首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allamanda leaf extract (Allamanda cathertica) was made in water at room temperature (25?± 2?°C) as well as in a number of less polar to highly polar solvents like methylene chloride, benzene, chloroform and ethyl acetate at their boiling point, that means, at refluxing temperature (40?± 2?°C). Methylene chloride, benzene, chloroform, ethyl acetate and water extracts were applied to determine their growth inhibition against Phomopsis vexans, Phytophthora capsici, Fusarium oxysporum, Rhizoctonia solani and Sclerotium rolfsii. Results of these extracts showed that refluxing methanol, ethanol and ethyl acetate extracts of Allamanda were statistically similar for inhibition of mycelial growth of all fungi tested. But effect of 50% ethanol extract is different; it inhibited 100% mycelial growth of P. vexans, P. capsici and F. oxysporum; 83.33% of R. solani and 88.63% of S. rolfsii. Effort was also made to find out the compound in Allamanda to be responsible for such antifungal activity. Thin layer chromatography (TLC) of Allamanda extracts showed the presence of a number of compounds having polarity very high to low. The Rf values of compounds in 37–42 fractions were calculated and from these six fractions, crystals were separated. These crystals were more or less white. Melting point of these crystals was determined by ordinary and digital melting point apparatus that ranged from 145.5–162 C. Structural determination of the compound was done by Infra-red (IR) spectral study. The finger print region was 700–1400?cm?1. The strong band at 1612.4, 1633.6, 1693.4, 1655 and 2850.6?cm?1 indicated the presence of conjugated double bond (–C=C–C=C–), non-conjugated double-bond (–C=C–C–C–C=C–), carbonyl group attached to carbon–carbon double (–CO–C=C), ester (–COOR) and C–H stretching, respectively. Mass spectra of separated compounds gave molecular weight 470. All these characters are typical to pumieride as described previously. Again, In vitro screening of plumieride against P. vexans, P. capsici, F. oxysporum, R. solani and S. rolfsii were found effective in inhibiting radial mycelial growth of these fungi at 1:2 w/v concentration.  相似文献   

2.
Aqueous, methanol, ethyl acetate, and chloroform extracts of the root, stem, and leaf of Raphanus sativus were studied for antibacterial activity against food-borne and resistant pathogens. All extracts except the aqueous extracts had significant broad-spectrum inhibitory activity. The ethyl acetate extract of the root had the potent antibacterial activity, with a minimum inhibitory concentration (MIC) of 0.016–0.064 mg/ml and a minimum bactericidal concentration (MBC) of 0.016–0.512 mg/ml against health-damaging bacteria. This was followed by the ethyl acetate extracts of the leaf and stem with MICs of 0.064–0.256 and 0.128–0.256 mg/ml, respectively and MBCs of 0.128–2.05 and 0.256–2.05 mg/ml, respectively. The ethyl acetate extracts of the different parts of R. sativus retained their antibacterial activity after heat treatment at 100°C for 30 min, and their antibacterial activity was enhanced when pH was maintained in the acidic range. Hence this study, for the first time, demonstrated that the root, stem, and leaf of R. sativus had significant bactericidal effects against human pathogenic bacteria, justifying their traditional use as anti-infective agents in herbal medicines.  相似文献   

3.
Abstract

Deep-sea microorganisms are a new source of bioactive compounds. In this study, crude ethyl acetate extracts of 176 strains of deep-sea bacteria, isolated from sediments of the West Pacific Ocean, were screened for their antibacterial activity against four test bacterial strains isolated from marine biofilms. Of these, 28 deep-sea bacterial strains exhibited antibacterial activity against one or more of the bacteria tested. Active deep-sea bacterial strains belonged mainly to the genera of Pseudomonas, Psychrobacter and Halomonas. Additionally, antilarval activity of 56 deep-sea bacterial strains was screened using Balanus amphitrite larvae. Seven bacterial strains produced metabolites that had strong inhibitive effects on larval settlement. None of these metabolites showed significant toxicity. The crude extract of one deep-sea Streptomyces strain could completely inhibit larval settlement at a concentration of 25 μg ml?1.  相似文献   

4.
The present study was designed to isolate and identify an extremely halophilic lipase-producing bacterial strain, purify and characterize the related enzyme and evaluate its application for ethyl and methyl valerate synthesis. Among four halophilic isolates, the lipolytic ability of one isolate (identified as Bacillus atrophaeus FSHM2) was confirmed. The enzyme (designated as BaL) was purified using three sequential steps of ethanol precipitation and dialysis, Q-Sepharose XL anion-exchange chromatography and SP Sepharose cation-exchange chromatography with a final yield of 9.9% and a purification factor of 31.8. The purified BaL (Mw~85?kDa) was most active at 70?°C and pH 9 in the presence of 4 M NaCl and retained 58.7% of its initial activity after 150?min of incubation at 80?°C. The enzyme was inhibited by Cd2+ (35.6?±?1.7%) but activated by Ca2+ (132.4?±?2.2%). Evaluation of BaL's stability in the presence of organic solvents showed that xylene (25%) enhanced the relative activity of the enzyme to 334.2?±?0.6% after 1?h of incubation. The results of esterification studies using the purified BaL revealed that maximum ethyl valerate (88.5%) and methyl valerate (67.5%) synthesis occurred in the organic solvent medium (xylene) after 48?h of incubation at 50?°C.  相似文献   

5.
Previous studies suggested that methanol and acetate were the likely methanogenic precursors in the cold Zoige wetland. In this study, the contribution of the two substances to methanogenesis and the conversion in Zoige wetland were analyzed. It was determined that methanol supported the highest CH4 formation rate in the enrichments of the soil grown with Eleocharis valleculosa, and even higher at 15°C than at 30°C; while hydrogenotrophic methanogenesis was higher at 30°C. Both methanol- and acetate-using methanogens were counted at the highest (107 g−1) in the soil, whereas methanol-using acetogens (108 g−1) were ten times more abundant than either methanol- or acetate-using methanogens. Both methanol and acetate were detected in the methanogenesis-inhibited soil samples, so that both could be the primary methanogenic precursors in E. valleculosa soil. However, the levels of methanol and acetate accumulated in 2-bromoethane-sulfonate (BES)- and CHCl3-treated soils were in reverse, i.e., higher methanol in CHCl3- and higher acetate in BES-treated soil, so that methanol-derived methanogenesis could be underestimated due to the consumption by acetogens. Analysis of the soil 16S rRNA genes revealed Acetobacterum bakii and Trichococcus pasteurii to be the dominant methanol-using acetogens in the soil, and a strain of T. pasteurii was isolated, which showed the high conversion of methanol to acetate at 15°C.  相似文献   

6.
In this study, a potent fibrinolytic enzyme-producing bacterium was isolated from soybean flour and identified as Bacillus subtilis K42 and assayed in vitro for its thrombolytic potential. The molecular weight of the purified enzyme was 20.5 kDa and purification increased its specific activity 390-fold with a recovery of 14%. Maximal activity was attained at a temperature of 40°C (stable up to 65°C) and pH of 9.4 (range: 6.5–10.5). The enzyme retained up to 80% of its original activity after pre-incubation for a month at 4°C with organic solvents such as diethyl ether (DE), toluene (TO), acetonitrile (AN), butanol (BU), ethyl acetate (EA), ethanol (ET), acetone (AC), methanol (ME), isopropanol (IP), diisopropyl fluorophosphate (DFP), tosyl-lysyl-chloromethylketose (TLCK), tosyl-phenylalanyl chloromethylketose (TPCK), phenylmethylsulfonylfluoride (PMSF) and soybean trypsin inhibitor (SBTI). Aprotinin had little effect on this activity. The presence of ethylene diaminetetraacetic acid (EDTA), a metal-chelating agent and two metallo protease inhibitors, 2,2′-bipyridine and o-phenanthroline, repressed the enzymatic activity significantly. This, however, could be restored by adding Co2+ to the medium. The clotting time of human blood serum in the presence of this enzyme reached a relative PTT of 241.7% with a 3.4-fold increase, suggesting that this enzyme could be an effective antithrombotic agent.  相似文献   

7.
Vibrio parahaemolyticus: is recognized as the main cause of gastroenteritis associated with consumption of seafood. Bacteriocin-producing Lactobacillus plantarum FGC-12 isolated from golden carp intestine had strong antibacterial activity toward V. parahaemolyticus. The fish-borne bacteriocin was purified by a three-step procedure consisting of ethyl acetate extraction, gel filtration chromatography and high performance liquid chromatography. Its molecular weight was estimated at 4.1 kDa using SDS-PAGE. The fish-borne bacteriocin reached the maximum production at stationary phase after 20 h. It was heat-stable (30 min at 121?°C) and remained active at pH range from 3.0 to 5.5, but was sensitive to nutrasin, papain and pepsin. Its minimum inhibitory concentration for V. parahaemolyticus was 6.0 mg/ml. Scanning electron microscopy analysis showed that the fish-borne bacteriocin disrupted cell wall of V. parahaemolyticus. The antibacterial mechanism of the fish-borne bacteriocin against V. parahaemolyticus might be described as action on membrane integrity in terms of the leakage of electrolytes, the losses of Na+K+-ATPase, AKP and proteins. The addition of the fish-borne bacteriocin to shrimps leaded V. parahaemolyticus to reduce 1.3 log units at 4?°C storage for 6 day. Moreover, a marked decline in total volatile base nitrogen and total viable counts was observed in bacteriocin treated samples than the control. It is clear that this fish-borne bacteriocin has promising potential as biopreservation for the control of V. parahaemolyticus in aquatic products.  相似文献   

8.
The dinoflagellate alga Symbiodinium sp., living in symbiosis with corals, clams and other invertebrates, is a primary producer in coral reefs and other marine ecosystems. The function of the carbon‐fixing enzyme ribulose 1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in dinoflagellates is difficult to study because its activity is rapidly lost after extraction from the cell. We report procedures for the extraction of Rubisco from Symbiodinium cells and for stable storage. We describe a continuous assay for Rubisco activity in these crude cell extracts using the Mn2+ chemiluminescence of Rubisco oxygenase. Chemiluminescence time courses exhibited initial transients resembling bacterial Form II Rubisco, followed by several minutes of linearly decreasing activity. The initial activity was determined from extrapolation of this linear section of the time course. The activity of fast‐frozen cell extracts was stable at ?80 °C and, after thawing and storage on ice, remained stable for up to 1 h before declining non‐linearly. Crude cell extracts bound [14C] 2‐carboxy‐D‐arabitinol 1,5‐bisphosphate to a high molecular mass fraction separable by gel filtration chromatography. After pre‐treatment of Symbiodinium cell cultures in darkness at temperatures above 30 °C, the extracted Rubisco activities decreased, with almost complete loss of activity above 36 °C. The implications for the sensitivity to elevated temperature of Symbiodinium photosynthesis are assessed.  相似文献   

9.
This study aimed to optimize an extraction and separation procedure to obtain a concentrated fraction with antibacterial activity from the macroalga Ulva lactuca. Antibacterial compounds were extracted using eight solvents, and consistent activity against Staphylococcus aureus, Bacillus subtilis and methicillin-resistant (MR) S. aureus was observed from a dilute (1:100, w/v) ethyl acetate extract. Seasonal analysis revealed that antibacterial activity was the lowest in spring/summer and the highest in autumn/winter. Bioautography was found to be a more appropriate assay compared to disc diffusion when screening crude extracts, as it separates the masking compounds from the antibacterial compounds and a direct assessment of the bands responsible for the antibacterial effect could be made. The antibacterial compounds were first separated from the crude extract using preparative thin-layer chromatography, followed by column chromatography to obtain a semi-pure sub-fraction. Using this approach, the antibacterial compounds were successfully concentrated from a crude extract (300 μg) to semi-pure fractions (6 μg) in which antibacterial activities were greatly enhanced. This study also revealed that prolonged storage (9 months) under a nitrogen atmosphere at ?20°C resulted in a considerable increase in antibacterial activity. This is the first report of seasonal assessment of antibacterial compounds from seaweeds collected in Ireland. In addition, an antibacterial fraction was successfully isolated from U. lactuca which exhibited potent anti-MR S. aureus activity.  相似文献   

10.
【背景】对郁金香的研究主要集中在种质资源、引种栽培、扩繁育种及化学成分分析方面,而关于伊犁野生郁金香内生菌的研究尚未见报道。【目的】从伊犁野生郁金香中筛选出内生真菌并对其进行抑菌及抗氧化活性研究。【方法】采用组织块培养法和平板划线法对伊犁野生郁金香内生菌进行分离纯化;用斜面低温保存法对内生菌进行保存;以形态学方法和分子生物学方法对分离出的内生真菌进行鉴定;通过液体发酵得到次级代谢产物,对乙酸乙酯萃取发酵产物进行滤纸片抑菌分析。使用Fe3+总还原能力法、2-2′二苯基-1-三硝基苯肼(2,2′-diphenyl-1-picrylhydrazyl,DPPH)自由基法、 2′-联氨-双-3-乙基苯并噻唑啉-6-磺酸[2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid,ABTS]自由基法及羟基自由基法比较菌株乙酸乙酯层和水层的抗氧化活性。【结果】从伊犁野生郁金香中分离获得一株内生真菌,经鉴定为曲霉属(Aspergillus)烟曲霉(Aspergillus fumigatus),简称为YGL-1。YGL-1对金黄色葡萄球菌(Staphylo...  相似文献   

11.
This is the first report on the phenolic composition and biological activities of endemic species Salvia jurisicii Ko?anin (Lamiaceae) originating from Macedonia. Aerial parts of S. jurisicii were extracted with dichloromethane, ethyl acetate, methanol, ethanol and water. All extracts were tested spectrophotometrically for total phenolic and flavonoid contents, while their phenolic composition was analyzed using HPLC-DAD. The antioxidant activity of extracts was studied using 2,2-dyphenyl-1-picrylhydrazyl, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ferric reducing ability of plasma and ß-carotene bleaching assays. Being the most frequently used solvents for extraction of bioactive ingredients from medicinal plants, water and ethanol extracts were chosen for further testing of antimicrobial, cytotoxic and antineurodegenerative activities. More polar solvent extracts showed higher total phenolic content and lower flavonoid content. Ethanol and methanol extracts, followed by water extract exhibited the strongest antioxidant activity. Extracts showed antimicrobial activity against certain bacteria and micromycetes. The cytotoxicity assay showed slight toxicity to HCT-116 cell line. In the antineurodegenerative assays, the extracts performed lower inhibition of acetylcholinesterase and tyrosinase than standards. According to the results of this study, it can be inferred that more polar extracts of S. jurisicii were quantitatively richer in total phenolics, showing stronger antioxidant activity. Ethanol extract showed stronger biological activities comparing to water extract.  相似文献   

12.
Dunaliella tertiolecta RCC6 was cultivated indoors in glass bubble column photobioreactors operated under batch and semi-continuous regimens and using two different conditions of light and temperature. Biomass was harvested by centrifugation, frozen, and then lyophilized. The soluble material was obtained by sequential extraction of the lyophilized biomass with solvents with a gradient of polarity (hexane, ethyl acetate, and methanol) and its metabolic composition was investigated through nuclear magnetic resonance (NMR) spectroscopy. The effect of light on chlorophyll biosynthesis was clearly shown through the relative intensities of the 1H NMR signals due to pheophytins. The highest signal intensity was observed for the biomasses obtained at lower light intensity, resulting in a lower light availability per cell. Under high temperature and light conditions, the 1H NMR spectra of the hexane extracts showed an incipient accumulation of triacylglycerols. In these conditions and under semi-continuous regimen, an enhancement of β-carotene and sterols production was observed. The antibacterial and antibiofilm activities of the extracts were also tested. Antibacterial activity was not detected, regardless of culture conditions. In contrast, the minimal biofilm inhibitory concentrations (MBICs) against Escherichia coli for the hexane extract obtained under semi-continuous regimen using high temperature and irradiance conditions was promising.  相似文献   

13.
Subcritical water extraction was used to extract bioactive phenolic compounds from Vaccinium dunalianum Wight leaves. The optimal extraction conditions were determined as an extraction temperature of 150 °C, an extraction time of 40 min, and a liquid-solid ratio of 35 : 1 mL/g. The total phenolic content reached 21.35 mg gallic acid /g, which was 16 % higher than that by hot water extraction. The subcritical water extraction extract exhibited strong scavenging activity of DPPH free radical and ABTS+ free radical, as well as significant tyrosinase inhibitory activity. The study suggests that subcritical water extraction can alter the composition of the extracts, leading to the production of various phenolic compounds, effective antioxidants, and tyrosinase inhibitors from Vaccinium dulciana Wight leaves. These findings confirm the potential of Vaccinium dunalianum Wight as a natural antioxidant molecule source for the medicine and food industries, and for the therapy of skin pigmentation disorders.  相似文献   

14.
This study aimed to develop agar extraction protocols for Gracilaria salicornia from Tanzania and investigate its physico‐chemical characteristics. A 33 factorial experimental design was used in the extraction of agar whereby three independent variables of NaOH concentration (10, 20 and 30% w/v), alkali pre‐treatment duration (0.5, 1 and 2 h) and extraction temperatures (115, 120 and 125°C) were used to determine the optimum conditions for production of high‐quality agar. Agar yield, gel strength, sulfate content, gelling and melting temperatures were evaluated as dependent variables. The optimal condition was observed at 30% NaOH concentration, 2 h alkali pre‐treatment duration and 120°C extraction temperature. The yield, gel strength, sulfate content, gelling and melting temperatures of the agar obtained under these conditions were 26.9 ± 0.7%, 510.3 ± 16.2 g cm?2, 0.29 ± 0.04%, 39.3°C and 88.4°C, respectively. These properties are very close to that of imported commercial agar. It was concluded that the local agar is capable of replacing imported agar for most general purposes. This offers a new possibility of using quality local agar in place of commercial agar.  相似文献   

15.
The cell-free culture filtrate of Bacillus cereus associated with an entomopathogenic nematode, Rhabditis (Oscheius) sp., exhibited strong antimicrobial activity. The ethyl acetate extract of the bacterial culture filtrate was purified by silica gel column chromatography to obtain six bioactive compounds. The structure and absolute stereochemistry of these compounds were determined based on extensive spectroscopic analyses (LCMS, FABMS, 1H NMR, 13C NMR, 1H ?1H COSY, 1H ?13C HMBC) and Marfey’s method. The compounds were identified as cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), cyclo (L-Pro-D-Phe), cyclo (L-Pro-L-Val), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene, respectively. Compounds recorded antibacterial activity against all four tested bacteria strains of Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. 3,5-dihydroxy-4-isopropylstilbene recorded activity only against Gram-positive bacteria while cyclo(L-Pro-L-Val) recorded no antibacterial activity. Best antibacterial activity was recorded by 3,5-dihydroxy-4-ethyl-trans-stilbene (4 μg/ml) against Escherichia coli. The six compounds recorded significant antifungal activities against five fungal strains tested (Aspergillus flavus, Candida albicans, Fusarium oxysporum, Rhizoctonia solani and Penicillium expansum) and they were more effective than bavistin, the standard fungicide. The activity of cyclo(D-Pro-D-Leu), cyclo(L-Pro-D-Met), 3,5-dihydroxy-4-ethyl-trans-stilbene, and 3,5-dihydroxy-4-isopropylstilbene against Candida albicans was better than amphotericin B. To the best of our knowledge, this is the first report of antifungal activity of the bioactive compounds against the plant pathogenic fungi Fusarium oxysporum, Rhizoctonia solani, and Penicillium expansum. We conclude that the Bacillus cereus strain associated with entomopathogenic nematode is a promising source of natural bioactive secondary metabolites which may receive great benefit as potential sources of new drugs in the agricultural and pharmacological industry.  相似文献   

16.
A halotolerant bacterial isolate-MHC10 with broad spectrum antibacterial activity against clinical pathogens was isolated from saltpans located in Tuticorin and Chennai (India). 16S rRNA gene analysis of MHC10 revealed close similarity to that of Bacillus methylotrophicus. The culture conditions of B. methylotrophicus MHC10 strain were optimized for antibacterial production using different carbon and nitrogen sources, as well as varying temperature, pH, sodium chloride (NaCl) concentrations and incubation periods. The maximum antibacterial activity of B. methylotrophicus MHC10 was attained when ZMB was optimized with 1 % (w/v) glucose, 0.1 % (w/v) soybean meal which corresponded to a C/N ratio of 38.83, temperature at 37 °C, pH 7.0 and 8 % NaCl. The activity remained stable between 72 and 96 h and then drastically decreased after 96 h. Solvent extraction followed by chromatographic purification steps led to the isolation of hydroquinone (benzene-1,4-diol). The structure of the purified compound was elucidated based on FTIR, 1H NMR, and 13C NMR spectroscopy. The compound exhibited efficient antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. The minimum inhibitory concentration (MIC) for Gram-positive pathogens ranged from 15.625 to 62.5 µg/mL?1, while it was between 7.81 and 250 µg/mL?1 for Gram-negative bacterial pathogens. This is the first report of hydroquinone produced by halotolerant B. methylotrophicus exhibiting promising antibacterial activity.  相似文献   

17.
SUMMARY. 1. The influence of temperature on in vivo photosynthetic and in vitro respiratory electron transport system (ETS) activity was determined over the season for the 3 m (warm-water) and a 20m (cold-water) phytoplankton communities in Castle Lake. The optimum temperature of photosynthesis at 3 m (X?=20.8°C) was significantly higher than the average optimum at 20 m (X?=14.8°C). 2. Seasonally, the photosynthetic temperature optimum increased when the blue-green alga Chroococcus limneticus Lemm. was present. The temperature characteristics of this organism were maintained even after it had settled into the cold water of the hypolimnion. 3. Temperature optima were not significantly different in experiments conducted under limiting or saturating photosynthetic photon flux densities (PPFD). 4. Short-term (1 h) preincubations with dissolved inorganic nitrogen (DIN) (?80 μg NH4NO3-N l?1) had little effect on the temperature characteristics of photosynthesis while the longer (>24 h) incubations provided by a whole-lake epilimnetic DIN addition (?75 μg NH4NO3- N l?1) significantly lowered the photosynthetic temperature optimum to 12.5°C. Once this epilimnetic DIN was depleted the optimum roseto25°C, a value higher than that present before the enrichment, which coincided with the growth of C limneticus. 5. Respiratory ETS activity usually began to inactivate between 19 and 20°C. However, when C. limneticus was abundant the inactivation temperature was often greater ihan 25°C. 6. The average energy of activation (E) and Q10 value for the 3 m community (15.9 kcal mol?1 and 2.6 respectively) were significantly higher than those at 20 m (14.2 kcal mol?1 and 2.4 respectively). Seasonally, the highest E and Q10 values of ETS activity occurred during the late-summer bloom of C. limneticus. 7. These results demonstrate that the epilimnetic and hypolimnetic phytoplankton communities in Castle Lake are physiologically distinct with regards to their temperature characteristics.  相似文献   

18.
A cataluminescence (CTL) sensor using Y2O3 nanoparticles as the sensing materials was proposed for the determination of ethyl acetate. This ethyl acetate sensor showed high sensitivity and specificity at the optimal temperature of 264°C. Quantitative analysis was performed at a wavelength of 425 nm. The linear ranges of CTL intensity vs ethyl acetate concentrations were 2.0–250 ppm (r = 0.9965) and 250–6500 ppm (r = 0.9997) with a detection limit (3σ) of 0.5 ppm. There was no response or weak response when foreign substances such as formic acid, n‐hexane, toluene, acetic acid, benzene, and formaldehyde passing through the surface of Y2O3 nanoparticles. The sensor had a long lifetime more than 80 h with 3600 ppm ethyl acetate. It had been applied successfully to determine ethyl acetate in artificial air samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.

This study investigated the effects of temperature (20 and 30 °C) and pH (pH 3.1, 3.9) on kinetic changes of chemical constituents of the durian wine fermented with Saccharomyces cerevisiae. Temperature significantly affected growth of S. cerevisiae EC-1118 regardless of pH with a higher temperature leading to a faster cell death. The pH had a more significant effect on ethanol production than temperature with higher production at 20 °C (5.95%, v/v) and 30 °C (5.56%, v/v) at pH 3.9, relative to that at pH 3.1 (5.25 and 5.01%, v/v). However, relatively higher levels of isobutyl alcohol and isoamyl alcohol up to 64.52 ± 6.39 and 56.27 ± 3.00 mg/L, respectively, were produced at pH 3.1 than at pH 3.9 regardless of temperature. In contrast, production of esters was more affected by temperature than pH, where levels of ethyl esters (ethyl esters of octanoate, nonanoate, and decanoate) and acetate esters (ethyl acetate and isoamyl acetate) were significantly higher up to 2.13 ± 0.23 and 4.61 ± 0.22 mg/L, respectively, at 20 °C than at 30 °C. On the other hand, higher temperature improved the reduction of volatile sulfur compounds. This study illustrated that temperature control would be a more effective tool than pH in modulating the resulting aroma compound profile of durian wine.

  相似文献   

20.
Summary A purified alkaline thermo-tolerant bacterial lipase from Pseudomonas aeruginosa BTS-2 was immobilized on a poly (AAc-co-HPMA-cl-MBAm) hydrogel network. The hydrogel showed approximately 95% binding efficiency for lipase (specific activity 1.96 U mg−1). The immobilized enzyme achieved 65.1% conversion of ethanol and propionic acid (100 mM each) into ethyl propionate in n-nonane at 65 °C in 9 h. When alkane of C-chain length lower than n-nonane was used as the organic solvent, the conversion of ethanol and propionic acid into ethyl propionate decreased with a decrease in the log P value of alkanes. The immobilized lipase retained approximately 30% of its original catalytic activity after five cycles of reuse for esterification of ethanol and propionic acid into ethyl propionate at temperature 65 °C in 3 h. Addition of a molecular sieve (3 ?) to the reaction mixture enhanced the formation of ethyl propionate to 89.3%. Moreover, ethanol and propionic acid when taken a molar ratio of 3:1 further promoted the conversion rate to 94%. However, an increase in the molar ratio of propionic acid with respect to ethanol resulted in a decline of ethyl propionate synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号