首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Epigenetic modification of cytosine methylation states can be elicited by environmental stresses and may be a key process affecting phenotypic plasticity and adaptation. Parasites are potent stressors with profound physiological and ecological effects on their host, but there is little understanding in how parasites may influence host methylation states. Here, we estimate epigenetic diversity and differentiation among 21 populations of red grouse (Lagopus lagopus scotica) in north‐east Scotland and test for association of gastrointestinal parasite load (caecal nematode Trichostrongylus tenuis) with hepatic genome‐wide and locus‐specific methylation states. Following methylation‐sensitive AFLP (MSAP), 129 bands, representing 73 methylation‐susceptible and 56 nonmethylated epiloci, were scored across 234 individuals. The populations differed significantly in genome‐wide methylation levels and were also significantly epigenetically (FSC = 0.0227; P < 0.001) and genetically (FSC = 0.0058; P < 0.001) differentiated. Parasite load was not associated with either genome‐wide methylation levels or epigenetic differentiation. Instead, we found eight disproportionately differentiated epilocus‐specific methylation states (FST outliers) using bayescan software and significant positive and negative association of 35 methylation states with parasite load from bespoke generalized estimating equations (GEE), simple logistic regression (sam ) and Bayesian environmental analysis (bayenv 2). Following Sanger sequencing, genome mapping and geneontology (go ) annotation, some of these epiloci were linked to genes involved in regulation of cell cycle, signalling, metabolism, immune system and notably rRNA methylation, histone acetylation and small RNAs. These findings demonstrate an epigenetic signature of parasite load in populations of a wild bird and suggest intriguing physiological effects of parasite‐associated cytosine methylation.  相似文献   

2.
It has been long known that the unique genetic sequence each embryo inherits is not the sole determinant of phenotype. However, only recently have epigenetic modifications to DNA been implicated in providing potential developmental plasticity to the embryonic and fetal genome, with environmental influences directly altering the epigenetic modifications that contribute to tissue-specific gene regulation. Most is known about the potential environmental regulation of DNA methylation, epigenetic addition of methyl groups to cytosine residues in DNA that acts in the long-term silencing of affected sequences. While most attention has been paid to the methylation of imprinted gene sequences, in terms of developmental plasticity there are many more parts of the genome that are methylated and that could be affected. This review explores the distribution of cytosine methylation in the genome and discusses the potential effects of regional plasticity on subsequent development. Widening our consideration of potentially plastic regions is likely to greatly enhance our understanding of how individuals are shaped not only by DNA sequence, but by the environment in which pluripotent embryonic cells are transformed into the many cell types of the body.  相似文献   

3.
Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle‐related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non‐coding RNAs are viable mechanistic candidates for a non‐genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health‐related effects in future generations.  相似文献   

4.
Phenotypic plasticity is central to the persistence of populations and a key element in the evolution of species and ecological interactions, but its mechanistic basis is poorly understood. This article examines the hypothesis that epigenetic variation caused by changes in DNA methylation are related to phenotypic plasticity in a heterophyllous tree producing two contrasting leaf types. The relationship between mammalian browsing and the production of prickly leaves was studied in a population of Ilex aquifolium (Aquifoliaceae). DNA methylation profiles of contiguous prickly and nonprickly leaves on heterophyllous branchlets were compared using a methylation‐sensitive amplified polymorphism (MSAP) method. Browsing and the production of prickly leaves were correlated across trees. Within heterophyllous branchlets, pairs of contiguous prickly and nonprickly leaves differed in genome‐wide DNA methylation. The mean per‐marker probability of methylation declined significantly from nonprickly to prickly leaves. Methylation differences between leaf types did not occur randomly across the genome, but affected predominantly certain specific markers. The results of this study, although correlative in nature, support the emerging three‐way link between herbivory, phenotypic plasticity and epigenetic changes in plants, and also contribute to the crystallization of the consensus that epigenetic variation can complement genetic variation as a source of phenotypic variation in natural plant populations. © 2012 The Linnean Society of London  相似文献   

5.
Developmental plasticity, a phenomenon of importance in both evolutionary biology and human studies of the developmental origins of health and disease (DOHaD), enables organisms to respond to their environment based on previous experience without changes to the underlying nucleotide sequence. Although such phenotypic responses should theoretically improve an organism's fitness and performance in its future environment, this is not always the case. Herein, we first discuss epigenetics as an adaptive mechanism of developmental plasticity and use signaling theory to provide an evolutionary context for DOHaD phenomena within a generation. Next, we utilize signalling theory to identify determinants of adaptive developmental plasticity, detect sources of random variability – also known as process errors that affect maintenance of an epigenetic signal (DNA methylation) over time, and discuss implications of these errors for an organism's health and fitness. Finally, we apply life‐course epidemiology conceptual models to inform study design and analytical strategies that are capable of parsing out the potential effects of process errors in the relationships among an organism's early environment, DNA methylation, and phenotype in a future environment. Ultimately, we hope to foster cross‐talk and interdisciplinary collaboration between evolutionary biology and DOHaD epidemiology, which have historically remained separate despite a shared interest in developmental plasticity.  相似文献   

6.
7.
Herrera CM  Pozo MI  Bazaga P 《Molecular ecology》2012,21(11):2602-2616
In addition to genetic differences between individuals as a result of nucleotide sequence variation, epigenetic changes that occur as a result of DNA methylation may also contribute to population niche width by enhancing phenotypic plasticity, although this intriguing possibility remains essentially untested. Using the nectar‐living yeast Metschnikowia reukaufii as study subject, we examine the hypothesis that changes in genome‐wide DNA methylation patterns underlie the ability of this fugitive species to exploit a broad resource range in its heterogeneous and patchy environment. Data on floral nectar characteristics and their use by M. reukaufii in the wild were combined with laboratory experiments and methylation‐sensitive amplified polymorphism (MSAP) analyses designed to detect epigenetic responses of single genotypes to variations in sugar environment that mimicked those occurring naturally in nectar. M. reukaufii exploited a broad range of resources, occurring in nectar of 48% of species and 52% of families surveyed, and its host plants exhibited broad intra‐ and interspecific variation in sugar‐related nectar features. Under experimental conditions, sugar composition, sugar concentration and their interaction significantly influenced the mean probability of MSAP markers experiencing a transition from unmethylated to methylated state. Alterations in methylation status were not random but predictably associated with certain markers. The methylation inhibitor 5‐azacytidine (5‐AzaC) had strong inhibitory effects on M. reukaufii proliferation in sugar‐containing media, and a direct relationship existed across sugar × concentration experimental levels linking inhibitory effect of 5‐AzaC and mean per‐marker probability of genome‐wide methylation. Environmentally induced DNA methylation polymorphisms allowed genotypes to grow successfully in extreme sugar environments, and the broad population niche width of M. reukaufii was largely made possible by epigenetic changes enabling genotype plasticity in resource use.  相似文献   

8.
Transient environmental exposures during mammalian development can permanently alter gene expression and metabolism by influencing the establishment of epigenetic gene regulatory mechanisms. The genomic characteristics that confer such epigenetic plasticity upon specific loci, however, have not been characterized. Methyl donor supplementation of female mice before and during pregnancy permanently increases DNA methylation at the viable yellow agouti (A(vy)) metastable epiallele in the offspring. The current study tested whether another murine metastable epiallele, axin fused (Axin(Fu)), similarly exhibits epigenetic plasticity to maternal diet. We found that methyl donor supplementation of female mice before and during pregnancy increased DNA methylation at Axin(Fu) and thereby reduced by half the incidence of tail kinking in Axin(Fu)/+ offspring. The hypermethylation was tail-specific, suggesting a mid-gestation effect. Our results indicate that stochastic establishment of epigenotype at metastable epialleles is, in general, labile to methyl donor nutrition, and such influences are not limited to early embryonic development.  相似文献   

9.
Alternanthera philoxeroides (alligator weed) is an invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation in its introduced range. The mechanisms underpinning the wide range of phenotypic variation and rapid adaptation to novel and changing environments remain uncharacterized. In this study, we examined the epigenetic variation and its correlation with phenotypic variation in plants exposed to natural and manipulated environmental variability. Genome‐wide methylation profiling using methylation‐sensitive amplified fragment length polymorphism (MSAP) revealed considerable DNA methylation polymorphisms within and between natural populations. Plants of different source populations not only underwent significant morphological changes in common garden environments, but also underwent a genome‐wide epigenetic reprogramming in response to different treatments. Methylation alterations associated with response to different water availability were detected in 78.2% (169/216) of common garden induced polymorphic sites, demonstrating the environmental sensitivity and flexibility of the epigenetic regulatory system. These data provide evidence of the correlation between epigenetic reprogramming and the reversible phenotypic response of alligator weed to particular environmental factors.  相似文献   

10.
Niche theory is one of the central organizing concepts in ecology. Generally, this theory defines a given species niche as all of the factors that effect the persistence of the species as well as the impact of the species in a given location ( Hutchinson 1957 ; Chase 2011 ). Many studies have argued that phenotypic plasticity enhances niche width because plastic responses allow organisms to express advantageous phenotypes in a broader range of environments ( Bradshaw 1965 ; Van Valen 1965 ; Sultan 2001 ). Further, species that exploit habitats with fine‐grained variation, or that form metapopulations, are expected to develop broad niche widths through phenotypic plasticity ( Sultan & Spencer 2002 ; Baythavong 2011 ). Although a long history of laboratory, greenhouse and reciprocal transplant experiments have provided insight into how plasticity contributes to niche width ( Pigliucci 2001 ), recent advances in molecular approaches allow for a mechanistic understanding of plasticity at the molecular level ( Nicotra et al. 2010 ). In particular, variation in epigenetic effects is a potential source of the within‐genotype variation that underlies the phenotypic plasticity associated with broad niche widths. Epigenetic mechanisms can alter gene expression and function without altering DNA sequence ( Richards 2006 ) and may be stably transmitted across generations ( Jablonka & Raz 2009 ; Verhoeven et al. 2010 ). Also, epigenetic mechanisms may be an important component of an individual’s response to the environment ( Verhoeven et al. 2010 ). While these ideas are intriguing, few studies have made a clear connection between genome‐wide DNA methylation patterns and phenotypic plasticity (e.g. Bossdorf et al. 2010 ). In this issue of Molecular Ecology, Herrera et al. (2012) present a study that demonstrates epigenetic changes in genome‐wide DNA methylation are causally active in a species’ ability to exploit resources from a broad range of environments and are particularly important in harsh environments.  相似文献   

11.
Understanding how thermal selection affects phenotypic distributions across different time scales will allow us to predict the effect of climate change on the fitness of ectotherms. We tested how seasonal temperature variation affects basal levels of cold tolerance and two types of phenotypic plasticity in Drosophila melanogaster. Developmental acclimation occurs as developmental stages of an organism are exposed to seasonal changes in temperature and its effect is irreversible, while reversible short‐term acclimation occurs daily in response to diurnal changes in temperature. We collected wild flies from a temperate population across seasons and measured two cold tolerance metrics (chill‐coma recovery and cold stress survival) and their responses to developmental and short‐term acclimation. Chill‐coma recovery responded to seasonal shifts in temperature, and phenotypic plasticity following both short‐term and developmental acclimation improved cold tolerance. This improvement indicated that both types of plasticity are adaptive, and that plasticity can compensate for genetic variation in basal cold tolerance during warmer parts of the season when flies tend to be less cold tolerant. We also observed a significantly stronger trade‐off between basal cold tolerance and short‐term acclimation during warmer months. For the longer‐term developmental acclimation, a trade‐off persisted regardless of season. A relationship between the two types of plasticity may provide additional insight into why some measures of thermal tolerance are more sensitive to seasonal variation than others.  相似文献   

12.
Parental effects are a major source of phenotypic plasticity. Moreover, there is evidence from studies with a wide range of species that the relevant parental signals are influenced by the quality of the parental environment. The link between the quality of the environment and the nature of the parental signal is consistent with the idea that parental effects, whether direct or indirect, might serve to influence the phenotype of the offspring in a manner that is consistent with the prevailing environmental demands. In this review we explore recent studies from the field of 'environmental epigenetics' that suggest that (1) DNA methylation states are far more variable than once thought and that, at least within specific regions of the genome, there is evidence for both demethylation and remethylation in post-mitotic cells and (2) that such remodeling of DNA methylation can occur in response to environmentally-driven, intracellular signaling pathways. Thus, studies of variation in mother-offspring interactions in rodents suggest that parental signals operate during pre- and/or post-natal life to influence the DNA methylation state at specific regions of the genome leading to sustained changes in gene expression and function. We suggest that DNA methylation is a candidate mechanism for parental effects on phenotypic variation.  相似文献   

13.
Methylation of DNA cytosines affects whether transposons are silenced and genes are expressed, and is a major epigenetic mechanism whereby plants respond to environmental change. Analyses of methylation‐sensitive amplification polymorphism (MS‐AFLP or MSAP) have been often used to assess methyl‐cytosine changes in response to stress treatments and, more recently, in ecological studies of wild plant populations. MSAP technique does not require a sequenced reference genome and provides many anonymous loci randomly distributed over the genome for which the methylation status can be ascertained. Scoring of MSAP data, however, is not straightforward, and efforts are still required to standardize this step to make use of the potential to distinguish between methylation at different nucleotide contexts. Furthermore, it is not known how accurately MSAP infers genome‐wide cytosine methylation levels in plants. Here, we analyse the relationship between MSAP results and the percentage of global cytosine methylation in genomic DNA obtained by HPLC analysis. A screening of literature revealed that methylation of cytosines at cleavage sites assayed by MSAP was greater than genome‐wide estimates obtained by HPLC, and percentages of methylation at different nucleotide contexts varied within and across species. Concurrent HPLC and MSAP analyses of DNA from 200 individuals of the perennial herb Helleborus foetidus confirmed that methyl‐cytosine was more frequent in CCGG contexts than in the genome as a whole. In this species, global methylation was unrelated to methylation at the inner CG site. We suggest that global HPLC and context‐specific MSAP methylation estimates provide complementary information whose combination can improve our current understanding of methylation‐based epigenetic processes in nonmodel plants.  相似文献   

14.
In addition to genetic variation, epigenetic mechanisms such as DNA methylation might make important contributions to heritable phenotypic diversity in populations. However, it is often difficult to disentangle the contributions of genetic and epigenetic variation to phenotypic diversity. Here, we investigated global DNA methylation and mRNA expression of the methylation‐associated enzymes during embryonic development and in adult tissues of one natural isogenic lineage of mangrove rivulus fish, Kryptolebias marmoratus. Being the best‐known self‐fertilizing hermaphroditic vertebrate affords the opportunity to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. Using the LUminometric Methylation Assay (LUMA), we described variable global DNA methylation at CpG sites in adult tissues, which differed significantly between hermaphrodite ovotestes and male testes (79.6% and 87.2%, respectively). After fertilization, an immediate decrease in DNA methylation occurred to 15.8% in gastrula followed by re‐establishment to 70.0% by stage 26 (liver formation). Compared to zebrafish, at the same embryonic stages, this reprogramming event seems later, deeper, and longer. Furthermore, genes putatively encoding DNA methyltransferases (DNMTs), Ten‐Eleven Translocation (TET), and MeCP2 proteins showed specific regulation in adult gonad and brain, and also during early embryogenesis. Their conserved domains and expression profiles suggest that these proteins play important roles during reproduction and development. This study raises questions about mangrove rivulus’ peculiar reprogramming period in terms of epigenetic transmission and physiological adaptation of individuals to highly variable environments. In accordance with the general‐purpose genotype model, epigenetic mechanisms might allow for the expression of diverse phenotypes among genetically identical individuals. Such phenotypes might help to overcome environmental challenges, making the mangrove rivulus a valuable vertebrate model for ecological epigenetic studies. The mangrove rivulus, Kryptolebias marmoratus, is the best‐known self‐fertilizing hermaphroditic vertebrate that allows to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. The reprogramming event is later, more dramatic and longer than in other described vertebrates. High evolutionary conservation and expression patterns of DNMT, TET, and MeCP2 proteins in K. marmoratus suggest biological roles for each member in gametogenesis and development.  相似文献   

15.
Parental effects are a major source of phenotypic plasticity and may influence offspring phenotype in concert with environmental demands. Studies of “environmental epigenetics” suggest that (1) DNA methylation states are variable and that both demethylation and remethylation occur in post‐mitotic cells, and (2) that remodeling of DNA methylation can occur in response to environmentally driven intracellular signaling pathways. Studies of mother‐offspring interactions in rodents suggest that parental signals influence the DNA methylation, leading to stable changes in gene expression. If parental effects do indeed enhance the “match” between prevailing environmental demands and offspring phenotype, then the potential for variation in environmental conditions over time would suggest a mechanism that requires active maintenance across generations through parental signaling. We suggest that parental regulation of DNA methylation states is thus an ideal candidate mechanism for parental effects on phenotypic variation.  相似文献   

16.
Epigenetic modification, especially DNA methylation, can play an important role in mediating gene regulatory response to environmental stressors and may be a key process affecting phenotypic plasticity and adaptation. Parasites are potent stressors with profound physiological and ecological effects on their hosts, yet it remains unclear how parasites influence host methylation patterns. Here, we used a well‐studied host–parasite system, the guppy Poecilia reticulata and its ectoparasitic monogenean Gyrodactylus turnbulli to gain mechanistic insight into the dynamics of DNA methylation in host–parasite interactions. To explore this, we quantitatively measured genome‐wide DNA methylation in guppy skin tissue using reduced representation bisulphite sequencing and characterized differential methylation patterns in guppies during distinct phases of infection. We identified 365, 313, and 741 differentially methylated regions (DMRs) between infected and control fish in early infection, peak infection and recovery phases, respectively. The magnitude of the methylation difference was moderate in DMRs, with an average of 29% (early infection), 27% (peak infection) and 30% (recovery) differential methylation per DMR. Approximately 50% of DMRs overlapped with CpG islands, and over half of the DMRs overlapped with gene bodies, several of which encode proteins relevant to immune response. These findings provide the first evidence of an epigenetic signature of infection by ectoparasites and demonstrate the changing relationship between epigenetic variation and immune response in distinct phases of infection.  相似文献   

17.
Adaptive phenotypic plasticity and fixed genotypic differences have long been considered opposing strategies in adaptation. More recently, these mechanisms have been proposed to act complementarily and under certain conditions jointly facilitate evolution, speciation, and even adaptive radiations. Here, we investigate the relative contributions of adaptive phenotypic plasticity vs. local adaptation to fitness, using an emerging model system to study early phases of adaptive divergence, the generalist cichlid fish species Astatotilapia burtoni. We tested direct fitness consequences of morphological divergence between lake and river populations in nature by performing two transplant experiments in Lake Tanganyika. In the first experiment, we used wild‐caught juvenile lake and river individuals, while in the second experiment, we used F1 crosses between lake and river fish bred in a common garden setup. By tracking the survival and growth of translocated individuals in enclosures in the lake over several weeks, we revealed local adaptation evidenced by faster growth of the wild‐caught resident population in the first experiment. On the other hand, we did not find difference in growth between different types of F1 crosses in the second experiment, suggesting a substantial contribution of adaptive phenotypic plasticity to increased immigrant fitness. Our findings highlight the value of formally comparing fitness of wild‐caught and common garden‐reared individuals and emphasize the necessity of considering adaptive phenotypic plasticity in the study of adaptive divergence.  相似文献   

18.
Inbreeding depression is the loss of fitness resulting from the mating of genetically related individuals. Traditionally, the study of inbreeding depression focused on genetic effects, although recent research has identified DNA methylation as also having a role in inbreeding effects. Since inbreeding depression and DNA methylation change with age and environmental stress, DNA methylation is a likely candidate for the regulation of genes associated with inbreeding depression. Here, we use a targeted, multigene approach to assess methylation at 22 growth‐, metabolic‐, immune‐ and stress‐related genes. We developed PCR‐based DNA methylation assays to test the effects of intense inbreeding on intragenic gene‐specific methylation in inbred and outbred Chinook salmon. Inbred fish had altered methylation at three genes, CK‐1, GTIIBS and hsp70, suggesting that methylation changes associated with inbreeding depression are targeted to specific genes and are not whole‐genome effects. While we did not find a significant inbreeding by age interaction, we found that DNA methylation generally increases with age, although methylation decreased with age in five genes, CK‐1, IFN‐?, HNRNPL, hsc71 and FSHb, potentially due to environmental context and sexual maturation. As expected, we found methylation patterns differed among tissue types, highlighting the need for careful selection of target tissue for methylation studies. This study provides insight into the role of epigenetic effects on ageing, environmental response and tissue function in Chinook salmon and shows that methylation is a targeted and regulated cellular process. We provide the first evidence of epigenetically based inbreeding depression in vertebrates.  相似文献   

19.
20.
Incongruence between conventional and molecular systematics has left the delineation of many species unresolved. Reef‐building corals are no exception, with phenotypic plasticity among the most plausible explanations for alternative morphospecies. As potential molecular signatures of phenotypic plasticity, epigenetic processes may contribute to our understanding of morphospecies. We compared genetic and epigenetic variation in Caribbean branching Porites spp., testing the hypothesis that epigenetics—specifically, differential patterns of DNA methylation—play a role in alternative morphotypes of a group whose taxonomic status has been questioned. We used reduced representation genome sequencing to analyse over 1,000 single nucleotide polymorphisms and CpG sites in 27 samples of Porites spp. exhibiting a range of morphotypes from a variety of habitats in Belize. We found stronger evidence for genetic rather than epigenetic structuring, identifying three well‐defined genetic groups. One of these groups exhibited significantly thicker branches, and branch thickness was a better predictor of genetic groups than depth, habitat or symbiont type. In contrast, no clear epigenetic patterns emerged with respect to phenotypic or habitat variables. While there was a weak positive correlation between pairwise genetic and epigenetic distance, two pairs of putative clones exhibited substantial epigenetic differences, suggesting a strong environmental effect. We speculate that epigenetic patterns are a complex mosaic reflecting diverse environmental histories superimposed over a relatively small heritable component. Given the role of genetics in branching Porites spp. morphospecies we were able to detect with genomewide sequencing, use of such techniques throughout the geographic range of these corals may help settle their phylogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号