首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
The 1855-nucleotide long DNA sequence of part of the gene cluster for the proton-translocating ATPase from E. coli was determined by the method of Maxam-Gilbert. The sequence covers the genes for the β and ε subunits of F1 along with the flanking region. The amino acid sequence of these subunits deduced from the nucleotide sequence indicates that the β and ε subunits have 459 and 138 amino acids, respectively. The possible secondary structure of the both subunits was estimated from the deduced primary structures. A possible nucleotide binding site in the β subunit is also discussed on the basis of the primary and secondary structures. The codons used in the genes for all the components of F1F0 were different in different genes, suggesting that the amount of each subunit in the F1F0 is determined to some extent on a translational level.  相似文献   

2.
A nucleotide sequence of 2328 base pairs comprising a portion of the gene cluster for the proton-translocating ATPase of E. coli was determined. The sequence covers most of the gene for α subunit, the entire gene for γ subunit and the amino terminal portion of the gene for β subunit, along with the flanking regions of these genes. The amino acid sequences of these subunits deduced from the DNA sequences indicate that the α and γ subunits have 513 and 287 amino acid residues, respectively. A possible secondary structure for each subunit was estimated from the inferred primary structure. The intercistronic regions between the genes for α and γ and between γ and β are 49 and 26 base pairs, respectively. The significance of codon usage in these genes is discussed in correlation with their expression.  相似文献   

3.
The three major subunits (α, β and γ) of the coupling factor, F1 ATPase, of Escherichia coli were separated and purified by hydrophobic column chromatography after the enzyme was dissociated by cold inactivation. The ability to hydrolyze ATP was reconstituted by dialyzing the mixture of subunits against 0.05 M Tris-succinate, pH 6.0, containing 2 mM ATP and 2 mM MgCl2. A mixture containing α, β and γ regained ATP hydrolyzing activity. Individual subunits alone or mixtures of any two subunits did not develop ATPase activity, except for a low but significant activity with α plus β. The reconstituted ATPase had a Km of 0.23 mM for ATP and a molecular weight by sucrose gradient density centrifugation of about 280,000.  相似文献   

4.
F1-ATPase was isolated from yeast S.cerevisiae. The constituent subunits 1 and 2 were purified by gel permeation chromatography, and their amino acid compositions determined. Both subunits have a similar composition except for 12 cystine, methionine, leucine, histidine, and tryptophan. When F1 is treated for three hours with 5′-p-[3H]fluorosulfonylbenzoyl adenosine in dimethylsulfoxide, 90% of the activity is lost. Disc gel electrophoresis of the modified complex showed that over 90% of the label was associated with subunit 2. A labelled peptide from a S.aureus digest of subunit 2 was isolated and sequenced. It had the following amino acid sequence: His-Try1-Asp-Val-Ala-Ser-Lys-Val-Gln-Glu, whereby Tyr1 is the modified amino acid residue. This sequence shows homology to other sequences obtained from maize, beef heart, and E.coli F1-ATPases.  相似文献   

5.
6.
7.
Responsiveness of mouse strains after phase-specific immunization with Trichinella spiralis is compared. Two strains (NFRN, NFS/N) showed strong overall responsiveness. The response type could be characterized in phase-specific terms as: strongly anti-adult, weakly to moderately anti-preadult, and strongly antifecundity. By comparison, congenic mice of the C57B1 10Sn background (B10·A, B10·D2, B10·S, B10·Q) displayed poor total responses that could be characterized as: weakly anti-adult, very weakly anti-preadult, weakly anti-fecundity after preadult immunization, and mixed (weak and strong) after adult immunization. The C3HHeJ mouse appeared to be intermediate between the B10·BR and the NFRN strains in overall responsiveness. Genetic determinants of anti-preadult or anti-adult responses of NFRN strain mice were dominant over their B10 congenic counterparts as shown in F1, crosses of NFRN × B1O·BR mice. Since the NFRN (predominantly H-2q) and the NFSN (H-2S) are both strong responders, while the B10·Q(H-2q) and B10·S (H-2S) are weak, it is suggested that the major genes controlling anti-preadult and anti-adult responses are not linked to the major histocompatibility complex. However, variations in anti-adult immunity and anti-fecundity in the B10 congenic mice (B10·Q and B10·S are the strongest responders) suggest that minor genes linked to the MHC exert some control over these responses. Some evidence was obtained for gene complementation as the F1 cross of NFRN and NFSN mice responded more vigorously than the parental lines. We conclude that multiple genes determine anti-T. spiralis intestinal responses in mice. The major genes are unlinked to the major histocompatibility complex whereas several minor genes are linked.  相似文献   

8.
ATPase activity was restored to the inactive coupling factor, F1ATPase, of Escherichia coli strain AN120 (uncA401) by reconstitution of the dissociated complex with an excess of wild-type α subunit. Large excesses of α gave the highest levels of activity. The other subunits which are required for the reconstitution of ATPase activity, β and γ, did not complement the mutant enzyme. These results indicate that the α polypeptide of the AN120 ATPase is defective.  相似文献   

9.
Three forms of the 50 S ribosomal subunit of Escherichia coli have been separated by agarose/acrylamide gel electrophoresis. The slowest migrating form, S-50 S, corresponded to native 50 S subunits and contained four copies of proteins L7L12. Removal of the four copies of this protein produced a more rapidly migrating form, M-50 S. The M-50 S form was then converted to the fastest migrating form, F-50 S, by removal of additional proteins, including L10 and L11. A one-step removal of a pentameric complex of four copies of L7L12 plus L10 converted the S-50 S subunit directly to the F-50 S subunit. These proteins recombined specifically with the appropriate protein-deficient 50 S subunit at 3 °C to reform the S-50 S subunit, i.e. the M-50 S subunit was converted back to the S-50 S form by the addition of purified proteins L7L12; and the F-50 S subunit bound the pentameric complex of L7L12 and L10 to form S-50 S. The binding of the pentameric complex, isolated by glycerol gradient centrifugation, supports the model that all four copies of proteins L7L12 are together in one part of the ribosome called the “L7L12 stalk”. Only the four copies of L7L12 were removed from the 50 S subunit in low salt (0.125 m-NH4Cl) plus 50% ethanol at 0 °C. These ribosomes (in the M-50 S form) had less than 5% of the peptide-synthesizing activity of untreated control ribosomes as measured by a poly(U) translation system in vitro. Peptide-synthesizing activity was restored, upon addition of L7L12, back to the treated ribosomes to give 50 S subunits (S-50 S) with a full complement of four copies of L7L12. Antibody to proteins L7L12 bound only to the S-50 S subunits, producing four new bands separated by gel electrophoresis. The bands represented complexes of one, two, three and four antibodies bound to a 50 S subunit. This result was obtained using either 50 S subunits or 70 S tight couples and indicated that all four copies of L7L12 are either located at a single site in the L7L12 stalk or, much less likely, are divided between two symmetrical sites. Proteins L7L12 were not only accessible to their specific antibody but could also be removed from 70 S ribosomes and polyribosomes without causing their dissociation into subunits. The ribosomes and polyribosomes had an increased gel electrophoretic mobility which was reversed by addition of proteins L7L12.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号