首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RAPD (random amplified polymorphic DNA) molecular markers were used to investigate relationships between a sample of Bambusa species from South Eastern China that have been placed in Bambusa or in several segregate genera, Dendrocalamopsis, Leleba, Lingnania, Neosinocalamus and Sinocalamus by different authors. On the resultant neighbor-joining tree, a thorny core Bambusa cluster was distinguished, as was a Lingnania group, and a cluster of Dendrocalamus species with more capitate inflorescences. However, Leleba was found to be a polyphyletic group in the present study.  相似文献   

2.
The present generic concept of Phoma is broadly defined, with nine sections being recognised based on morphological characters. Teleomorph states of Phoma have been described in the genera Didymella, Leptosphaeria, Pleospora and Mycosphaerella, indicating that Phoma anamorphs represent a polyphyletic group. In an attempt to delineate generic boundaries, representative strains of the various Phoma sections and allied coelomycetous genera were included for study. Sequence data of the 18S nrDNA (SSU) and the 28S nrDNA (LSU) regions of 18 Phoma strains included were compared with those of representative strains of 39 allied anamorph genera, including Ascochyta, Coniothyrium, Deuterophoma, Microsphaeropsis, Pleurophoma, Pyrenochaeta, and 11 teleomorph genera. The type species of the Phoma sections Phoma, Phyllostictoides, Sclerophomella, Macrospora and Peyronellaea grouped in a subclade in the Pleosporales with the type species of Ascochyta and Microsphaeropsis. The new family Didymellaceae is proposed to accommodate these Phoma sections and related anamorph genera. The present study demonstrated that Phoma radicina, the type species of Phoma sect. Paraphoma and Phoma heteromorphospora, the type species of Phoma sect. Heterospora can be assigned to the Phaeosphaeriaceae and Leptosphaeriaceae respectively.  相似文献   

3.
Michel Sartori 《ZooKeys》2014,(429):47-61
Based on historic collections and new material from Sumatra and Java, the species Rhithrogeniella ornata Ulmer, 1939, type species of the genus Rhithrogeniella, is reinvestigated. The nymph is described for the first time and is closely related to the continental Southeast Asian species Rhithrogeniella tonkinensis Soldán and Braasch, 1986. Rhithrogeniella belongs to the subfamily Ecdyonurinae, and is related to the genera Nixe Flowers, 1980 and/or Paracinygmula Bajkova, 1975 based on characters of the nymphal stage. Species described from Taiwan in the genus Nixe are transferred to the genus Rhithrogeniella: Rh. littoralis (Kang and Yang, 1994) comb. n., Rh. mitifica (Kang and Yang, 1994) comb. n. and Rh. obscura (Kang and Yang, 1994) comb. n.  相似文献   

4.
The genus Lespedeza (Fabaceae) consists of 40 species disjunctively distributed in East Asia and eastern North America. Phylogenetic relationships of all Lespedeza species and closely related genera were reconstructed using maximum parsimony, maximum likelihood, and Bayesian analyses of sequence data from five chloroplast (rpl16, rpl32-trnL, rps16-trnQ, trnL-F, and trnK/matK) and one nuclear (ITS) DNA regions. All analyses yielded consistent relationships among major lineages. Our results suggested that Campylotropis, Kummerowia, and Lespedeza are monophyletic, respectively. Lespedeza is resolved as sister to Kummerowia and these two together are further sister to Campylotropis. Neither of the two subgenera, subgen. Lespedeza and subgen. Macrolespedeza, in Lespedeza based on morphological characters, is recovered as monophyletic. Within Lespedeza, the North American clade is retrieved as sister to the Asian clade. The nuclear and chloroplast markers showed incongruent phylogenetic signals at shallow-level phylogeny, which may point to either introgression or incomplete lineage sorting in Lespedeza. The divergence times within Lespedeza and among related genera were estimated using Bayesian approach with BEAST. It is assumed that following the divergence between Kummerowia and Lespedeza in Asia in the late Miocene, the ancestor of Lespedeza diverged into the North American and the Asian lineages. The North American ancestor quickly migrated to North America through the Bering land bridge in the late Miocene. The North American and Asian lineages started to diversify almost simultaneously in the late Miocene but resulted in biased numbers of species in two continents.  相似文献   

5.
The generic allocation of Indian and Sri Lankan Philautus needs further examination. In this study, a comprehensive understanding of the phylogeny of Indian and Sri Lankan Philautus is obtained based on 12S and 16S rRNA genes. All phylogenetic analyses indicate that Indian-Sri Lankan Philautus, Philautus menglaensis, Philautus longchuanensis, and Philautus gryllus form a well supported clade, separate from Philautus of Sunda Islands that form another well supported clade representing true Philautus. This result supports the designation of the genus Pseudophilautus to accommodate the Indian and Sri Lankan species. Pseudophilautus consists of two major lineages, one comprises the majority of Indian species, Chinese species, and Southeast Asian species, and one comprises all Sri Lankan species and a few Indian species. Pseudophilautus may have originated in South Asia and dispersed into Southeast Asia and China. Based on the results, we further suggest that Philautus cf. gryllus (MNHN1997.5460) belongs to the genus Kurixalus.  相似文献   

6.
The Abildgaardieae tribe within the family Cyperaceae comprises six or seven genera, among which Abildgaardia, Bulbostylis and Fimbristylis pose a challenge regarding their morphological delimitation. Molecular phylogenetic analyses including species of Abildgaardieae are rare, but in most of those studies, Abildgaardia and Fimbristylis appear as more closely related to each other than to the Bulbostylis genus. Duration of the style base has been one of the most widely used characters for delimiting these three genera. The style base is a persistent structure in most species of Bulbostylis and deciduous in Abildgaardia and Fimbristylis. The reasons why the style base may persist or fall off have been scarcely discussed. The assumption that abscission layers are present in the style base of all three genera and the fact that tracheids have been observed in the style base of Bulbostylis suggest that this structure might have histological complexity. In view of this, a complete ontogenetic and anatomical study of the gynoecium has been carried out for all these three genera. It turned out that the style base is histologically simple in Abildgaardia, Bulbostylis and Fimbristylis and shows similar structure and development in all three genera. The fact that the style base has a shorter duration in Abildgaardia and Fimbristylis than in Bulbostylis might be related to the lower number of sclerotised cells that make up such structures in the mature fruit of the former two genera. Abscission of the style and style base may be the result of much simpler reasons than the differentiation of an abscission layer, resulting merely from mechanical shear force effects. Differences among genera have been observed in the shape of the style base and the development of the style. The histological simplicity of the style base is consistent with the homoplastic appearance of this structure in genera that are not closely related (e.g. Rhynchospora). Because of this, while the presence of the thickened style base seems to be a synapomorphy in species of Abildgaardieae, its persistence on or detachment from the fruit might have emerged repeatedly during this clade evolution and might not be a suitable character for genera delimitation.  相似文献   

7.
The phylogeny of Celastraceae tribe Euonymeae (∼230 species in eight genera in both the Old and New Worlds) was inferred using morphological characters together with plastid (matK, trnL-F) and nuclear (ITS and 26S rDNA) genes. Tribe Euonymeae has been defined as those genera of Celastraceae with generally opposite leaves, isomerous carpels, loculicidally dehiscent capsules, and arillate seeds (except Microtropis). Euonymus is the most diverse (129 species) and widely cultivated genus in the tribe. We infer that tribe Euonymeae consists of at least six separate lineages within Celastraceae and that a revised natural classification of the family is needed. Microtropis and Quetzalia are inferred to be distinct sister groups that together are sister to Zinowiewia. The endangered Monimopetalum chinense is an isolated and early derived lineage of Celastraceae that represents an important component of phylogenetic diversity within the family. Hedraianthera is sister to Brassiantha, and we describe a second species (Brassiantha hedraiantheroides A.J. Ford) that represents the first reported occurrence of this genus in Australia. Euonymus globularis, from eastern Australia, is sister to Menepetalum, which is endemic to New Caledonia, and we erect a new genus (Dinghoua R.H. Archer) for it. The Madagascan species of Euonymus are sister to Pleurostylia and recognized as a distinct genus (Astrocassine ined.). Glyptopetalum, Torralbasia, and Xylonymus are all closely related to Euonymus sensu stricto and are questionably distinct from it. Current intrageneric classifications of Euonymus are not completely natural and require revision.  相似文献   

8.
A halophilic, aerobic Gram-negative bacterium, designated strain CVS-6T, was isolated from a sea salt evaporation pond on the Island of Sal in the Cape Verde Archipelago. Phylogenetic analysis of the 16S rRNA gene sequence revealed a clear affiliation of the organism with members of the family Idiomarinaceae. Sequence similarities between CVS-6T and the type strains of the species of the genera Pseudidiomarina and Idiomarina ranged from 93.7% to 96.9%. The major isoprenoid quinone was ubiquinone 8 (Q-8). The major cellular fatty acids were 15:0 iso (21.8%), 17:0 iso (12.5%), 17:1 iso ω9c (10.7%), and 16:1 ω7c (10.6%). The DNA G+C content was 51.6 mol%. The species represented by strain CVS-6T could be distinguished from the species of the genera Pseudidiomarina and Idiomarina; however, it was not possible to distinguish both genera from each other using the phenotypic or chemotaxonomic characteristics examined. Consequently, we propose that the species classified in the genus Pseudidiomarina should be transferred to the genus Idiomarina. We also propose that, on the basis of physiological and biochemical characteristics, strain CVS-6T (=LMG 23123=CIP 108836) represents a new species which we name Idiomarina insulisalsae.  相似文献   

9.
Five remarkable new Afrotropical species belonging to four Old World genera never recorded before for the Afrotropical region (Neophryxe, Calliethilla, Metadrinomyia, Pseudalsomyia) are described and compared with congeners. Existing keys to tropical African tachinid genera are implemented. A brief discussion on the apomorphic support to each genus is provided.  相似文献   

10.
The extinct Southeast Asian primate family Amphipithecidae is regularly cited in discussions of anthropoid origins, but its phylogenetic position remains controversial. In part, the lack of consensus regarding amphipithecid relationships can be attributed to uncertainty regarding the homology of upper molar structures in this group. Here, we describe a virtually pristine upper molar of Pondaungia cotteri from the late middle Eocene Pondaung Formation of Myanmar, which is the first example of a relatively unworn and well-preserved amphipithecid upper molar ever recovered. The distolingual upper molar cusp in this new specimen of Pondaungia appears to be a lingually displaced and enlarged metaconule, rather than a hypocone or pseudohypocone as previous workers have thought. Reassessment of the upper molar morphology of other amphipithecids and putative amphipithecids reveals a very similar pattern in Siamopithecus, Myanmarpithecus and Ganlea, all of which are interpreted as having upper molars showing many of the same derived features apparent in Pondaungia. In contrast, the upper molar morphology of Bugtipithecus diverges radically from that of undoubted amphipithecids, and the latter taxon is excluded from Amphipithecidae on this basis. Phylogenetic analyses of several character–taxon matrices culled from the recent literature and updated to reflect the new information on amphipithecid upper molar morphology yield similar results. Consensus tree topologies derived from these analyses support amphipithecid monophyly and stable relationships within Amphipithecidae. Amphipithecids appear to be stem members of the anthropoid clade.  相似文献   

11.
White-nose syndrome (WNS)  of bats, caused by the fungus previously known as Geomyces destructans, has decimated populations of insectivorous bats in eastern North America. Recent work on fungi associated with bat hibernacula uncovered a large number of species of Geomyces and allies, far exceeding the number of described species. Communication about these species has been hindered by the lack of a modern taxonomic evaluation, and a phylogenetic framework of the group is needed to understand the origin of G. destructans and to target closely related species and their genomes for the purposes of understanding mechanisms of pathogenicity. We addressed these issues by generating DNA sequence data for the internal transcribed spacer (ITS) region, nuclear large subunit (LSU) rDNA, MCM7, RPB2, and TEF1 from a diverse array of Geomyces and allies that included isolates recovered from bat hibernacula as well as those that represent important type species. Phylogenetic analyses indicate Geomyces and allies should be classified in the family Pseudeurotiaceae, and the genera Geomyces, Gymnostellatospora, and Pseudogymnoascus should be recognized as distinct. True Geomyces are restricted to a basal lineage based on phylogenetic placement of the type species, Geomyces auratus. Thus, G. destructans is placed in genus Pseudogymnoascus. The closest relatives of Pseudogymnoascus destructans are members of the Pseudogymnoascus roseus species complex, however, the isolated and long branch of P. destructans indicates that none of the species included in this study are closely related, thus providing further support to the hypothesis that this pathogen is non-native and invasive in eastern North America. Several conidia-producing isolates from bat hibernacula previously identified as members of Pseudeurotium are determined to belong to the genus Leuconeurospora, which is widespread, especially in colder regions. Teberdinia hygrophila is transferred to Pseudeurotium as Pseudeurotium hygrophilum, comb. nov., in accordance with the one name per fungus system of classification, and two additional combinations are made in Pseudogymnoascus including Pseudogymnoascus carnis and Pseudogymnoascus pannorum. Additional sampling from other regions of the world is needed to better understand the evolution and biogeography of this important and diverse group of fungi.  相似文献   

12.
13.
The generic segregates of the widespread fruticose genus Ramalina (mostly based on empirical data on morphology, cortex anatomy and secondary metabolites) are studied using maximum parsimony, maximum likelihood and Bayesian analyses of nuclear LSU and ITS sequences. The species examined include the three species aggregates within Niebla from the western coasts of North America, all species except one assumed to belong to the same genus from Macaronesia and the Mediterranean basin, the type species of Dievernia and Ramalina, and representatives of the genus Fistulariella. The genus Niebla is strongly supported when restricted to species from the New World, and all species referred to it from Macaronesia and the Mediterranean basin belong to Ramalina (R. bourgeana, R. crispatula, R. cupularis, R. hamulosa, R. portosantana, R. rosacea, R. subwebbiana and R. webbii). No support is found for the genera Dievernia and Fistulariella. The internal topology of the large genus Ramalina is unresolved and needs further studies.  相似文献   

14.
Laticifers are highly specialized living plant cells which produce and contain latex. Occurrence of latex was used to establish morphological affinities (i) between Liabeae and other Asteracean tribes, (ii) among the Liabean genera, and (iii) in order to obtain phylogenies within Liabeae. However, structures and types of latex-producing tissues in this tribe have not yet been studied anatomically. In the present paper latex-producing structures of aerial parts in species of Microliabum, Munnozia, and Paranephelius (Liabeae), from open areas in mid-elevation Andean forests and in Andean high-elevation habitats, were studied. In all the analyzed species, latex secretion was easily observed in stem and leaf blade hand sections. Laticifers accompanied vascular tissues in all the cases, throughout stems and leaves, and they were of the articulated anastomosed type, at least in fully developed stages. Laticifers were found facing both, the xylem and the phloem, except for Paranephelius stems, in which they occur merely next to the phloem. Leaf laticifers form a reticulum accompanying the vein system. The type of latex-producing tissue shared by Microliabum and Munnozia could be a character shared by common ancestry whereas the laticifer system of Paranephelius stems could represent an evolutionary novelty for this genus. The laticifer type described in this study in aerial parts of Liabeae may allow establishing morphological affinities with tribes Cichorieae and Arctoteae.  相似文献   

15.
Torrubiella is a genus of arthropod-pathogenic fungi that primarily attacks spiders and scale insects. Based on the morphology of the perithecia, asci, and ascospores, it is classified in Clavicipitaceae s. lat. (Hypocreales), and is considered a close relative of Cordyceps s. 1., which was recently reclassified into three families (Clavicipitaceae s. str., Cordycipitaceae, Ophiocordycipitaceae) and four genera (Cordyceps s. str, Elaphocordyceps, Metacordyceps, and Ophiocordyceps). Torrubiella is distinguished morphologically from Cordyceps s. lat. mainly by the production of superficial perithecia and the absence of a well-developed stipitate stroma. To test and refine evolutionary hypotheses regarding the placement of Torrubiella and its relationship to Cordyceps s. lat., a multi-gene phylogeny was constructed by conducting ML and Bayesian analyses. The monophyly of Torrubiella was rejected by these analyses with species of the genus present in Clavicipitaceae, Cordycipitaceae, and Ophiocordycipitaceae, and often intermixed among species of Cordyceps s. lat. The morphological characters traditionally used to define the genus are, therefore, not phylogenetically informative, with the stipitate stromata being gained and/or lost several times among clavicipitaceous fungi. Two new genera (Conoideocrella, Orbiocrella) are proposed to accommodate two separate lineages of torrubielloid fungi in the Clavicipitaceae s. str. In addition, one species is reclassified in Cordyceps s. str. and three are reclassified in Ophiocordyceps. The phylogenetic importance of anamorphic genera, host affiliation, and stipitate stromata is discussed.  相似文献   

16.
The bacterial endophytic community present in different Phaseolus vulgaris (bean) cultivars was analyzed by 16S ribosomal RNA gene sequences of cultured isolates derived from surface disinfected roots and immature seeds. Isolated endophytes from tissue-macerates belonged to over 50 species in 24 different genera and some isolates from Acinetobacter, Bacillus, Enterococcus, Nocardioides, Paracoccus, Phyllobacterium, and Sphingomonas seem to correspond to new lineages. Phytate solubilizing bacteria were identified among Acinetobacter, Bacillus and Streptomyces bean isolates, phytate is the most abundant reserve of phosphorus in bean and in other seeds. Endophytic rhizobia were not capable of forming nodules. A novel rhizobial species Rhizobium endophyticum was recognized on the basis of DNA–DNA hybridization, sequence of 16S rRNA, recA, rpoB, atpD, dnaK genes, plasmid profiles, and phenotypic characteristics. R. endophyticum is capable of solubilizing phytate, the type strain is CCGE2052 (ATCC BAA-2116; HAMBI 3153) that became fully symbiotic by acquiring the R. tropici CFN299 symbiotic plasmid.  相似文献   

17.
The microsporidium Nosema ceranae is detected in honeybees in Thailand for the first time. This endoparasite has recently been reported to infect most Apis mellifera honeybee colonies in Europe, the US, and parts of Asia, and is suspected to have displaced the endemic endoparasite species, Nosema apis, from the western A. mellifera. We collected and identified species of microsporidia from the European honeybee (A. mellifera), the cavity nesting Asian honeybee (Apis cerana), the dwarf Asian honeybee (Apis florea) and the giant Asian honeybee (Apis dorsata) from colonies in Northern Thailand. We used multiplex PCR technique with two pairs of primers to differentiate N. ceranae from N. apis. From 80 A. mellifera samples, 62 (77.5%) were positively identified for the presence of the N. ceranae. Amongst 46 feral colonies of Asian honeybees (A. cerana, A. florea and A. dorsata) examined for Nosema infections, only N. ceranae could be detected. No N. apis was found in our samples. N. ceranae is found to be the only microsporidium infesting honeybees in Thailand. Moreover, we found the frequencies of N. ceranae infection in native bees to be less than that of A. mellifera.  相似文献   

18.
The Asian Tree Toad genus Pedostibes, as currently understood, exhibits a conspicuously disjunct distribution, posing several immediate questions relating to the biogeography and taxonomy of this poorly known group. The type species, P. tuberculosus and P. kempi, are known only from India, whereas P. hosii, P. rugosus, and P. everetti are restricted to Southeast Asia. Several studies have shown that these allopatric groups are polyphyletic, with the Indian Pedostibes embedded within a primarily South Asian clade of toads, containing the genera Adenomus, Xanthophryne, and Duttaphrynus. Southeast Asian Pedostibes on the other hand, are nested within a Southeast Asian clade, which is the sister lineage to the Southeast Asian river toad genus Phrynoidis. We demonstrate that Indian and Southeast Asian Pedostibes are not only allopatric and polyphyletic, but also exhibit significant differences in morphology and reproductive mode, indicating that the Southeast Asian species’ are not congeneric with the true Pedostibes of India. As a taxonomic solution, we describe a new genus, Rentapia gen. nov. to accommodate the Southeast Asian species.  相似文献   

19.
Two Gram-staining-negative, moderately halophilic bacteria, strains M1-18T and L1-16, were isolated from a saltern located in Huelva (Spain). They were motile, strictly aerobic rods, growing in the presence of 3–25% (w/v) NaCl (optimal growth at 7.5–10% [w/v] NaCl), between pH 4.0 and 9.0 (optimal at pH 6.0–7.0) and at temperatures between 15 and 40 °C (optimal at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparison showed that both strains showed the higher similarity values with Chromohalobacter israelensis ATCC 43985T (95.2–94.8%) and Chromohalobacter salexigens DSM 3043T (95.0–94.9%), and similarity values lower than 94.6% with other species of the genera Chromohalobacter, Kushneria, Cobetia or Halomonas. Multilocus sequence analysis (MLSA) based on the partial sequences of atpA, rpoD and secA housekeeping genes indicated that the new isolates formed an independent and monophyletic branch that was related to the peripheral genera of the family Halomonadaceae, Halotalea, Carnimonas and Zymobacter, supporting their placement as a new genus of the Halomonadaceae. The DNA–DNA hybridization between both strains was 82%, whereas the values between strain M1-18T and the most closely related species of Chromohalobacter and Kushneria were equal or lower to 48%. The major cellular fatty acids were C18:1ω7c/C18:1ω6c, C16:0, and C16:1ω7c/C16:1ω6c, a profile that differentiate this new taxon from species of the related genera. We propose the placement of both strains as a novel genus and species, within the family Halomonadaceae, with the name Larsenia salina gen. nov., sp. nov. The type strain is M1-18T (= CCM 8464 = CECT 8192T = IBRC-M 10767T = LMG 27461T).  相似文献   

20.
Zhibin Wen  Mingli Zhang 《Flora》2011,206(8):720-730
To examine the anatomical types in Salsoleae s.l., and evaluate carbon isotope fractionation values for identifying the respective photosynthetic pathway, a total of 34 species representing 12 genera of Salsoleae s.l. in China were examined using light microscopy and carbon 13C/12C isotope fractionation. There are nine leaf anatomical types, namely, Sympegmoid (Sympegmoid type, Sympegmoid type II), Salsoloid with hypodermis (Salsola soda type, Salsola soda type II, Nanophyton type II), Salsoloid without hypodermis (Salsola kali type, Salsola kali type II, Nanophyton type, Climacoptera type II). Salsola soda type and Salsola soda type II are found in the assimilating shoots. Two new subtypes, Salsola soda type II and Nanophyton type II are reported. Anabasis brevifolia, A. eriopoda, A. elatior, A. truncata and A. salsa are of the Salsola soda type II, with a distinctive two-layered epidermis cells. Horaninowia ulicina is of the Nanophyton type II with hypodermis which distinguished from Nanophyton type; Both, Salsola kali type and Climacoptera type II exist in Climacoptera. The Climacoptera type II is distinguished from Climacoptera type by an adaxially interrupted Kranz layer. Salsola collina, S. zaidamica, S. praecox, S. pellucida and S. ruthenica in Salsola sect. Salsola have the Salsola kali type II. The Salsola kali type differs from Salsola kali type II having the palisade and Kranz cells interrupted by longitudinal collenchymatic ridges. Although carbon isotope fractionation data alone are already useful tools to identify photosynthesis, their determination in combination with other approaches, such as anatomical studies are necessary in order to render a structuring of all possibilities evolved among C4 type Chenopodiaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号