首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The design of acoustic signals and hearing sensitivity in socially communicating species would normally be expected to closely match in order to minimize signal degradation and attenuation during signal propagation. Nevertheless, other factors such as sensory biases as well as morphological and physiological constraints may affect strict correspondence between signal features and hearing sensitivity. Thus study of the relationships between sender and receiver characteristics in species utilizing acoustic communication can provide information about how acoustic communication systems evolve. The genus Gekko includes species emitting high-amplitude vocalizations for long-range communication (loud callers) as well as species producing only low-amplitude vocalizations when in close contact with conspecifics (quiet callers) which have rarely been investigated. In order to investigate relationships between auditory physiology and the frequency characteristics of acoustic signals in a quiet caller, Gekko subpalmatus we measured the subjects’ vocal signal characteristics as well as auditory brainstem responses (ABRs) to assess auditory sensitivity. The results show that G. subpalmatus males emit low amplitude calls when encountering females, ranging in dominant frequency from 2.47 to 4.17 kHz with an average at 3.35 kHz. The auditory range with highest sensitivity closely matches the dominant frequency of the vocalizations. This correspondence is consistent with the notion that quiet and loud calling species are under similar selection pressures for matching auditory sensitivity with spectral characteristics of vocalizations.  相似文献   

2.
The matched filter hypothesis proposes that the tuning of auditory sensitivity and the spectral character of calls will match in order to maximize auditory processing efficiency during courtship. In this study, we analyzed the acoustic structure of male calls and both male and female hearing sensitivities in the little torrent frog (Amolops torrentis), an anuran species who transmits acoustic signals across streams. The results were in striking contradiction to the matched filter hypothesis. Auditory brainstem response results showed that the best hearing range was 1.6–2 kHz consistent with the best sensitive frequency of most terrestrial lentic taxa, yet completely mismatched with the dominant frequency of conspecific calls (4.3 kHz). Moreover, phonotaxis tests show that females strongly prefer high‐frequency (4.3 kHz) over low‐frequency calls (1.6 kHz) regardless of ambient noise levels, although peripheral auditory sensitivity is highest in the 1.6–2 kHz range. These results are consistent with the idea that A. torrentis evolved from nonstreamside species and that high‐frequency calls evolved under the pressure of stream noise. Our results also suggest that female preferences based on central auditory system characteristics may evolve independently of peripheral auditory system sensitivity in order to maximize communication effectiveness in noisy environments.  相似文献   

3.
The efficiency of acoustic communication depends on the power generated by the sound source, the attributes of the environment across which signals propagate, the environmental noise and the sensitivity of the intended receivers. Eupsophus emiliopugini, an anuran from the temperate austral forest communicates by means of an advertisement call of moderate intensity within the range for anurans. To estimate the range over which these frogs communicate effectively, we conducted measurements of call sound levels and of auditory thresholds to pure tones and to synthetic conspecific calls. The results show that E. emiliopugini produces advertisement calls of about 84 dB SPL at 0.25 m from the caller. The signals are affected by attenuation as they propagate, reaching average values of about 47 dB SPL at 8 m from the sound source. Midbrain multi-unit recordings show quite sensitive audiograms within the anuran range, with thresholds of about 44 dB SPL for synthetic imitations of conspecific calls, which would allow communication at distances beyond 8 m. This is an extended range as compared to E. calcaratus, a related syntopic species for which a previous study has shown to be restricted to active acoustic spaces shorter than 2 m. The comparison reveals divergent strategies for related taxa communicating amid the same environment.  相似文献   

4.
The efficiency of acoustic communication depends on the power generated by the sound source, the quality of the environment across which signals propagate, the environmental noise and the sensitivity of the intended receivers. Eupsophus calcaratus, an anuran from the temperate austral forest, communicates by means of an advertisement call of weak intensity in a sound-attenuating environment. To estimate the range over which these frogs communicate effectively, we conducted measurements of sound level and degradation patterns of propagating advertisement calls in the field, and measurements of auditory thresholds to pure tones and to natural calls in laboratory conditions. The results show that E. calcaratus produces weak advertisement calls of about 72 dB sound pressure level (SPL) at 0.25 m from the caller. The signals are affected by attenuation and degradation patterns as they propagate in their native environment, reaching average values of 61 and 51 dB SPL at 1 and 2 m from the sound source, respectively. Midbrain multi-unit recordings show a relatively low auditory sensitivity, with thresholds of about 58 dB SPL for conspecific calls, which are likely to restrict communication to distances shorter than 2 m, a remarkably short range as compared to other anurans.  相似文献   

5.
W J Reynolds 《Bioacoustics.》2013,22(3):245-246
ABSTRACT

In previous studies, calling sites of two species of burrowing frogs Eupsophus in southern Chile have been shown to amplify conspecific vocalizations generated externally, thus providing a means to enhance the reception of neighbour's vocalizations in breeding aggregations. In the current study the amplification of vocalizations of Eusophus roseus was investigated to explore the extent of sound enhancement reported previously for two congeneric species. Advertisement calls broadcast through a loudspeaker placed in the vicinity of a burrow, monitored with small microphones, are amplified by up to 14 dB inside cavities relative to outside. The fundamental resonant frequency of burrows, measured with broadcast noise and pure tones, ranges from 345–1335 Hz; however it is not correlated with burrow length. The spectra of incoming calls are altered inside burrows by predominantly increasing the amplitude of lower relative to higher harmonics. The call amplification effect inside burrows of E. roseus parallels the effect reported previously for two congeneric species and reinforces the suggestion that sound enhancement inside calling sites has a widespread effect on signal reception by burrowing animals.  相似文献   

6.
In Tettigoniidae (Orthoptera: Ensifera), hearing organs are essential in mate detection. Male tettigoniids usually produce calling songs by tegminal stridulation, whereas females approach the males phonotactically. This unidirectional communication system is the most common one among tettigoniids. In several tettigoniid lineages, females have evolved acoustic replies to the male calling song which constitutes a bidirectional communication system. The genus Poecilimon (Tettigoniidae: Phaneropterinae) is of special interest because the ancestral state of bidirectional communication, with calling males and responding females, has been reversed repeatedly to unidirectional communication. Acoustic communication is mediated by hearing organs that are adapted to the conspecific signals. Therefore, we analyse the auditory system in the Tettigoniidae genus Poecilimon for functional adaptations in three characteristics: (i) dimension of sound‐receiving structures (tympanum and acoustic spiracle), (ii) number of auditory sensilla and (iii) hearing sensitivity. Profound differences in the auditory system correlate with uni‐ or bidirectional communication. Among the sound‐receiving structures, the tympana scale with body size, whereas the acoustic spiracle, the major sound input structure, was drastically reduced in unidirectional communicating species. In the unidirectional P. ampliatus group, auditory sensilla are severely reduced in numbers, but not in the unidirectional P. propinquus group. Within the P. ampliatus group, the number of auditory sensilla is further reduced in P. intermedius which lost acoustic signalling due to parthenogenesis. The auditory sensitivity correlated with the size of the acoustic spiracle, as hearing sensitivity was better with larger spiracles, especially in the ultrasonic range. Our results show a significant reduction in auditory structures, shaped by the differing sex roles during mate detection.  相似文献   

7.
Receiver sensory abilities can be influenced by a number of factors, including habitat, phylogeny and the selective pressure to acquire information about conspecifics or heterospecifics. It has been hypothesized that brood-parasitic brown-headed cowbird (Molothrus ater) females may locate or determine the quality of potential hosts by eavesdropping on their sexual signals. This is expected to produce different sex-specific pressures on the auditory system to detect conspecific and heterospecific acoustic signals. Here, we examined auditory filter shape and efficiency, which influence the ability to resolve spectral and temporal information, in males and females at center frequencies of 2, 3 and 4 kHz. We found that overall, cowbirds had relatively wide filters (lsmean ± SE: 619.8 ± 41.6 Hz). Moreover, females had narrower filters (females: 491.4 ± 66.8, males: 713.8 ± 67.3 Hz) and greater filter efficiency (females: 59.0 ± 2.0, males: 69.8 ± 1.9 dB) than males. Our results suggest that the filters of female cowbirds may allow them to extract spectral information from heterospecific vocalizations. The broader auditory filters of males may reflect limited spectral energy in conspecific vocalizations in this frequency range, and hence, weaker selection for high resolution of frequency in the range of 2–4 kHz.  相似文献   

8.
Male gray treefrogs, Hyla versicolor, advertise for mates in dense assemblages characterized by high levels of noise and acoustic clutter. In pairwise interactions, males alternate pulsatile advertisement calls and so reduce call overlap to levels below that expected by chance. However, in choruses consisting of more than two males, acoustic interference increases dramatically. Moreover, males do not seem to exhibit selective attention in a way that reduces call interference among nearest neighbours. Previous research has also demonstrated that although females discriminate strongly against overlapped calls, negative effects of call overlap can be attenuated by a large angular separation between signal sources. However, call stimuli employed were identical in spectrum and so this situation differs from that likely in nature. Based on studies of ‘auditory stream segregation’ with other taxa, we hypothesized that realistic differences in the frequencies of overlapping calls could improve the ability of females to discern critical call features during overlap of separated call sources. We found that, although, under some circumstances, differences in call frequency may help females distinguish among neighbouring males giving temporally proximate calls, naturalistic spectral differences do not seem to help females perceptually separate the overlapping calls of neighbouring conspecific males.  相似文献   

9.
Tympanal ears of female gypsy moths Lymantria dispar dispar (L.) (Lepidoptera: Erebidae: Lymantriinae) are reportedly more sensitive than ears of conspecific males to sounds below 20 kHz. The hypothesis is tested that this differential sensitivity is a result of sex‐specific functional roles of sound during sexual communication, with males sending and females receiving acoustic signals. Analyses of sounds produced by flying males reveal a 33‐Hz wing beat frequency and 14‐kHz associated clicks, which remain unchanged in the presence of female sex pheromone. Females exposed to playback sounds of flying conspecific males respond with wing raising, fluttering and walking, generating distinctive visual signals that may be utilized by mate‐seeking males at close range. By contrast, females exposed to playback sounds of flying heterospecific males (Lymantria fumida Butler) do not exhibit the above behavioural responses. Laser Doppler vibrometry reveals that female tympana are particularly sensitive to frequencies in the range produced by flying conspecific males, including the 33‐Hz wing beat frequency, as well as the 7‐kHz fundamental frequency and 14‐kHz dominant frequency of associated clicks. These results support the hypothesis that the female L. dispar ear is tuned to sounds of flying conspecific males. Based on previous findings and the data of the present study, sexual communication in L. dispar appears to proceed as: (i) females emitting sex pheromone that attracts males; (ii) males flying toward calling females; and (iii) sound signals from flying males at close range inducing movement in females, which, in turn, provides visual signals that could orient males toward females.  相似文献   

10.
Acoustic noise from automobile traffic impedes communication between signaling animals. To overcome the acoustic interference imposed by anthropogenic noise, species across taxa adjust their signaling behavior to increase signal saliency. As most of the spectral energy of anthropogenic noise is concentrated at low acoustic frequencies, species with lower frequency signals are expected to be more affected. Thus, species with low-frequency signals are under stronger pressure to adjust their signaling behaviors to avoid auditory masking than species with higher frequency signals. Similarly, for a species with multiple types of signals that differ in spectral characteristics, different signal types are expected to be differentially masked. We investigate how the different call types of a Japanese stream breeding treefrog (Buergeria japonica) are affected by automobile traffic noise. Male B. japonica produce two call types that differ in their spectral elements, a Type I call with lower dominant frequency and a Type II call with higher dominant frequency. In response to acoustic playbacks of traffic noise, B. japonica reduced the duration of their Type I calls, but not Type II calls. In addition, B. japonica increased the call effort of their Type I calls and decreased the call effort of their Type II calls. This result contrasts with prior studies in other taxa, which suggest that signalers may switch to higher frequency signal types in response to traffic noise. Furthermore, the increase in Type I call effort was only a short-term response to noise, while reduced Type II call effort persisted after the playbacks had ended. Overall, such differential effects on signal types suggest that some social functions will be disrupted more than others. By considering the effects of anthropogenic noise across multiple signal types, these results provide a more in-depth understanding of the behavioral impacts of anthropogenic noise within a species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号