首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A nodulin-35 (N-35) cDNA encoding nodule-specific uricase (EC 1.7.3.3.) was isolated from a Vigna aconitifolia (mothbean) root nodule cDNA library. Sequence analysis of Vigna uricase (VN-35) cDNA revealed 90% homology to that of soybean. The VN-35 cDNA was inserted in the antisense orientation downstream of the CaMV—35S promoter, and transgenic hairy roots were formed on Vigna plants using Agrobacterium rhizogenes . Infection with Bradyrhizobium (cowpea) gave rise to root nodules on transgenic hairy roots supported by the wild-type shoot. Expression of antisense VN-35 RNA was detected in transgenic nodules on individual roots using polymerase chain reaction (PCR). The nodules expressing antisense VN-35 RNA were smaller in size and showed lower uricase activity than nodules formed on the hairy roots transformed with a binary vector containing β-glucuronidase (GUS) gene (used as control), and the plants exhibited nitrogen deficiency symptoms. Ultrastructural analysis and immunogold labeling with antibody against soybean N-35 revealed that the growth of peroxisomes was retarded in transgenic nodules expressing antisense VN-35 RNA. These data suggest that a reduction in ureide biosynthesis limits the availability of symbiotically reduced nitrogen to the plant. The nodules of tropical legumes appear to be specialized in nitrogen assimilation and are developmentally controlled to produce and transport ureides.  相似文献   

2.
3.
4.
5.
In soybean root nodules the enzyme uricase is expressed concomitantly with nodule development. The initial expression of this protein does not depend on active nitrogen fixation, as demonstrated by analysis of uricase activity in effective and ineffective root nodules. However, the maximal level of uricase activity is determined by the infecting Rhizobium japonicum strain. Sterile root cultures and callus tissue, devoid of the microsymbiont, were incubated at varying oxygen concentrations and analyzed for uricase activity. The specific activity of uricase was increased by lowering the oxygen concentration, with the highest activity obtained around 4−5% oxygen. The increase in uricase activity was due to increased uricase synthesis, as demonstrated by in vivo labelling of callus culture followed by immunoprecipitation with antibodies raised against highly purified nodule uricase.  相似文献   

6.
7.
Nodulin-35, a protein specific to soybean root nodules, was purified under non-denaturing conditions (DEAE-cellulose followed by Sephacryl S-200 chromatography) to homogeneity. The holoprotein showed uricase (EC 1.7.3.3) activity. Analytical ultracentrifugation under non-denaturing conditions revealed a molecule of 124 kd, S°20W = 8.1; however, under denaturing conditions a value of 33 kd, S°20W = 1.9, was obtained. This indicated that nodulin-35 is the 33-kd subunit of a specific soybean root nodule uricase (uricase II) and that the enzyme contains four similar subunits. The native molecule contains ˜1.0 mol Cu2+ per mol, has an isoelectric point of ˜9.0 and a pH optimum for uricase activity at 9.5. Uricase activity found in young uninfected soybean roots is due to another form of enzyme (uricase I) which is of ˜190 kd, has maximum activity at pH 8.0 and does not contain any subunit corresponding in size to nodulin-35. Uricase I, also present in young infected roots, declines at a time when nodulin-35 appears. Monospecific antibodies prepared against uricase II (nodulin-35) showed no cross-reactivity. Uricase II was localized in the uninfected cells of the nodule tissue. These results are consistent with the concept that a nodule-specific ureide metabolism takes place in peroxisomes of uninfected cells, and suggest the participation of uricase II in this pathway.  相似文献   

8.
The appearance of enzymes involved in the formation of ureides, allantoin, and allantoic acid, from inosine 5′-monophosphate was analyzed in developing root nodules of soybean (Glycine max). Concomitant with development of effective nodules, a substantial increase in specific activities of the enzymes 5′-nucleotidase (35-fold), purine nucleosidase (10-fold), xanthine dehydrogenase (25-fold), and uricase (200-fold), over root levels was observed. The specific activity of allantoinase remained constant during nodule development. With ineffective nodules the activities were generally lower than in effective nodules; however, the activities of 5′-nucleotidase and allantoinase were 2-fold higher in ineffective nodules unable to synthesize leghemoglobin than in effective nodules. Since the expression of uricase has been shown to be regulated by oxygen (K Larsen, BU Jochimsen 1986 EMBO J 5: 15-19), the expression of the remaining enzymes in the purine catabolic pathway were tested in response to variations in O2 concentration in sterile soybean callus tissue. Purine nucleosidase responded to this treatment, exhibiting a 4-fold increase in activity around 2% O2. 5′-Nucleotidase, xanthine dehydrogenase, and allantoinase remained unaffected by variations in the O2 concentration. Hence, the expression of two enzymes involved in ureide formation, purine nucleosidase and uricase, has been demonstrated to be influenced by O2 concentration.  相似文献   

9.
Enzymes of ureide synthesis in pea and soybean   总被引:7,自引:3,他引:4  
Soybean (Glycine max) and pea (Pisum sativum) differ in the transport of fixed nitrogen from nodules to shoots. The dominant nitrogen transport compounds for soybean are ureides, while amides dominate in pea. A possible enzymic basis for this difference was examined.

The level of enzymes involved in the formation of the ureides allantoin and allantoic acid from inosine 5′-monophosphate (IMP) was compared in different tissues of pea and soybean. Two enzymes, 5′-nucleotidase and uricase, from soybean nodules were found to be 50- and 25-fold higher, respectively, than the level found in pea nodules. Other purine catabolizing enzymes (purine nucleosidase, xanthine dehydrogenase, and allantoinase) were found to be at the same level in the two species. From comparison of enzyme activities in nodules with those from roots, stems, and leaves, two enzymes were found to be nodule specific, namely uricase and xanthine dehydrogenase. The level of enzymes found in the bacteroids indicated no significant contribution of Rhizobium japonicum purine catabolism in the overall formation of ureides in the soybean nodule. The presence in the nodules of purine nucleosidase and ribokinase activities makes a recirculation of the ribose moiety possible. In concert with phosphoribosylpyrophosphate synthetase, ribose becomes available for a new round of purine de novo synthesis, and thereby ureide formation.

  相似文献   

10.
We identified a gene encoding a soluble quinoprotein glucose dehydrogenase homologue in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The enzyme was extremely thermostable, and the activity of the pyrroloquinoline quinone (PQQ)-bound holoenzyme was not lost after incubation at 100 °C for 10 min. The crystal structure of the enzyme was determined in both the apoform and as the PQQ-bound holoenzyme. The overall fold of the P. aerophilum enzyme showed significant similarity to that of soluble quinoprotein aldose sugar dehydrogenase (Asd) from E. coli. However, clear topological differences were observed in the two long loops around the PQQ-binding sites of the two enzymes. Structural comparison revealed that the hyperthermostability of the P. aerophilum enzyme is likely attributable to the presence of an extensive aromatic pair network located around a β-sheet involving N- and C-terminal β-strands.  相似文献   

11.
Cloning and sequence analysis of cDNA for rat liver uricase   总被引:2,自引:0,他引:2  
We have isolated cDNA clones for rat liver uricase using an oligonucleotide corresponding to the N-terminal sequence of 8 amino acids. The nucleotide sequences of the cDNAs have been determined, and the amino acid sequence of the protein deduced. A 867-base open reading frame coding for 289 amino acids, corresponding to a molecular mass of 33,274 daltons, was confirmed by matching eight sequences of a total of 53 amino acids from peptide sequence analyses of the fragments generated by lysyl endopeptidase digestion of purified rat liver uricase. The deduced amino acid sequence of rat liver uricase shares 40% homology with that of soybean nodulin-specific uricase and has an N-terminal extension of 7 amino acids. In contrast, soybean uricase has a C-terminal extension of 12 amino acids, which is presumably the result of local gene duplication. Completely different N- and C-terminal structures of the two uricases suggest that the signals for targeting the proteins to the peroxisome are not located on the terminal continuous stretches of amino acids.  相似文献   

12.
Rat PEX12 cDNA was isolated by functional complementation of peroxisome deficiency of a mutant CHO cell line, ZP109 (K. Okumoto, A. Bogaki, K. Tateishi, T. Tsukamoto, T. Osumi, N. Shimozawa, Y. Suzuki, T. Orii, and Y. Fujiki, Exp. Cell Res. 233:11–20, 1997), using a transient transfection assay and an ectopic, readily visible marker, green fluorescent protein. This cDNA encodes a 359-amino-acid membrane protein of peroxisomes with two transmembrane segments and a cysteine-rich zinc finger, the RING motif. A stable transformant of ZP109 with the PEX12 was morphologically and biochemically restored for peroxisome biogenesis. Pex12p was shown by expression of bona fide as well as epitope-tagged Pex12p to expose both N- and C-terminal regions to the cytosol. Fibroblasts derived from patients with the peroxisome deficiency Zellweger syndrome of complementation group III (CG-III) were also complemented for peroxisome biogenesis with PEX12. Two unrelated patients of this group manifesting peroxisome deficiency disorders possessed homozygous, inactivating PEX12 mutations: in one, Arg180Thr by one point mutation, and in the other, deletion of two nucleotides in codons for 291Asn and 292Ser, creating an apparently unchanged codon for Asn and a codon 292 for termination. These results indicate that the gene encoding peroxisome assembly factor Pex12p is a pathogenic gene of CG-III peroxisome deficiency. Moreover, truncation and site mutation studies, including patient PEX12 analysis, demonstrated that the cytoplasmically oriented N- and C-terminal parts of Pex12p are essential for biological function.  相似文献   

13.
The effect of lowering oxygen concentration on the expression of nodulin genes in soybean callus tissue devoid of the microsymbiont has been examined. Poly(A)+ RNA was isolated from tissue cultivated in 4% oxygen and in normal atmosphere.Quantitative mRNA hybridization experiments using nodule-specific uricase (Nodulin-35) and sucrose synthase (Nodulin-100) cDNA probes confirmed that the synthesis of the uricase and sucrose synthase is controlled by oxygen at the mRNA level.The steady-state levels of uricase and sucrose synthase mRNA increased significantly (5–6- and 4-fold respectively) when the callus tissue was incubated at reduced oxygen concentration. Concomitant with the increase in mRNA level a 6-fold increase in specific activity of sucrose synthase was observed.Two messengers representing poly-ubiquitin precursors also responded to lowering the oxygen concentration. The increase was about 5-fold at 4% oxygen. No expression at atmospheric oxygen or in response to low oxygen was observed when using cDNA probes for other nodulin genes such as leghemoglobin c3, nodulin-22 and nodulin-44.  相似文献   

14.
15.
Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide.  相似文献   

16.
17.
Immunogold labeling was used to study the time of appearance and distribution of a nodule-specific form of uricase (EC 1.7.3.3) in developing nodules of soybean (Glycine max (L.) Merr.) inoculated with Bradyrhizobium japonicum. The enzyme was detected in thin sections of tissue embedded in either L R White acrylic resin or Spurr's epoxy resin, by employing a polyclonal antibody preparation active against a subunit of soybean nodule uricase. Antigenicity was better preserved in L R White resin, but ultrastructure was better maintained in Spurr's. Uricase was first detectable with protein A-gold in young, developing peroxisomes in uninfected cells, coincident with the release of Bradyrhizobium bacteroids from infection threads in adjacent infected cells. As the peroxisomes enlarged, labeling of the dense peroxisomal matrix increased. Gold particles were never observed over the paracrystalline inclusions of peroxisomes, however. Despite a close association between enlarging peroxisomes and tubular endoplasmic reticulum, uricase was not detectable in the latter. In mature nodules, labeling of uricase was limited to the large peroxisomes in uninfected cells. Small peroxisome-like bodies present in infected cells did not become labeled.Abbreviations BSA bovine serum albumin - Da dalton - ER endoplasmic reticulum - IgG immunoglobulin G  相似文献   

18.
We have examined soluble oat (Avena sativa) arginine decarboxylase by probing its structure with polyclonal antibodies that separately recognize amino-terminal and carboxyl-terminal antigens and with a monoclonal antibody that immunoprecipitates enzyme activity. These experiments indicated that oat arginine decarboxylase is clipped from a 66,000-D precursor polypeptide into 42,000- and 24,000-D produce polypeptides. Both of these are found in the enzyme and may be held together by disulfide bonds. A full-length precursor protein could not be detected in plants but could be produced by expression of the cDNA in Escherichia coli. Analysis of the expression of the cDNA in E. coli, with antibodies and using pulse labeling with [35S]methionine, indicated that the bulk of the expressed protein was the full-length 66,000-D form. Small amounts of 42,000- and 24,000-D polypeptides could also be detected. A reconstruction experiment, adding a radioactively labeled full-length protein isolated from E. coli to powdered oat leaves, supported the idea that the protein extraction method used for western blots was not likely to result in artifactual proteolytic degradation.  相似文献   

19.
Aspergillus terreus produces a unique enzyme, blasticidin S deaminase, which catalyzes the deamination of blasticidin S (BS), and in consequence confers high resistance to the antibiotic. A cDNA clone derived from the structural gene for BS deaminase (BSD) was isolated by transforming Escherichia coli with an Aspergillus cDNA expression library and directly selecting for the ability to grow in the presence of the antibiotic. The complete nucleotide sequene of BSD was determined and proved to contain an open reading frame of 393 bp, encoding a polypeptide of 130 amino acids. Comparison of its nulceotide sequence with that of bsr, the BS deaminase gene isolated from Bacillus cereus, indicated no homology and a large difference in codon usage. The activity of BSD expressed in E. coli was easily quantified by an assay based on spectrophotometric recording. The BSD gene was placed in a shuttle vector for Schizosaccharomyces pombe, downstream of the SV40 early region promoter, and this allowed direct selection with BS at high frequency, following transformation into the yeast. The BSD gene was also employed as a selectable marker for Pyricularia oryzae, which could not be transformed to BS resistance by bsr. These results promise that the BSD gene will be useful as a new dominant selectable marker for eukaryotes.  相似文献   

20.
Most organisms, from Escherichia coli to humans, use the ‘universal’ genetic code, which have been unchanged or ‘frozen’ for billions of years. It has been argued that codon reassignment causes mistranslation of genetic information, and must be lethal. In this study, we successfully reassigned the UAG triplet from a stop to a sense codon in the E. coli genome, by eliminating the UAG-recognizing release factor, an essential cellular component, from the bacterium. Only a few genetic modifications of E. coli were needed to circumvent the lethality of codon reassignment; erasing all UAG triplets from the genome was unnecessary. Thus, UAG was assigned unambiguously to a natural or non-natural amino acid, according to the specificity of the UAG-decoding tRNA. The result reveals the unexpected flexibility of the genetic code.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号