首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In order to consolidate molecular genetic system in Lotus japonicus and to further access the biological diversity in Lotea, we introduce here Lotus burttii B-303 derived from West Pakistan as the third crossing partner of the Gifu ecotype (B-129-S9) for a genetic analysis. L. burttii is a relatively small and early flowering plant with non-shattering behavior. The general chromosome morphology is very similar to Gifu, and fluorescence in situ hybridization (FISH) analysis revealed that the short arm of chromosome 1 in L. burttii is comparable to that of Gifu, indicating that the translocation event involving chromosomes 1 and 2, which was observed in L. japonicus Miyakojima MG-20, is not present in L. burttii. In addition L. burttii has a higher level of DNA polymorphism compared to Gifu and MG-20 enabling design of codominant markers such as SSR, CAPS and dCAPS. Using an F2 population from a cross between Gifu and L. burttii, codominant makers that co-segregated at the translocation site could be expanded. In order to normalize the genetic background, L. burttii was inbred for nine generations and the germplasm L. burttii B-303-S9 was established.  相似文献   

2.
Among leguminous plants, the model legume Lotus japonicus (Regel) Larsen has many biological and genetic advantages. We have developed a genetic linkage map of L. japonicus based on amplified fragment length polymorphism (AFLP), simple sequence repeat polymorphism (SSRP) and derived cleaved amplified polymorphic sequence (dCAPS). The F2 mapping population used was derived from a cross between two L. japonicus accessions Gifu B-129 and Miyakojima MG-20. These parental accessions showed remarkable cytological differences, particularly with respect to size and morphology of chromosomes 1 and 2. Using fluorescence in situ hybridization (FISH) with BAC clones from Gifu B-129 and TAC (Transformation-competent Artificial Chromosome) clones from Miyakojima MG-20, a reciprocal translocation was found to be responsible for the cytological differences between chromosomes 1 and 2. The borders of the translocations were identified by FISH and by alignment toward the L. filicaulis x L. japonicus Gifu B-129 linkage map. The markers from the main translocated region were located on linkage groups 1 and 2 of the two accessions, Gifu B-129 and Miyakojima MG-20, respectively. The framework of the linkage map was constructed based on codominant markers, and then dominant markers were integrated separately in each linkage group of the parents. The resulting linkage groups correspond to the six pairs of chromosomes of L. japonicus and consist of 287 markers with 487.3 cM length in Gifu B-129 and 277 markers with 481.6 cM length in Miyakojima MG-20. The map and marker information is available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

3.
Development of molecular tools for the analysis of the plant genetic contribution to rhizobial and mycorrhizal symbiosis has provided major advances in our understanding of plant-microbe interactions, and several key symbiotic genes have been identified and characterized. In order to increase the efficiency of genetic analysis in the model legume Lotus japonicus, we present here a selection of improved genetic tools. The two genetic linkage maps previously developed from an interspecific cross between L. japonicus Gifu and L. filicaulis, and an intraspecific cross between the two ecotypes L. japonicus Gifu and L. japonicus MG-20, were aligned through a set of anchor markers. Regions of linkage groups, where genetic resolution is obtained preferentially using one or the other parental combination, are highlighted. Additional genetic resolution and stabilized mapping populations were obtained in recombinant inbred lines derived by a single seed descent from the two populations. For faster mapping of new loci, a selection of reliable markers spread over the chromosome arms provides a common framework for more efficient identification of new alleles and new symbiotic loci among uncharacterized mutant lines. Combining resources from the Lotus community, map positions of a large collection of symbiotic loci are provided together with alleles and closely linked molecular markers. Altogether, this establishes a common genetic resource for Lotus spp. A web-based version will enable this resource to be curated and updated regularly.  相似文献   

4.
Lotus japonicus has attracted attention as a model plant legume for molecular genetic research, and several mutants defective in nodulation and mycorrhizal symbiosis have been developed from the standard accession Gifu B-129. However, as a model system, Gifu has long lacked an appropriate crossing partner for use in various genetic analyses. In a search for an appropriate partner for Gifu, we have collected plants from 15 localities throughout Japan, and analyzed their levels of DNA polymorphism (also in comparison to the African species L. filicaulis) by AFLP (Amplified Fragment Length Polymorphism) combined with the use of a high-throughput electrophoretic screening system termed HEGS (High-efficiency genome scanning) developed by us, using 31 primer pairs. Plants of the accession Miyakojima MG-20 showed the highest level of polymorphism relative to Gifu (over 4%). When HEGS is used for screening, this level is sufficient to permit systematic positional cloning of mutant genes. Segregation in the F2 of the Gifu-derived symbiotic mutations Ljsym70, Ljsym72, Ljsym74-1 (alb1-1) and Ljsym78-1 from a cross with Miyakojima was normal, while the ratios seen from a cross with L. filicaulis were distorted. Miyakojima displays several traits that distinguish it from other Japanese accessions: low concentrations of anthocyanin in the stem and petals, few trichomes, a more upright habit, broad leaflets and petals, and large black seeds. The first two traits, which are controlled by single recessive genes, serve as useful markers for following mutant crosses.  相似文献   

5.
Legumes, as protein-rich crops, are widely used for human food, animal feed and vegetable oil production. Over the past decade, two legume species, Medicago truncatula and Lotus japonicus, have been adopted as model legumes for genomics and physiological studies. The tobacco transposable element, Tnt1, is a powerful tool for insertional mutagenesis and gene inactivation in plants. A large collection of Tnt1-tagged lines of M. truncatula cv. Jemalong was generated during the course of the project 'GLIP': Grain Legumes Integrated Project, funded by the European Union (www.eugrainlegumes.org). In the project 'IFCOSMO': Integrated Functional and COmparative genomics Studies on the MOdel Legumes Medicago truncatula and Lotus japonicus, supported by a grant from the Ministry of Education, Youth and Science, Bulgaria, these lines are used for development of functional genomics platform of legumes in Bulgaria. This review presents recent advances in the evaluation of the M. truncatula Tnt1 mutant collection and outlines the steps that are taken in using the Tnt1-tagging for generation of a mutant collection of the second model legume L. japonicus. Both collections will provide a number of legume-specific mutants and serve as a resource for functional and comparative genomics research on legumes. Genomics technologies are expected to advance genetics and breeding of important legume crops (pea, faba bean, alfalfa and clover) in Bulgaria and worldwide.  相似文献   

6.
7.
We determined the nucleotide sequences of 64 TAC (transformation-competent artificial chromosome) clones selected from genomic libraries of Lotus japonicus accession Miyakojima MG-20 based on the sequence information of expressed sequence tags (ESTs), cDNAs, genes and DNA markers from L. japonicus and other legumes. The length of the DNA regions sequenced in this study was 6,370,255 bp, and the total length of the L. japonicus genome sequenced so far is 32,537,698 bp together with the nucleotide sequences of 256 TAC clones previously reported. Five hundred forty-eight potential protein-encoding genes with known or predicted functions, 127 gene segments and 224 pseudogenes were assigned to the newly sequenced regions by computer prediction and similarity searches against the sequences in protein and EST databases. Based on the nucleotide sequences of the clones, simple sequence repeat length polymorphism (SSLP) or derived cleaved amplified polymorphic sequence (dCAPS) markers were generated, and each clone was genetically localized onto the linkage map of two accessions of L. japonicus, MG-20 and Gifu B-129. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

8.
Lotus japonicus is a model plant for the legume family. To facilitate map-based cloning approaches and genome analysis, we performed an extensive characterization of the chromosome complement of the species. A detailed karyotype of L. japonicus Gifu was built and plasmid and BAC clones, corresponding to genetically mapped markers (see the accompanying article by Sandal et al. 2002, this issue), were used for FISH to correlate genetic and chromosomal maps. Hybridization of DNA clones from 32 different genomic regions enabled the assignment of linkage groups to chromosomes, the comparison between genetic and physical distances throughout the genome, and the partial characterization of different repetitive sequences, including telomeric and centromeric repeats. Additional analysis of L. filicaulis and its F(1) hybrid with L. japonicus demonstrated the occurrence of inversions between these closely related species, suggesting that these chromosome rearrangements are early events in speciation of this group.  相似文献   

9.
Using the sequence information of expressed sequences tags (ESTs), cDNAs and genes from Lotus japonicus and other legumes, 73 TAC (transformation-competent artificial chromosomes) clones were selected from a genomic library of L. japonicus accession MG-20, and their nucleotide sequences were determined. The length of the DNA sequenced in this study was 7,455,959 bp, and the total length of the DNA regions sequenced so far is 26,167,443 bp together with the nucleotide sequences of 183 TAC clones previously reported. By similarity searches against the sequences in protein and EST databases and prediction by computer programs, a total of 699 potential protein-encoding genes with known or predicted functions, 163 gene segments and 267 pseudogenes were assigned to the newly sequenced regions. Based oil the nucleotide sequences of the clones, simple sequence repeat length polymorphism (SSLP) or derived cleaved amplified polymorphic sequence (dCAPS) markers were generated, and each clone was located onto the linkage map of two accessions of L. japonicus, Gifu B-129 and Miyakojima MG-20. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

10.
Flavonoids detected from a model legume plant, Lotus japonicus accessions Miyakojima MG-20 and Gifu B-129, were profiled using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR/MS). Five flavonols and two anthocyanidins were detected as aglycones. LC-FTICR/MS facilitated simultaneous detection of 61 flavonoids including compounds that have not been reported previously. Chemical information of the peaks such as retention time, lambdamax, m/z value of the quasi-molecular ion, m/z value of MS/MS fragment ions, and relative intensity of MS/MS fragments was obtained, along with the molecular formulas and conjugate structures. Fourteen were completely identified by comparison with authentic compounds. The high accuracy of m/z values, being 0.081 ppm between observed and theoretical values, allowed prediction of molecular formulas of unknown compounds with the help of isotope peak information for determination of chemical composition. Based on a predicted elemental composition, the presence of a novel nitrogen-containing flavonoid was proposed. A comparison of flavonoid profiles in flowers, stems, and leaves demonstrated that the flowers yielded the most complex profile, containing 30 flower-specific flavonoids including gossypetin glycosides and isorhamnetin glycosides. A comparison of flavonoid profiles between MG-20 and B-129 grown under the same conditions revealed that the accumulation of anthocyanins was higher in B-129 than MG-20, particularly in the stem. Developmental changes in the flavonoid profiles demonstrated that kaempferol glycosides increased promptly after germination. In contrast, quercetin glycosides, predominant flavonoids in the seeds, were not detectable in growing leaves.  相似文献   

11.
Lotus japonicus (Regel) Larsen is a long-day plant and requires intense light for continuous flowering. Therefore, the genetic analysis of this plant has been conducted frequently in a green house equipped with supplementary light. In order to bring about indoor genetics as has been carried out with Arabidopsis, early-flowering accessions suitable for indoor handling have been searched for throughout Japan. As a result, a plant that grows naturally in Miyakojima, the nearly southernmost island in the Japan archipelago, was collected as the earliest-flowering accession with such characteristics. The accession was named as Miyakojima MG-20. Self-pollination was repeated 7 times in an insect-free biotron to establish Miyakojima MG-20-S7 germplasm. Using this accession, development of an infrastructure such as a large-scale expressed sequence tag (EST) analysis, ion-beam mutagenesis and high-resolution mapping has been started. Received 20 September 2000/ Accepted in revised form 16 October 2000  相似文献   

12.
A total of sixty-two clones were selected from a TAC (transformation-competent artificial chromosome) genomic library of the Lotus japonicus accession MG-20 based on the sequence information of expressed sequence tags (ESTs), cDNA and gene information, and their nucleotide sequences were determined. The length of the sequenced regions in this study is 6,682,189 bp, and the total length of the regions sequenced so far is 18,711,484 bp together with the nucleotide sequences of 121 TAC clones previously reported. By comparison with the sequences in protein and EST databases and analysis with computer programs for gene modeling, a total of 573 potential protein-coding genes with known or predicted functions, 91 gene segments and 272 pseudogenes were identified in the newly sequenced regions. Each of the sequenced clones was localized onto the linkage map of two accessions of L. japonicus, Gifu B-129 and Miyakojima MG-20, using simple sequence repeat length polymorphism (SSLP) or derived cleaved amplified polymorphic sequence (dCAPS) markers generated based on the nucleotide sequences of the clones. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

13.
可转化人工染色体(transformation-competentartificial chromosome,TAC)载体是具有克隆和转移大片段DNA特征的新型载体,是植物基因克隆和转化的有效工具.该研究把它用于豆科植物百脉根(Lotus japonicus)基因组文库的构建.此文库由1.8×105个克隆组成,平均插入片段大小为15kb左右,约覆盖百脉根基因组6倍.文库保存在12块96孔板中,每个孔中约含150个不同的重组克隆.用与花发育相关的同源基因Ljcen1片段为探针,筛选得到6个阳性克隆,酶切后验证这些阳性克隆,结果表明这些克隆含有同一个基因片段.此基因组文库可直接用于植物转化,为百脉根功能基因组的研究打下基础.  相似文献   

14.
Lotus japonicus , a model legume plant, was reviewed and compared with Medicago truncatula and soybean. Several mutant libraries are being analyzed, focusing on the nodulation mechanism. The first plant nodulation gene nin was cloned by Ac-transposon tagging. Soybean remains as the most studied legume, especially in relation to the disease resistance genes. However, Lotus japonicus offers several advantages for molecular genetics, and the remained lackings were recently filled up, namely 1) an appropriate crossing partner for Gifu, accession Miyakojima, was proposed for its 4% polymorphism and smooth recombining ability; 2) a genome library with long inserts, average of 140 kb, and 8.2 genome equivalents of library size, has been established; and 3) the rather low polymorphic rate between Gifu and Miyakojima can be overcome with the HEGS (High Efficiency Genome Scanning). With this infrastructure, positional cloning of the causative genes of several mutant libraries will be accomplished in a short term. Genome sizes of L. japonicus acc. Gifu and Miyakojima were determined with high accuracy, to be 494±0 MB and 512±1 MB, respectively. The feasibility of constructing a physical map of the entire genome, for functional genomics, was discussed. Received 5 September 2000/ Accepted in revised form 11 October 2000  相似文献   

15.
Sixty-five TAC (transformation-competent artificial chromosomes) clones were selected from a genomic library of Lotus japonicus accession MG-20 based on the sequence information of expressed sequences tags (ESTs), cDNA and gene information, and their nucleotide sequences were determined. The average insert size of the TAC clone was approximately 100 kb, and the total length of the sequenced regions in this study is 6,556,100 bp. Together with the nucleotide sequences of 56 TAC clones previously reported, the regions sequenced so far total 12,029,295 bp. By comparison with the sequences in protein and EST databases and by analysis with computer programs for gene modeling, a total of 711 potential protein-encoding genes with known or predicted functions, 239 gene segments and 90 pseudogenes were identified in the newly sequenced regions. The average gene density assigned so far was 1 gene/9140 bp. The average length of the assigned genes was 2.6 kb, which is considerably larger than that assigned in the Arabidopsis thaliana genome (1.9 kb for 6451 genes). Introns were identified in approximately 73% of the potential genes, and the average number and length of the introns per gene were 3.4 and 377 bp, respectively. Simple sequence repeat length polymorphism (SSLP) or derived cleaved amplified polymorphic sequence (dCAPS) markers were generated based on the nucleotide sequences of the genomic clones obtained, and each clone was mapped onto the linkage map using the F2 mapping population derived from a cross of two accessions of L. japonicus, Gifu B-129 and Miyakojima MG-20. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

16.
Sedentary plant-parasitic nematodes engage in complex interactions, and induce specialized feeding structures by redirecting plant developmental pathways, and parallels have been observed with rhizobial nodule development on legumes. A model legume would greatly facilitate a better understanding of the differences between parasitic (nematode) and mutualistic (rhizobia and mycorrhizae) symbioses, and we have developed Lotus japonicus as such a model. Conditions for efficient parasitism by root-knot nematode (Meloidogyne spp.) of the widely used Lotus "Gifu" ecotype were established. Features of Lotus biology, such as thin and translucent roots, proved ideal for monitoring the progress of nematode infection both on live specimens and post-staining. We examined L. japonicus mutants with nodulation phenotypes. One, har1, which is a hypernodulated mutant defective in a CLAVATA1-like receptor kinase gene, was found to be hyperinfected by M. incognita. However, another hypernodulated Lotus mutant exhibited the same level of M. incognita infection as wild-type plants. We also established conditions for infection of Lotus by soybean cyst nematode (Heterodera glycines). In contrast to the response to root-knot nematode, the Gifu ecotype is resistant to H. glycines, and elicits a hypersensitive response. This pattern of resistance recapitulates that seen on nematode-resistant soybean plants. We conclude that L. japonicus is a powerful model legume for studying compatible and incompatible plant-nematode interactions.  相似文献   

17.
QTL (quantitative trait loci) mapping is commonly used to identify genetic regions responsible to important phenotype variation. A common strategy of QTL mapping is to use recombinant inbred lines (RILs), which are usually established by several generations of inbreeding of an F1 population (usually up to F6 or F7 populations). As this inbreeding process involves a large amount of labor, we are particularly interested in the effect of the number of inbreeding generations on the power of QTL mapping; a part of the labor could be saved if a smaller number of inbreeding provides sufficient power. By using simulations, we investigated the performance of QTL mapping with recombinant inbred lines (RILs). As expected, we found that the power of F4 population could be almost comparable to that of F6 and F7 populations. A potential problem in using F4 population is that a large proportion of RILs are heterozygotes. We here introduced a new method to partly relax this problem. The performance of this method was verified by simulations with a wide range of parameters including the size of the segregation population, recombination rate, genome size and the density of markers. We found our method works better than the commonly used standard method especially when there are a number of heterozygous markers. Our results imply that in most cases, QTL mapping does not necessarily require RILs at F6 or F7 generations; rather, F4 (or even F3) populations would be almost as useful as F6 or F7 populations. Because the cost to establish a number of RILs for many generations is enormous, this finding will cause a reduction in the cost of QTL mapping, thereby accelerating gene mapping in many species.  相似文献   

18.
Lotus Japonicus , Miyakojima MG-20 and Gifu B-129. The genome sizes of Miyakojima and Gifu were determined as 472.1 and 442.8 Mbp, respectively. Both the accessions were diploid (2n=12) and six chromosomes were identified and characterized based on the condensation patterns and the locations of rDNA loci. The obvious polymorphism observed in the genome size and the chromosome morphology between the two accessions, revealed specific accumulation of heterochromatin in Miyakojima or elimination in Gifu. The chromosomes L. japonicus were numbered according to their length. A quantitative chromosome map was also developed by the imaging methods using the digital data of the condensation pattern. 45S rDNA loci were localized on chromosomes A and F, and 5S rDNA locus was localized on chromosome A by fluorescence in situ hybridization (FISH). Identification of the chromosome and genome sizes and development of the quantitative chromosome map represent significant contribution to the L. japonicus genome project as the basic information. Received 29 August 2000/ Accepted in revised form 17 October 2000  相似文献   

19.
King EG  Macdonald SJ  Long AD 《Genetics》2012,191(3):935-949
The Drosophila Synthetic Population Resource (DSPR) is a newly developed multifounder advanced intercross panel consisting of >1600 recombinant inbred lines (RILs) designed for the genetic dissection of complex traits. Here, we describe the inference of the underlying mosaic founder structure for the full set of RILs from a dense set of semicodominant restriction-site-associated DNA (RAD) markers and use simulations to explore how variation in marker density and sequencing coverage affects inference. For a given sequencing effort, marker density is more important than sequence coverage per marker in terms of the amount of genetic information we can infer. We also assessed the power of the DSPR by assigning genotypes at a hidden QTL to each RIL on the basis of the inferred founder state and simulating phenotypes for different experimental designs, different genetic architectures, different sample sizes, and QTL of varying effect sizes. We found the DSPR has both high power (e.g., 84% power to detect a 5% QTL) and high mapping resolution (e.g., ~1.5 cM for a 5% QTL).  相似文献   

20.
A total of 56 TAC clones with an average insert size of 100 kb were isolated from a TAC library of the Lotus japonicus genome based on the expressed sequences tags (ESTs), cDNA and gene information, and their nucleotide sequences were determined according to the shot-gun based strategy. The total length of the sequenced regions is 5,473,195 bp. By comparison with the sequences in protein and EST databases and analysis with computer programs for gene modeling, a total of 605 potential protein-encoding genes with known or predicted functions, 69 gene segments, and 172 pseudogenes were identified. The average density of the genes assigned so far is 1 gene/8120 bp. Introns were identified in approximately 78% of the potential genes. There was an average of 3.8 introns per gene and the average length of the introns was 375 bp. DNA markers were generated based on the nucleotide sequences obtained, and each clone was mapped onto the linkage map using the F2 mapping population derived from a cross of L. japonicus Gifu B-129 and Miyakojima MG-20. The sequence data, gene information and mapping information are available through the World Wide Web at http://www.kazusa.or.jp/lotus/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号