首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study of the concentrations of Cr, Zn, Cd, Pb, Ni, and Cu in soils under different land uses in rural, semi-urban, and urban zones in the Niger Delta was carried out with a view to providing information on the effects of the different land uses on the concentrations of trace elements in soils. Our results indicate significant variability in concentrations of these metals in soils under different land uses in rural, semi-urban, and urban zones. The maximum concentrations of metals in the examined soil samples were 707.5 mg.kg?1, 161.0 mg.kg?1, 2.6 mg.kg?1, 59.6 mg.kg?1, 1061.3 mg.kg?1, and 189.2 mg.kg?1 for Cr, Zn, Cd, Pb, Ni, and Cu, respectively. In the rural zone, the cassava processing mill is a potent source of Ni, Cr, Cu, and Zn while agricultural activities are a source of Cd, and automobile emissions and the use of lead oxide batteries constitute the major sources of Pb. In the urban zone, soils around the wood processing mill showed elevated concentrations of Cu, Cr, Zn, and Ni, while soils around automobile mechanic works and motor parks showed elevated levels of Pb. Elevated Cd concentrations were observed in soils under the following land uses: urban motor park, playground, welding and fabrication sheds, and metallic scrap dump. The contamination/pollution index of metals in the soil follows the order: Ni > Cd > Cr > Zn > Cu > Pb. The multiple pollution index of metals at different sites were greater than 1, indicating that these soils fit into “slight pollution” to “excessive pollution” ranges with significant contributions from Cr, Zn, Cd, Ni, and Cu.  相似文献   

2.
The adverse effect of seafood consumption on human health is related to the bioaccessibility in contrast with the total heavy metal level in the tissues. In this study, bioaccessibility of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in Mediterranean mussel (Mytilus galloprovincialis Lamarck, 1819) edible soft tissues collected along the southern Black Sea coast were investigated using in vitro digestion model. Total Pb concentration in the tissues was found to be higher than the maximum permissible limits set by European Commission. The bioaccessibility of metals in the tissues was found to be decreased in the order: Ni (83.11%) > Cu (80.47%) > Zn (76.86%) > Cd (73.32%) > Mn (69.11%) > Pb (61.07%) > Cr (58.44%). While significant positive linear regression was observed between total and bioaccessible concentrations for Mn, Pb, and Ni, significant negative linear regression was found for Cd (p < .05). The hazard quotients (HQ) calculated using bioaccessible amount were detected lower than the limit (HQ <1), which may not pose a potential hazard to humans reported by US Environmental Protection Agency. In sum, mussel consumption from sampling sites may cause a potential risk concerning human health especially for Cd and Pb in case of increased portion sizes.  相似文献   

3.
Instead of total metal concentration measurements in seafood, bioaccessibility is a more important parameter for human health risk assessment. Therefore, bioaccessibility of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in the edible soft tissues of rapa whelk (Rapana venosa Valenciennes, 1846) collected along the southern Black Sea coast were investigated using an in vitro digestion model. Zn was detected at the highest concentration, whereas Ni was the lowest for total metal concentrations. Total Cd and Pb concentration in the tissues were found to be higher than maximum permissible limits set by European Commission. The bioaccessibility of metals in the tissues was found to be decreased in the order: Cu (77.11%) > Cd (70.13%) > Zn (64.52%) > Ni (61.27%) > Pb (50.53%) > Cr (43.41%) > Mn (22.59%). While significant positive linear regressions were observed between the total and bioaccessible concentrations for Mn, Pb, and Ni, significant negative linear regressions were found for Cd in the tissues (p < 0.05). The hazard quotients (HQ) calculated using bioaccessible heavy metal amount were detected lower than the limit value (HQ < 1), which may not pose a potential hazard to humans declared by US Environmental Protection Agency. However, the consumption of rapa whelk may cause a potential risk concerning human health for the Cd and Pb levels in case of increased serving sizes and portions.  相似文献   

4.
This study aimed to assess the drinking water quality and human potential health risk in Peshawar, which is the most populous district of Khyber Pakhtunkhwa Province, Pakistan. Water was randomly collected throughout Peshawar District (urban = 45 samples and rural = 29 samples). These samples were analyzed for heavy metal (As, Cd, Co, Cu, Cr, Hg, Ni, Pb, and Zn) concentrations using the atomic absorption spectrometer (Perkin Elmer, AAS-PEA-700). Heavy metal concentrations in drinking water revealed the highest pollution index (PI) values—17.80, 11.92, 7.50, and 5.70 for the Pb, Cr, Cd, and Ni, respectively. The contaminations of Cd and Pb were significantly higher (p < .05) than their maximum allowable limits set by the World Health Organization. Heavy metal contaminations in drinking water were evaluated for health risk assessment: the chronic risk or hazard quotient (HQ) and cancer risk. Results revealed that HQ values were >1 for the Cd and Pb, suggesting that the exposed human beings could be at chronic risk. Therefore, serious measures such as drinking water treatments and contamination controlling policies are needed to avoid the hazardous effects of toxic heavy metals.  相似文献   

5.
Abstract

A total of 83 dust samples were collected from the streets of Urumqi city in NW China and analyzed for the concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn elements. The spatial distribution, contamination levels, main sources, and potential health risks of these trace elements were determined based on geostatistical analysis, geo-accumulation index, multivariate analysis, and the health risk assessment model introduced by the USEPA, respectively. The obtained results indicate that the average concentrations of Cd, Cr, Cu, Hg, Ni, Pb, and Zn exceed the corresponding background values determined in Xinjiang soils by factors of 2.0, 1.35, 1.38, 8.24, 1.28, 2.09, and 3.26, respectively. The spatial distribution patterns of the nine trace elements in street dust were found to be substantially heterogeneous, and the contamination level decreased in the following order: Hg?>?Zn?>?Pb?>?Cd?>?Cr?>?Cu?>?As?>?Ni?>?Mn. Based on the identified concentrations, the collected dust samples were found to be moderately polluted by Hg, and not polluted by As, Cr, Cu, Mn, and Ni. The remaining elements, Cd, Pb, and Zn lie on the borderline between non-pollution and moderate pollution levels. Furthermore, it was shown that Mn and Zn in street dusts originate from both, natural and anthropogenic sources, while As, Cd, Cr, Cu, Hg, Ni, and Pb are mainly produced by anthropogenic sources. Overall, the carcinogenic and non-carcinogenic health risks of the analyzed elements, instigated primarily by oral ingestion of street dusts, were found to be within the acceptable range for both, children and adults. As and Cr are the main non-carcinogenic elements, whereas Cr is the major carcinogenic element among the investigated dust-bound metals in the study area.  相似文献   

6.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

7.
The present study was conducted to assess the suitability of sewage sludge amendment (SSA) in soil for Beta vulgaris var. saccharifera (sugar beet) by evaluating the heavy metal accumulation and physiological responses of plants grown at a 10%, 25%, and 50% sewage sludge amendment rate. The sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently increasing accumulation in plant parts. Cd, Pb, Ni, and Cu concentrations in roots were significantly higher in plants grown at 25% as compared to 50% SSA; however, Cr and Zn concentration was higher at 50% than 25% SSA. The concentrations of heavy metal showed a trend of Zn > Ni > Cu > Cr > Pb > Cd in roots and Zn > Cu > Ni > Cr > Pb > Cd in leaves. The only instance in which the chlorophyll content did not increase after the sewage sludge treatments was 50%. There were approximately 1.12-fold differences between the control and 50% sewage sludge application for chlorophyll content. The sewage sludge amendment led to a significant increase in Pb, Cr, Cd, Cu, Zn, and Ni concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency (US EPA). The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake and the leaf and root concentrations of Ni, Zn, Cd, Cu, Cr, Pb, and Zn in plants as compared to those grown on unamended soil. More accumulation occurred in roots and leaves than in shoots for most of the heavy metals. The concentrations of Cd, Cr, and Pb were more than the permissible limits of national standards in the edible portion of sugar beet grown on different sewage sludge amendment ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet may not be a good option due to risk of contamination of Cr, Pb, and Cd.  相似文献   

8.
We conducted an investigation of heavy metal concentrations in Manila clams (Ruditapes philippinarum) and surface sediments after the Dalian Port oil spill. Samples were collected from three mariculture zones (Jinshitan, Dalijia, and Pikou) along the Dalian coast. Heavy metal concentrations in R. philippinarum were consistent and ranked in decreasing order of Zn > Cu > As > Cr > Pb > Cd > Hg, while concentrations in surface sediments were ranked as Zn > Cr > Cu > Pb > As > Cd > Hg, respectively. Bioaccumulation of Zn, Cd, and Hg had obviously occurred in R. philippinarum. Statistically significant correlations (p?<?0.05) between concentrations of Pb, Cd, and Hg in R. philippinarum and in surface sediments were observed. Except for Cr and As, heavy metal concentrations in R. philippinarum were well within the legal limits for human consumption.  相似文献   

9.
桂林市龙胜县作为罗汉果的三大主产区之一,种植区土壤重金属含量及罗汉果质量影响到该区罗汉果产业的健康发展。为探索龙胜县丘陵山区典型贫困村罗汉果园的安全性,该文研究了宝赠村典型罗汉果园土壤及罗汉果果实中砷、铜、锌、铅、镉、铬、汞7种重金属含量,并采用Hankanson指数法分析了其潜在生态风险。结果表明:(1)龙胜丘陵山区罗汉果园土壤(0~10 cm,10~20 cm)重金属含量均达到国家农业用地土壤筛选值标准(GB15618-2018),其中0~10 cm土壤中砷、铜、锌、铅、镉、铬、汞的含量分别为3.67、18.00、58.39、17.01、0.10、28.57、0.08 mg·kg-1,10~20 cm土壤中砷、铜、锌、铅、镉、铬、汞的含量分别为1.93、12.56、21.47、10.51、0.04、17.09、0.02 mg·kg-1。(2)在0~10 cm和10~20 cm土层中,重金属的生态风险状况总体上处于轻微生态风险等级,综合生态风险指数分别为105.29和38.96;0~10 cm土层不同重金属潜在的生态风险顺序为汞>镉>铅>铜>砷>锌>铬,汞、镉的生态风险分别为50.16、42.05,在总重金属风险中贡献率分别占所有重金属的47.6%和39.9%,已达中等生态风险等级;在10~20 cm土层中,7种重金属的生态风险大小关系为镉>汞>铜>铅>砷>铬>锌。(3)研究区罗汉果果实中砷、铜、锌、铅、镉、铬、汞的含量分别为0.00024、0.273、1.10、0.0016、0.00013、0.00013、0.00012 mg·kg-1,其生态风险状况均处于轻微风险等级,7种重金属的生态风险顺序为汞>铜>镉>锌>铅>砷>铬,综合生态风险指数为0.21193,几乎不存在生态风险。因此,在龙胜县丘陵山区典型贫困村——乐江镇宝赠村推广种植的罗汉果达到了安全质量标准。  相似文献   

10.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

11.
The effect of Cd, Cu, Zn, Hg, and Pb solutions at various concentrations, on the restoration potential of the leaves ofPortulaca oleracea was tested. All the trace metals completely affected the shoot regeneration. The degree of their effect on root regeneration, however, varied. Early initiation of parental leaf decay was also observed. The order of their relative effect on the regeneration process was: Cd > Cu > Zn > Hg > Pb.  相似文献   

12.
Abstract

A detailed investigation was conducted to understand the contamination characteristics of a selected set of heavy metals (HMs) in 34 campus dust samples from Huaxi University Town. The HMs spatial distribution analysis based on ArcGIS software, the geo-accumulation index (Igeo) and health risk model were employed for evaluation, and multivariate statistical methods were used to identify possible sources. Results showed that the mean concentrations of Cu, Zn, Pb, Cr, Ni, and Cd were 68.18, 123.81, 45.26, 140.36, 47.26, and 0.47?mg/kg, respectively. The spatial distribution characteristics displayed that the relatively large concentrations for the analyzed HMs were mainly located at both teaching areas and students’ dormitory areas. The average values of Igeo indicated that HMs contamination level followed the decreasing trend of Cd?>?Cu?>?Cr?>?Pb?>?Ni?>?Zn. The health risk assessment results indicated that HMs in campus dust generally do not pose any immediate health risk for both adult males and adult females but the cumulative effect is a matter of concern. The sources analyses demonstrated that Cu, Zn, Cr, and Cd, primarily from motor vehicle emission and waste incineration, Pb predominantly originated from construction source, while Ni had the mixed sources of nature and traffic.  相似文献   

13.
Abstract

In this study, the concentrations and health risks of heavy metals (Cu, Pb, Zn, Ni, Co, Cd, and Cr) in indoor dust are investigated in the vicinity of the Xinqiao mining area, Tongling, China. Results indicate that heavy metals except Co were clearly enriched in indoor dust. Especially Cd was extremely enriched, followed by Zn, Cu, and Pb. However, no significant regional differences (p?>?0.05) were found in other elemental contents aside from Cu. Statistical analysis revealed that metal elements except Co were presumed to originate primarily from mining activities. Health risk assessment indicated that the hazard quotients and hazard indices of all studied metal elements were less than 1 and thus posed no potential noncancer health risks to adults and children. Moreover, the cancer risks of Ni, Cr, Cd, and Co were within acceptable ranges, implying no cancer risk to local residents; however, the noncarcinogenic risk of Pb and the carcinogenic risk of Cr and Cd warrant close attention.  相似文献   

14.

Aims and methods

Concentrations of heavy metals such as Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in different tissues (seeds, roots and shoots) of the mature canola (Brassica napus L.) plants and in the associated rhizosphere soils from Yangtze River Delta (YRD) region of China, were determined to evaluate the heavy metals’ pollution in the soils and the canola seeds, and to discuss their accumulation and translocation characteristics in canola plants. At the same time, the phytoextraction potential of the canola plant for the above heavy metals was theoretically calculated and discussed on the basis of above measured data.

Results

The results showed that the concentration ranges of Cd, As, Hg, Pb, Cr, Cu, Zn and Ni in the rhizosphere soils were 0.115–0.481, 3.40–20.5, 0.069–0.682, 9.92–27.4, 46.8–86.6, 17.7–253.3, 65.2–511.7 and 16.0–37.8?mg?kg?1, respectively. The concentrations of Cu, Zn and Hg at some sampling sites exceeded the 2nd grade threshods of Chinese national environmental quality standard for soils. The potential ecological risk of heavy metals in the canola rhizosphere soils decreased in the order of Zhejiang > Shanghai > Jiangsu provinces. The concentration ranges of above heavy metals in the canola seeds were 0.032–0.067, 0.002–0.005, 0.001–0.005, 0.053–0.165, 0.191–0.855, 3.01–13.20, 34.82–96.95 and 0.343–2.86?mg?kg?1, respectively, with Cu and Zn at some sampling sites exceeding the permissible concentrations in foods of China. Heavy metals’ concentrations in canola seeds didn’t increase with their increasing concentrations in the rhizosphere soils. The bioconcentration factors (BCFs) of most heavy metals in the canola seeds decreased with their increasing concentrations in the associated rhizosphere soils. The average BCFs of heavy metals decreased in the order of Zn (0.488)>Cd (0.241)>Cu (0.145)>Ni (0.038)>Hg (0.021)>Pb (0.005)=Cr (0.005)>As (0.000) in the canola seeds, Cd (1.550)>Cu (0.595)>Zn (0.422)>Hg (0.138)>Ni (0.085)>Pb (0.080)>As (0.035)>Cr (0.031) in the roots, and Cd (0.846)>Zn (0.242)>Cu (0.205)>Hg (0.159)>Ni (0.031)>Pb (0.025)>As (0.012)>Cr (0.007) in the shoots, respectively. The accumulation capacity for most of the above heavy metals in the mature canola tissues was root > shoot > seed, with the exceptions of seed > root > shoot for Zn and shoot > root > seed for Hg. Except Hg from root to shoot and Zn from root to seed, translocation factors (TFs) of above heavy metals were lower than 1.0.

Conclusions

The concentrations, BCFs and TFs of above heavy metals in the canola tissues indicated that the investigated canola plants did not meet the criteria of hyperaccumulators for the above heavy metals. The phytoextracton potential of the studied canola plants for the above heavy metals from the polluted soils was very limited. It would take 920, 3,170 and 3,762?years (assuming two crops per year) to reduce the initial soil Zn, Cu and Hg concentrations, respectively, from the most polluted soil concentrations to the 2nd grade thresholds of Chinese national environmental quality standard for soils.  相似文献   

15.
The contamination of coal-mine soil by heavy metals is a widespread problem. This study analyzes the heavy metals (Cu, Zn, Ni, Pb, Cr, Cd, and Hg) found in 33 surface soil samples from Xinzhuangzi, China restored coal-mining land used as cultivated land. The results show that the selected elements were cumulative, especially for Cd. An index of geo-accumulation indicates that the soil was practically uncontaminated by Cu, Zn, Ni, and Hg, uncontaminated to moderately contaminated by Pb and Cr, and moderately to heavily contaminated by Cd. Based on the U.S. Environmental Protection Agency's ecological soil screening levels (Eco-SSLs) for Cu, Zn, Ni, Pb, and Cd and the Dutch Target and Intervention Values for Cr and Hg, the plants and soil invertebrates were not likely greatly influenced by the selected metals. Although the Cd concentration was found to have no significant effect on plants and soil invertebrates, it is the only metal with a concentration significantly above that required by Chinese standards (HJ/T 332–2006) for edible agricultural products, indicating that Cd is the predominant factor that determines the use of the reclaimed coal-mining area for farmland. Thus, employing the reclaimed land as farmland may not be a good option.  相似文献   

16.
This study was conducted to investigate heavy metal contamination in agricultural soils and their transfer in a soil-potato system. A total of 59 pairs of potato and soil samples, representing different locations were collected from Hamedan, western Iran and subjected to heavy metals analysis. Average concentrations of Cd, Cu, Fe, Mn, Ni, Pb, and Zn were 1.2, 13.1, 161.4, 13.2, 3.2, 19.5, and 41.5 mg kg?1 dry weight in potato tubers, respectively. A sequence of decreasing plant transfer factors values: Cd > Pb > Cu > Zn > Ni ≥ Mn > Fe was obtained. Furthermore, the health risk index (HRI) values were within the safe limit (<1) except for Cd and Pb. HRI values for Cd and Pb were higher than 1, indicating potential health risk, especially for children. The results indicated that daily intakes of Cd and Pb in potato in the study area may present a future hazard.  相似文献   

17.
The issue of heavy metal pollution is of high concern due to its potential health risks and detrimental effects on human beings, animals, and plants. In this study, farmland soil samples from 79 sampling sites were collected in Karashahar–Baghrash oasis, northwest China, and the contents of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) were determined by standard methods. The spatial distribution, pollution, and ecological risks of heavy metals were analyzed based on Geographical Information System (GIS) technology, contamination factor (CF), pollution load index (PLI), and potential ecological risk index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn exceeded the background values of irrigation soils of Xinjiang by 54.0, 1.34, 1.39, 3.44, and 5.01 times, respectively. The average contents of Cd exceeded the national standard of China by 10.80 times; (2) The pollution order of CF was ranked as Cd > Zn > Pb > Ni > Cr > Cu > As > Mn, and the ecological risk order of Eri was ranked as Cd > Ni > As > Cu > Ni > Pb > Cr > Zn. The average PLI of the study area showed heavy pollution level, and the average RI of the study area fell into considerable risk; (3) The moderately polluted areas with moderate potential ecological risks distributed in the northern parts, whereas heavily polluted areas with considerable potential ecological risks distributed in the southern parts of the study area; (4) Cr, Cu, and Mn of farmland soils were mainly originated from natural factors. Cd, Ni, and Pb were mainly originated from anthropogenic factors. As and Zn may be associated with both natural and anthropogenic factors. Cd contributed most to the PLI and RI of the farmland soils in the study area.  相似文献   

18.
To assess the extent and potential hazards of heavy metal pollution at Shanghai Laogang Landfill, the largest landfill in China, surface soil samples were collected near the landfill and concentrations of Cu, Zn, Cd, Pb, and Cr were determined. The results revealed that the concentrations of heavy metals, except Pb, were higher in the surface soil near the landfill than in the background soil. Principal component analysis and hierarchical cluster analysis suggested that the enrichment of Cu in soil was probably related to agricultural activities and Cd and Pb to landfill leachates, whereas Zn and Cr concentrations were probably controlled by soil matrix characteristics. The pollution indices (PIs) of the metals were: Cd > Cu > Cr > Zn > Pb. Among the five measured metals, Cd showed the largest toxic response and might cause higher ecological hazards than other metals. The integrated potential eco-risk index (RI) of the five metals ranged from 26.0 to 104.9, suggesting a low-level eco-risk potential. This study indicated the accumulations of Cu, Zn, Cd, Pb, and Cr did not reach high pollution levels, and therefore posed a low eco-risk potential in surface soil near the landfill.  相似文献   

19.
Wine consumption delivers macroelements and microelements necessary for the proper metabolism. On the other hand, wine can be an important source of toxic metals. The aim of this study was to estimate the concentrations of Ca, Cd, Cu, Fe, Hg, Mg, Ni, Pb, and Zn in the Slovak and non-Slovak wines. The concentration of metals was evaluated with respect to the type, the alcohol content, and the age of Slovak wine. The general scheme of concentrations found was as follows Ca > Mg > Fe > Zn > Pb > Cd > Ni > Cu > Hg. The type of wine and the alcohol content do not have a significant impact on metal concentrations. Also, the age of wine has no influence on the mean concentration of metals, except for Zn. Metal concentrations in Slovak and non-Slovak wines indicate similar contents of metals, except for Ni. The contribution to both dietary reference values (DRVs) and provisional tolerable weekly intake (PTWI) evaluations in the Slovak wine suggested low dietary exposure to Ca, Cu, Fe, Mg, Ni, Zn, Cd, Hg, and Pb, respectively. However, we do not suggest that the consumption of all Slovak wines is healthy. The maximum Pb concentrations in Slovak wines exceed the maximum permitted level proposed by the European Commission. This might be proved by the results of the margin of the exposure (MOE) value evaluation in the samples containing the maximum Pb concentrations, showing a high risk of CKD and SBP in high and extreme consumption groups.  相似文献   

20.
The fractionation and distribution with depth of Cd, Cr, Cu, Ni, Pb, and Zn in 26 soils of Northern Kentucky were determined through a sequential extraction procedure in response to environmental concerns about increasing anthropogenic inputs in a fast-paced, urbanizing area. The selected sites have not received any biosolid- or industrial-waste applications. Average total concentrations per metal in soil profiles derived from alluvial, glacial till, and residual materials ranged from 0.43 to 56.00 mg kg?1 in the sequence Zn > Ni > Pb > Cr > Cu > Cd, suggesting relatively small anthropogenic inputs. The distribution of Cu, Cr, Ni, and Zn increased with soil depth, whereas Cd and Pb remained stable, indicating a strong geological or pedogenic influence. Residual forms were most important for the retention of Cu, Zn, and Ni. Cadmium and Pb exhibited a strong affinity for the Fe-Mn oxide fraction, while Cr showed the strongest association with the organic fraction. In terms of metal mobility and toxicity potential inferred from metal concentrations in labile fractions, Cd posed the greatest risk, followed by Cr ~ Pb > Ni > Zn > Cu. Soil pH, OM, and clay content were the most important parameters explaining the partitioning of metals in labile and residual fractions, emphasizing the importance of metal fractionation in soil management decisions. Alluvial soils generally contained the highest total and labile metal concentrations, suggesting potential metal enrichment through anthropogenic additions and depositional processes. These environments exhibit the highest risk for metal mobilization due to drastic changes in redox conditions, which can destabilize existing metal retention pools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号