-cAMPS inhibited [3H]ACh release in the presence of phorbol 12-myristate 13-acetate, but PKC inhibition by chelerythrine had no effect on release in the presence of 8-bromo-cyclic AMP. This suggests that the involvement of PKA may be secondary to M1-induced PKC activation. In conclusion, competition of M1 and A2A receptors to facilitate ACh release from motoneurons may occur by signal convergence to a common pathway involving PKA activation and Ca2+ influx through Ca(v)1 (L-type) channels.  相似文献   

20.
The clinical management of neuroendocrine tumours is complex. Such tumours are highly vascular suggesting tumour-related angiogenesis. Adenosine, released during cellular stress, damage and hypoxia, is a major regulator of angiogenesis. Herein, we describe the expression and function of adenosine receptors (A(1), A(2A), A(2B) and A(3)) in neuroendocrine tumours. Expression of adenosine receptors was investigated in archival human neuroendocrine tumour sections and in two human tumour cell lines, BON-1 (pancreatic) and KRJ-I (intestinal). Their function, with respect to growth and chromogranin A secretion was carried out in vitro. Immunocytochemical data showed that A(2A) and A(2B) receptors were strongly expressed in 15/15 and 13/18 archival tumour sections. Staining for A(1) (4/18) and A(3) (6/18) receptors was either very weak or absent. In vitro data showed that adenosine stimulated a three- to fourfold increase in cAMP levels in BON-1 and KRJ-1 cells. The non-selective adenosine receptor agonist (adenosine-5'N-ethylcarboxamide, NECA) and the A(2A)R agonist (CGS21680) stimulated cell proliferation by up to 20-40% which was attenuated by A(2B) (PSB603 and MRS1754) and A(2A) (SCH442416) receptor selective antagonists but not by the A(1) receptor antagonist (PSB36). Adenosine and NECA stimulated a twofold increase in chromogranin A secretion in BON-1 cells. Our data suggest that neuroendocrine tumours predominantly express A(2A) and A(2B) adenosine receptors; their activation leads to increased proliferation and secretion of chromogranin A. Targeting adenosine signal pathways, specifically inhibition of A(2) receptors, may thus be a useful addition to the therapeutic management of neuroendocrine tumours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号