首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Instead of total metal concentration measurements in seafood, bioaccessibility is a more important parameter for human health risk assessment. Therefore, bioaccessibility of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in the edible soft tissues of rapa whelk (Rapana venosa Valenciennes, 1846) collected along the southern Black Sea coast were investigated using an in vitro digestion model. Zn was detected at the highest concentration, whereas Ni was the lowest for total metal concentrations. Total Cd and Pb concentration in the tissues were found to be higher than maximum permissible limits set by European Commission. The bioaccessibility of metals in the tissues was found to be decreased in the order: Cu (77.11%) > Cd (70.13%) > Zn (64.52%) > Ni (61.27%) > Pb (50.53%) > Cr (43.41%) > Mn (22.59%). While significant positive linear regressions were observed between the total and bioaccessible concentrations for Mn, Pb, and Ni, significant negative linear regressions were found for Cd in the tissues (p < 0.05). The hazard quotients (HQ) calculated using bioaccessible heavy metal amount were detected lower than the limit value (HQ < 1), which may not pose a potential hazard to humans declared by US Environmental Protection Agency. However, the consumption of rapa whelk may cause a potential risk concerning human health for the Cd and Pb levels in case of increased serving sizes and portions.  相似文献   

2.
This study aimed to assess the drinking water quality and human potential health risk in Peshawar, which is the most populous district of Khyber Pakhtunkhwa Province, Pakistan. Water was randomly collected throughout Peshawar District (urban = 45 samples and rural = 29 samples). These samples were analyzed for heavy metal (As, Cd, Co, Cu, Cr, Hg, Ni, Pb, and Zn) concentrations using the atomic absorption spectrometer (Perkin Elmer, AAS-PEA-700). Heavy metal concentrations in drinking water revealed the highest pollution index (PI) values—17.80, 11.92, 7.50, and 5.70 for the Pb, Cr, Cd, and Ni, respectively. The contaminations of Cd and Pb were significantly higher (p < .05) than their maximum allowable limits set by the World Health Organization. Heavy metal contaminations in drinking water were evaluated for health risk assessment: the chronic risk or hazard quotient (HQ) and cancer risk. Results revealed that HQ values were >1 for the Cd and Pb, suggesting that the exposed human beings could be at chronic risk. Therefore, serious measures such as drinking water treatments and contamination controlling policies are needed to avoid the hazardous effects of toxic heavy metals.  相似文献   

3.
Element contents and radical scavenging activity in commercial Yerba mate tea blends from Paraguay and Argentina were determined. The potential health risk for the consumers was also calculated. Element contents in Yerba mate was arranged as follows: K > Ca > Mg > Mn > Fe > Zn > Na > Cu > Ni > Cr > Pb > Cd (leaves and stalks) and K > Mg > Mn > Ca > Zn > Na > Fe > Cu > Ni > Cr > Pb > Cd (infusion). In total 73% of K, 69% of Mn, 15% of Ni and Cu, 9% of Cr, 8% of Zn, 7% of Mg, 6% of Pb, 3% of Na, 2% of Cd, 0.34% of Ca, and 0.13% of Fe were extracted from leaves and stalks to the brew. Yerba mate tea was characterized by very high antioxidant activity. Argentinean Yerba mate had slightly higher antioxidant activity than Paraguayan. The combined non-carcinogenic effect (HI values) for each infusion and for all three infusion were below 1, which indicated that daily consumption of Yerba mate tea infusions did not cause essential non-carcinogenic health risk. The daily consumption of Yerba mate infusions provided necessary elements in the amounts significantly below 1% of the Recommended Dietary Allowance (RDA) daily intake. The exception was amount of Mn in I infusion from the despalada kind of Yerba mate, which was equal to 1.43% of RDA for men and 1.82% of RDA for women.  相似文献   

4.
Tajan River is among the most significant rivers of the Caspian Sea water basin. In this study, the concentration of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in brain, heart, liver, gill, bile, and muscle of Rutilus frisii kutum which has great economic value in the Mazandaran state. Trace element levels in fish samples were analyzed by means of atomic absorption spectrometry. Nearly all non-essential metals levels (Ni, Pb, Cd) detected in tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, non-essential metals (Ni, Pb) were so much higher in muscle than the essential metals (Cu, Zn, and Mn) except Fe, which was higher than other metals in nearly all parts, except in gills. Fe distribution pattern in tissues was in order of heart > brain > liver > muscle > bile > gill. Distribution patterns of metal concentrations in the muscle of fish as a main edible part followed the sequence: Fe > Pb > Ni > Cu > Mn > Zn > Cd.  相似文献   

5.
Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L?1) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely “‘Salvinia molesta and Pistia stratiotes.” After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.  相似文献   

6.
This article discusses the mineralogy and geochemical characteristics of the fresh copper-flotation waste samples. The mobility of As, Cd, Cr, Cu, Ni, Pb, Tl, Zn was investigated by leaching tests. The main mineral phases identified concerned dolomite, quartz, clay minerals, feldspars, and copper-bearing minerals. Chemically, CaO and silica were dominating, along with a significant concentration of precious (Cu), refractory (Cr, Ti, V, Zr), and toxic (As, Cd, Pb) metals. Elements were bound mainly to the residual fraction and sulphides in the following order: Pb > Cu ≈ Tl > As ≈ Zn > Ni ≈ Cr > Cd. The metal mobility patterns expressed as a percentage of total concentrations, were as follows: Cd (42%) > Cr (26%)> Ni (24%) > Zn (23%) > As (22%) > Tl (20%) > Cu (18%) > Pb (2%). Those constituents were released earlier in lower pH values, although Cu, Cr, and Pb were also released in higher alkaline pH values. However, Zn release was not dependent on pH. When L/S values decreased, elements like As, Cr, Cu, Pb, and Tl were released. That process caused decrease of Cd, Ni, and Zn release.  相似文献   

7.
Present study investigates relationships between total and bioaccessibility of trace elements (Cd, Co, Cr, Cu, Mn, NI, Pb, V, and Zn) concentrations in sediment and their bioaccumulation in species in Shadegan wetland in southwest of Iran. Bioavailability factor (BAF) and translocation factor (TF) were calculated in plants and trophic transfer factor (TTF) was determined in bird species. For this purpose, sampling of sediments, aquatic plants including Phragmites australis, Typha australis, Scripus maritimus and two bird species encircling Porphyrio porphyrio and globally threatened Marmaronetta angustirostris were carried out during winter 2009. Result of chemical analysis show that bioaccessibility concentrations of Mn (8.31 mg/kg), V (1.33 mg/kg), and Pb (1.03 mg/kg) are higher than other metals. The uptake trend of trace elements in plant decreases as root > stem > leaf. Accumulation levels of trace elements in different tissues of P. porphyrio and M. angustirostris are almost identical and considerable. Accumulation and toxicity of Cd in birds is more than plants. In addition, BAF of V, Pb, and Cr indicates high accumulation by plants and great pollution rate in the area of study. In S. maritimus TF for Mn, Cu, Pb, and V are high whereas in T. australis, Cu and Pb posses the highest TF. Also Cr, Co, Mn, Ni, and Zn have higher TF from stem to leaf than root to stem in P. australis. Finally, TTFs were compared in various bird species.  相似文献   

8.
The quality of water sources and its potential health implications to adults and children populations of respective major communities in Northern Cross-River was assessed. Water samples (n = 10/water source/site) were collected from three (Okpoma, Okuku and Ugaga) communities and heavy metal concentrations (Lead (Pb), Cadmium (Cd), Chromium (Cr), Manganese (Mn), Nickel (Ni), Copper (Cu), Cobalt (Co), and Zinc (Zn)) were evaluated using Atomic Absorption Spectrometer (AAS). Overall, Pb, Cd, Ni, and Co were higher than drinking water guidelines, while only Cr, Mn, Cu, and Zn were within the permissible limits. The estimated average daily intake (EADI) and target hazard quotient (THQ) were used to determine risk implications for adult and children consumer populations. The EADI for Pb in adults for borehole water, Pb and Cr by child consumer population for borehole and shallow well water exceeded the reference dose (RfD) by USEPA. The THQ for adult population were >1 for Pb in borehole water and >1 for Pb and Cr across all sites for the child consumer population. Overall, our findings indicate toxicity and higher hazard risk for both adult (Pb) and children (Pb and Cr) populations that source drinking water from borehole and shallow well water in these communities.  相似文献   

9.
The present investigation was carried out to evaluate the levels of metals and metalloids in okra (Abelmoschus esculentus) irrigated with city wastewater. Soil and vegetable samples from two different sites irrigated with wastewater were wet-digested and analyzed. Arsenic (As) was found higher at both sites and Cr was many-fold lower at both sampling sites. Among all heavy metals, Mn and Zn were abundant. Highest value of coefficient factor was found for Cr and the lowest for Cd. The high transfer value was recorded for Cu at site-I and for Ni at site-II. Copper and Se showed negative and significant correlations between soil and vegetable, whereas Mn, Zn, As, Cd, Cr, and Ni showed positive but non-significant correlations. Pollution load index in this vegetable was found to be higher for Cd and lower for Cu. Health risk index at site-I was in the order of As > Mn > Mo > Pb > Cd > Ni > Zn > Se > Fe > Co > Cr > Cu, whereas the same order was observed at site-II of the sampling locations. Thus, the health risks of metals through ingestion of vegetables were of great concern in the study area.  相似文献   

10.
We analysed the concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn in the water, sediments, fish and plants of the River Hindon, U.P., India, at seven sampling stations, in the year 1982. Considerable variation in concentration between water, sediments, fish and plants were noted. The concentration in the water was in the order Fe > Zn > Cr > Mn > Cu > Pb > Ni > Co > Cd, in the sediments, Fe > Mn > Zn > Ni > Cr > - Co > Cu > Pb > Cd; in a fish (Heteropnuestes fossilis) Fe > Zn > Mn > Pb > Ni > Co > Cu > Cd > Cr, and in a plant (Eicchornia crassipes) Fe > Mn > Zn > Ni > Cu > Cr > Pb > Co > Cd.  相似文献   

11.
The issue of heavy metal pollution is of high concern due to its potential health risks and detrimental effects on human beings, animals, and plants. In this study, farmland soil samples from 79 sampling sites were collected in Karashahar–Baghrash oasis, northwest China, and the contents of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) were determined by standard methods. The spatial distribution, pollution, and ecological risks of heavy metals were analyzed based on Geographical Information System (GIS) technology, contamination factor (CF), pollution load index (PLI), and potential ecological risk index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn exceeded the background values of irrigation soils of Xinjiang by 54.0, 1.34, 1.39, 3.44, and 5.01 times, respectively. The average contents of Cd exceeded the national standard of China by 10.80 times; (2) The pollution order of CF was ranked as Cd > Zn > Pb > Ni > Cr > Cu > As > Mn, and the ecological risk order of Eri was ranked as Cd > Ni > As > Cu > Ni > Pb > Cr > Zn. The average PLI of the study area showed heavy pollution level, and the average RI of the study area fell into considerable risk; (3) The moderately polluted areas with moderate potential ecological risks distributed in the northern parts, whereas heavily polluted areas with considerable potential ecological risks distributed in the southern parts of the study area; (4) Cr, Cu, and Mn of farmland soils were mainly originated from natural factors. Cd, Ni, and Pb were mainly originated from anthropogenic factors. As and Zn may be associated with both natural and anthropogenic factors. Cd contributed most to the PLI and RI of the farmland soils in the study area.  相似文献   

12.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

13.
The health hazard associated with the consumption of fish from the Gomti River in India, contaminated with the heavy metals Cr, Cu, Mn, Ni, Pb, and Zn was assessed in terms of target hazard quotients (THQs). The concentrations of metals (mg kg?1, wet weight basis) in the muscle tissues of different fish species Mastacembelus puncalus, Clupisona garua, Cyrinous carpio, Botia lochachata, Channa punctatus, Heteropneustise fossilis, Puntius sofore, and Clarious batrachus ranged as follows: Cr (2.2–21.4), Cu (0.3–14.3), Mn (2.3–5.5), Ni (0.5–10.9), Pb (1.0–3.9), and Zn (12.3–46.9). The accumulation of metals in fish muscle tissue was in the order: Zn > Cr > Ni > Mn > Cu > Pb. THQs indicated a potential health hazard to children due to the consumption of fish contaminated with Ni and Pb; their THQs were greater than 1 for almost all fish species except for Ni in C. garua (THQ, 0.07) and C. carpio (THQ, 0.90). For adults, insignificant health hazard was associated with THQs less than 1 for all metals in the different fish species, but long-term exposure to these metals and subsequent bioaccumulation in the body may require additional investigation.  相似文献   

14.
Abstract

A total of 83 dust samples were collected from the streets of Urumqi city in NW China and analyzed for the concentrations of As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn elements. The spatial distribution, contamination levels, main sources, and potential health risks of these trace elements were determined based on geostatistical analysis, geo-accumulation index, multivariate analysis, and the health risk assessment model introduced by the USEPA, respectively. The obtained results indicate that the average concentrations of Cd, Cr, Cu, Hg, Ni, Pb, and Zn exceed the corresponding background values determined in Xinjiang soils by factors of 2.0, 1.35, 1.38, 8.24, 1.28, 2.09, and 3.26, respectively. The spatial distribution patterns of the nine trace elements in street dust were found to be substantially heterogeneous, and the contamination level decreased in the following order: Hg?>?Zn?>?Pb?>?Cd?>?Cr?>?Cu?>?As?>?Ni?>?Mn. Based on the identified concentrations, the collected dust samples were found to be moderately polluted by Hg, and not polluted by As, Cr, Cu, Mn, and Ni. The remaining elements, Cd, Pb, and Zn lie on the borderline between non-pollution and moderate pollution levels. Furthermore, it was shown that Mn and Zn in street dusts originate from both, natural and anthropogenic sources, while As, Cd, Cr, Cu, Hg, Ni, and Pb are mainly produced by anthropogenic sources. Overall, the carcinogenic and non-carcinogenic health risks of the analyzed elements, instigated primarily by oral ingestion of street dusts, were found to be within the acceptable range for both, children and adults. As and Cr are the main non-carcinogenic elements, whereas Cr is the major carcinogenic element among the investigated dust-bound metals in the study area.  相似文献   

15.
The present research was conducted to determine heavy metals in agricultural soils from Çanakkale, Turkey, using a sequential extraction procedure (acid soluble, reducible, oxidizable, and residual) as proposed by the Community Bureau of Reference (BCR) of the European Commission. Soil samples were taken from 12 different cultivated sites and analyzed for Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn concentrations. The results revealed an order of Mn > Cd > Pb > Co > Ni > Cu > Zn > Cr for the heavy metals based on the sum of the first three fractions (acid soluble + reducible + oxidizable). The relationships between soil properties and each metal fraction were identified through Pearsons's correlation analysis. Hierarchical cluster analysis was performed to determine the behaviors and similarities of metals in each fraction. While Mn, Pb, and Zn exhibited subjective behaviors in the acid-soluble fraction, Cd, Co, Cu, Cr, and Ni exhibited similar behaviors with each other.  相似文献   

16.
Abstract

In this study, the concentrations and health risks of heavy metals (Cu, Pb, Zn, Ni, Co, Cd, and Cr) in indoor dust are investigated in the vicinity of the Xinqiao mining area, Tongling, China. Results indicate that heavy metals except Co were clearly enriched in indoor dust. Especially Cd was extremely enriched, followed by Zn, Cu, and Pb. However, no significant regional differences (p?>?0.05) were found in other elemental contents aside from Cu. Statistical analysis revealed that metal elements except Co were presumed to originate primarily from mining activities. Health risk assessment indicated that the hazard quotients and hazard indices of all studied metal elements were less than 1 and thus posed no potential noncancer health risks to adults and children. Moreover, the cancer risks of Ni, Cr, Cd, and Co were within acceptable ranges, implying no cancer risk to local residents; however, the noncarcinogenic risk of Pb and the carcinogenic risk of Cr and Cd warrant close attention.  相似文献   

17.
In this study, paddy soil and rice grain samples were collected from the vicinity around the Xinqiao mine in Tongling, China to test for the presence of heavy metals (Cd, Ni, Cr, Cu, Zn, and Pb) in soil-rice system. Results indicated that the soil samples were primarily contaminated with Cd and Cu and followed with Zn and Pb. In rice grains, Cd, Cu, and Cr concentrations exceeded recommended guidelines. However, the regional distribution of heavy metals in rice grains and soil was inconsistent. The bioaccumulation factor of heavy metals in rice grains decreased in the order of Cd > Zn > Cu > Ni > Cr > Pb. The BAF was significantly positively correlated with TCLP-extractable metals and significantly negatively correlated with soil pH. However, the relationship between soil organic matter and the BAF in rice grains was complex. Health risk assessment through rice intake showed that hazard quotients of Cu and Cd were greater than 1 and could pose a considerable non-cancer health risk to adults and children; meanwhile, Cr, Ni, and Cd could pose an unacceptable cancer risk. The results indicated that the government must take measures to reduce heavy metal contents in paddy soil and rice.  相似文献   

18.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   

19.
Metal determination in human tissues is the most common application of biological monitoring for screening, diagnosis and assessment of metal exposures and their risks. Various biopsy-materials may be used. This paper deals with the quantitative determination of Cd, Pb, Cr, Mn, Fe, Ni, Cu, and Zn concentrations in nails of male subjects exposed to these metals alongwith their respective controls, while working in locomotive, carriage and roadways workshops, and lead battery factories. The levels of Cd, Pb, Cr, Mn, Fe, Ni, Cu and Zn in fingernails, assayed by atomic absorption spectrophotometry, were compared with their respective controls by student ‘t’ test. All the obtained values were correlated to the personal and medical history of the subjects under study. Significantly high levels of Cd, Pb, Cr, Fe, Ni, Cu and Zn were present in smokers, compared to nonsmokers. The concentrations of Cd, Pb, Cr, Mn and Fe were not significantly high in vegetarian subjects. It was also observed that there is no contribution of liquor towards nail-metal concentration. Significant correlations were observed between skin disease and Cr, Mn, Fe, Cu; hypertension and Cd, Mn, Cu; mental stress and Cd, Pb, Mn, Ni, Cu, Zn; diabetes and Cr, Mn, Ni; chest pain and Pb; respiratory trouble and Cr, Mn, Fe, Ni, Zn; tuberculosis and Zn; acidity and Cd; and ophthalmic problems and Mn, Fe, Ni, and Zn  相似文献   

20.
Abstract

The accumulation of heavy metals in soil is a serious environmental problem. The risk of metals in soil is associated critically with their species. Operationally determined speciation analysis of Cr, Mn, Ni, Cu, Zn, Sb, Cd and Pb was carried out in the area of non-ferrous metals-smelting in the North China Plain, using inductively coupled plasma-mass spectroscopy after sequential chemical extraction. The average potential mobility fraction was calculated. The average potential mobility of the metals had the following order: Cd(44.7%) > Pb(29.6%) > Mn(14.8%) > Zn(12.5%) > Cu(5.9%) > Sb(5.0%) > Ni(2.1%) > Cr(0.8%). It is concluded that there is a distinct spatial heterogeneity in the concentration of heavy metals in the studied area. The results indicate that the polluting heavy metals, in particular Cd and Pb, have high potential mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号