首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Signal termination is a crucial step in the dynamic of the olfactory process. It involves different classes of odorant-degrading enzymes. Whereas aldehyde oxidase enzymatic activities have been demonstrated in insect antennae by previous biochemical studies, the corresponding enzymes have never been characterized at the molecular level. In the cabbage armyworm Mamestra brassicae, we isolated for the first time an aldehyde oxidase partial cDNA specifically expressed in chemosensory organs, with the strongest expression in antennae of both sexes. In these organs, expression was restricted to the olfactory sensilla. Our results suggest that the corresponding enzyme could degrade aldehyde odorant compounds, such as pheromones or plant's volatiles.  相似文献   

2.
Female moths produce blends of odorant chemicals, called pheromones. These precise chemical mixtures both attract males and elicit appropriate mating behaviors. To locate females, male moths must rapidly detect changes in environmental pheromone concentration. Therefore, the regulation of pheromone concentration within antennae, their chief organ of smell, is important. We describe antennal-specific aldehyde oxidases from the moths Antheraea polyphemus and Bombyx mori that are capable of catabolizing long chain, unsaturated aldehydes such as their aldehyde pheromones. These soluble enzymes are associated uniquely with male and female antennae and have molecular masses of 175 and 130 kDa, respectively. The A. polyphemus aldehyde oxidase has been localized to the olfactory sensilla which contain the pheromone receptor cell dendrites. These same sensilla contain a previously described sensilla-specific esterase that degrades the acetate ester component of A. polyphemus pheromone. We propose that sensillar pheromone-degrading enzymes modulate pheromone concentration in the receptor space and hence play a dynamic role in the pheromone-mediated reproductive behaviors of these animals.  相似文献   

3.
Aldehyde oxidase (EC 1.2.3.1) in monkey (Macaca fascicularis) liver was characterized. Liver cytosol exhibited extremely high benzaldehyde and phthalazine oxidase activities based on aldehyde oxidase, compared with those of rabbits, rats, mice and guinea pigs. Monkey liver aldehyde oxidase showed broad substrate specificity distinct from that of the enzyme from other mammals. Purified aldehyde oxidase from monkey liver cytosol showed two major bands and two minor bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). These bands were also observed in Western blotting analysis using anti-rat aldehyde oxidase. The molecular mass of the enzyme was estimated to be 130-151 kDa by SDS-PAGE, and to be about 285 kDa by HPLC gel filtration. The results suggest that isoforms of aldehyde oxidase exist in monkey livers.  相似文献   

4.
Aldehyde oxidase (E.C. 1.2.3.1) was isolated from rabbit liver and two potential bioaffinity ligands, i.e., 3-aminocarbonyl-1-benzyl-6-methylpyridinium bromide and 3-aminocarbonyl-1-benzyl-4,6-dimethylpyridinium chloride, were tested for their applicability in a purification procedure for this enzyme. Various supports and different coupling methods were investigated for the immobilization of aldehyde oxidase. Adsorption to n-hexyl- and n-octylamine-substituted Sepharose 4B and DEAE Sepharose 6B gave the best retention of aldehyde oxidase activity. The storage stability of free enzyme and enzyme immobilized to n-octylamine-substituted Sepharose 4B was studied in several buffers at pH 7.8 and 9.0. This showed that the stability of immobilized enzyme was much less than that of free enzyme. The apparent operational stability of the immobilized enzyme preparation, however, improved substantially compared to soluble enzyme, although the corresponding product yield is still very poor. Coimmobilization of catalase and/or superoxide dismutase provided no significant increase of the apparent operational stability and product yield. A positive effect on both parameters was found for aldehyde oxidase-n-alkylamine Sepharose 4B preparations by increasing the amount of enzyme adsorbed per unit weight of support, whereas the productivity of these preparations remained about constant.  相似文献   

5.
The enzymes aldehyde oxidase and xanthine oxidase catalyze the oxidation of a wide range of N-heterocycles and aldehydes. These enzymes are widely known for their role in the metabolism of N-heterocyclic xenobiotics where they provide a protective barrier by aiding in the detoxification of ingested nitrogen-containing heterocycles. Isovanillin has been shown to inhibit the metabolism of aromatic aldehydes by aldehyde oxidase, but its inhibition towards the heterocyclic compounds has not been studied. The present investigation examines the oxidation of phthalazine in the absence and in the presence of the inhibitor isovanillin by partially purified aldehyde oxidase from guinea pig liver. In addition, the interaction of phthalazine with freshly prepared guinea pig liver slices, both in the absence and presence of specific inhibitors of several liver oxidizing enzymes, was investigated. ldehyde oxidase rapidly converted phthalazine into 1-phthalazinone, which was completely inhibited in the presence of isovanillin (a specific inhibitor of aldehyde oxidase). In freshly prepared liver slices, phthalazine was also rapidly converted to 1-phthalazinone. The formation of 1-phthalazinone was completely inhibited by isovanillin, whereas disulfiram (a specific inhibitor of aldehyde dehydrogenase) only inhibited 1-phthalazinone formation by 24% and allopurinol (a specific inhibitor of xanthine oxidase) had little effect. Therefore, isovanillin has been proved as an inhibitor of the metabolism of heterocyclic substrates, such as phthalazine, by guinea pig liver aldehyde oxidase, since it had not been tested before. Thus it would appear from the inhibitor results that aldehyde oxidase is the predominant enzyme in the oxidation of phthalazine to 1-phthalazinone in freshly prepared guinea pig liver slices, whereas xanthine oxidase only contributes to a small extent and aldehyde dehydrogenase does not take any part.  相似文献   

6.
The aldox-2 locus in Drosophila melanogaster has been shown to affect differentially three molybdoenzymes, aldehyde oxidase, pyridoxal oxidase, and xanthine dehydrogenase. These effects are most obvious at times surrounding the pupal-adult boundary, when the normal organism accumulates large amounts of these enzymes in their active form. This locus has been more precisely mapped genetically to 2-82.9 +/- 2.1, with complete concordance between the effects of all recombinant chromosomes on all three enzymes. The cytogenetic location has also been determined to be between 52E and 54E8, with the likelihood that it lies within the region 54B1-54E8. The aldox-2 mutant allele has no visible phenotype and is completely recessive for enzyme effects at all stages tested. Segmental duplication of this region, including the aldox-2+ allele, has no apparent effect on the visible phenotype or the enzymatic activity. The mutant aldox-2 allele has no effect on the developmental expression of two unrelated enzymes, 6-phosphogluconate dehydrogenase and NADP+-dependent isocitrate dehydrogenase. The effects of this locus on aldehyde oxidase, xanthine dehydrogenase, and pyridoxal oxidase suggest that this locus may code for a product involved in the synthesis of the molybdenum cofactor common to these enzymes.  相似文献   

7.
In rat adrenal gland and gastric mucosa putrescine is efficiently oxidized to GABA via gamma-aminobutyraldehyde (ABAL) by action of diamine oxidase and aldehyde dehydrogenase. Having turned our attention on the rat intestinal mucosa, where putrescine uptake and diamine oxidase are active, we have purified and characterized an aldehyde dehydrogenase optimally active on gamma-aminobutyraldehyde. A dimer with a subunit molecular weight of 52,000, the native enzyme binds ABAL and NAD+ with high affinity: at pH 7.4, Km values are equal to 18 and 14 microM, respectively. Affinity for betaine aldehyde is much lower (Km = 285 microM), but the efficiency is equally good, thanks to a high value of V. Unaffected by disulfiram and Mg2+, the enzyme is activated by high NAD+ concentrations (Vnn = 1.6 x Vn) and is competitively inhibited by NADH. According to the best fitting model, the dimeric enzyme only binds one NADH and the mixed complex enzyme-NAD(+)-NADH is inactive. The increase of activity promoted by NAD+ can therefore be ascribed to an allosteric effect, rather than to the activation of a second reaction center. Highly stable at pH 6.8 in the presence of dithiothreitol and high phosphate concentrations, ABALDH is inactivated by ion-exchange resins and by cationic buffers. Our results show that the enzyme can be effectively involved in the metabolism of biogenic amines and, with a K(m) for ABAL lower than 20 microM, in the synthesis of GABA.  相似文献   

8.
Inhibition of xanthine oxidase by various aldehydes   总被引:1,自引:0,他引:1  
F F Morpeth  R C Bray 《Biochemistry》1984,23(6):1332-1338
The inactivation of bovine milk xanthine oxidase by various aldehydes has been investigated. For each aldehyde, the inactivation reaction gives rise to a unique molybdenum(V) electron paramagnetic resonance signal from xanthine oxidase (the Inhibited signal). Of the aldehydes tested, only a few (mainly aromatic) failed to undergo this reaction. The g values of the Inhibited signals vary systematically from one aldehyde to another. As the substituents of the alpha-carbon atom become more electron withdrawing, so the gav increases. The inactivation rate depends on both enzyme and aldehyde concentration. Oxygen or another oxidizing substrate is also required for inhibition by 3-pyridinecarboxaldehyde and butyraldehyde but not formaldehyde. Reactivation of xanthine oxidase inhibited by an aldehyde occurs spontaneously after removal of excess aldehyde. For butyraldehyde or 3-pyridinecarboxaldehyde, greater than 95% recovery of activity was observed. The rate of reactivation is dependent both on the nature of the molecule bearing the aldehyde group and on a pK (6.6) of the complex with the enzyme. Evidence is presented that the modifying aldehyde in the Inhibited signal-giving species has (contrary to earlier assumptions) not been oxidized. These results are discussed in relation to the structure of the molybdenum center, and a mechanism for the inhibiting reaction is suggested.  相似文献   

9.
The enzymatic conversion of xanthoxin to abscisic acid by cell-free extracts of Phaseolus vulgaris L. leaves has been found to be a two-step reaction catalyzed by two different enzymes. Xanthoxin was first converted to abscisic aldehyde followed by conversion of the latter to abscisic acid. The enzyme activity catalyzing the synthesis of abscisic aldehyde from xanthoxin (xanthoxin oxidase) was present in cell-free leaf extracts from both wild type and the abscisic acid-deficient molybdopterin cofactor mutant, Az34 (nar2a) of Hordeum vulgare L. However, the enzyme activity catalyzing the synthesis of abscisic acid from abscisic aldehyde (abscisic aldehyde oxidase) was present only in extracts of the wild type and no activity could be detected in either turgid or water stressed leaf extracts of the Az34 mutant. Furthermore, the wilty tomato mutants, sitiens and flacca, which do not accumulate abscisic acid in response to water stress, have been shown to lack abscisic aldehyde oxidase activity. When this enzyme fraction was isolated from leaf extracts of P. vulgaris L. and added to extracts prepared from sitiens and flacca, xanthoxin was converted to abscisic acid. Abscisic aldehyde oxidase has been purified about 145-fold from P. vulgaris L. leaves. It exhibited optimum catalytic activity at pH 7.25 in potassium phosphate buffer.  相似文献   

10.
蛾类昆虫性信息素生物合成的研究进展   总被引:8,自引:0,他引:8  
赵成华 《昆虫学报》2000,43(4):429-439
综述了各种不同化学结构类型的蛾类雌性信息素生物合成途径。此外还叙述了特定比例的性信息素成分在雌蛾体内产生的机理以及某些蛾类中信息素生物合成酶类与物种进化间的关系。  相似文献   

11.
Aldehyde oxidases (AOXs) are homodimeric proteins belonging to the xanthine oxidase family of molybdenum-containing enzymes. Each 150-kDa monomer contains a FAD redox cofactor, two spectroscopically distinct [2Fe-2S] clusters, and a molybdenum cofactor located within the protein active site. AOXs are characterized by broad range substrate specificity, oxidizing different aldehydes and aromatic N-heterocycles. Despite increasing recognition of its role in the metabolism of drugs and xenobiotics, the physiological function of the protein is still largely unknown. We have crystallized and solved the crystal structure of mouse liver aldehyde oxidase 3 to 2.9 Å. This is the first mammalian AOX whose structure has been solved. The structure provides important insights into the protein active center and further evidence on the catalytic differences characterizing AOX and xanthine oxidoreductase. The mouse liver aldehyde oxidase 3 three-dimensional structure combined with kinetic, mutagenesis data, molecular docking, and molecular dynamics studies make a decisive contribution to understand the molecular basis of its rather broad substrate specificity.  相似文献   

12.
13.
A NAD+-dependent aldehyde dehydrogenase, the activity of which induces at the same time as luceriferase, has been purified from the bioluminescent bacterium Beneckea harveyi, and its chemical and physical properties have been investigated. The purification is accomplished in three steps resulting in an enzyme preparation that gives a single protein band on three different gel electrophoresis systems. The molecular weight of the purified enzyme was estimated to be 120,000 by gel filtration. Sodium dodecyl sulfate-gel electrophoresis gave a molecular weight of 59,000 indicating that aldehyde dehydrogenase has a dimeric structure with subunits of similar molecular weight. The purified enzyme has a high specificity for long chain aliphatic aldehydes; the Michaelis constants for aldehydes decrease with increasing chain length as also observed for bacterial aldehyde dehydrogenases involved in the metabolism of hydrocarbons. The aldehyde specificity of the aldehyde dehydrogenase is similar to that of luciferase indicating that the functional role of the enzyme may be linked with the bioluminescent system.  相似文献   

14.
Summary Histochemical staining for aldehyde oxidase in mature tumorous-head eye imaginal discs of Drosophila melanogaster reveals region-specific enzyme activity that normally is not found in wild type eye discs. Confined primarily to the central portion of the mutant disc is a morphologically distinct area that can be predicted to be the only aldehyde oxidase (aldox) positive tissue in the eye disc. Prior to staining, this area can be removed mechanically from the surrounding tissue and is characterized by smooth boundaries. The separated tissue stains for aldehyde oxidase whereas the remaining disc is aldox negative as in the wild type. We presume that the aldehyde oxidase positive region subsists in the primordium of the tumorous-head abnormality and propose that the appearance of this enzyme signals a change in the state of determination in the mutant disc.  相似文献   

15.
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. We previously identified and purified an alternative oxidase, cytochrome bd-type quinol oxidase, from a mutant of Bacillus stearothermophilus defective in the caa3-type oxidase activity (J. Sakamoto et al., FEMS Microbiol. Lett. 143 (1996) 151-158). Compared with proteobacterial counterparts, B. stearothermophilus cytochrome bd showed lower molecular weights of the two subunits, shorter wavelength of alpha-band absorption maximum due to heme D, and lower quinol oxidase activity. Preincubation with menaquinone-2 enhanced the enzyme activity up to 40 times, suggesting that, besides the catalytic site, there is another quinone-binding site which largely affects the enzyme activity. In order to clarify the molecular basis of the differences of cytochromes bd between B. stearothermophilus and proteobacteria, the genes encoding for the B. stearothermophilus bd was cloned based on its partial peptide sequences. The gene for subunit I (cbdA) encodes 448 amino acid residues with a molecular weight of 50195 Da, which is 14 and 17% shorter than those of Escherichia coli and Azotobacter vinelandii, respectively, and CbdA lacks the C-terminal half of the long hydrophilic loop between the putative transmembrane segments V and VI (Q loop), which has been suggested to include the substrate quinone-binding site for the E. coli enzyme. The gene for subunit II (cbdB) encodes 342 residues with a molecular weight of 38992 Da. Homology search indicated that the B. stearothermophilus cbdAB has the highest sequence similarity to ythAB in B. subtilis genome rather than to cydAB, the first set of cytochrome bd genes identified in the genome. Sequence comparison of cytochromes bd and their homologs from various organisms demonstrates that the proteins can be classified into two subfamilies, a proteobacterial type including E. coli bd and a more widely distributed type including the B. stearothermophilus enzyme, suggesting that the latter type is evolutionarily older.  相似文献   

16.
In this study we have examined the roles of alcohol dehydrogenase, aldehyde oxidase, and aldehyde dehydrogenase in the adaptation of Drosophila melanogaster to alcohol environments. Fifteen strains were characterized for genetic variation at the above loci by protein electrophoresis. Levels of in vitro enzyme activity were also determined. The strains examined showed considerable variation in enzyme activity for all three gene-enzyme systems. Each enzyme was also characterized for coenzyme requirements, effect of inhibitors, subcellular location, and tissue specific expression. A subset of the strains was chosen to assess the physiological role of each gene-enzyme system in alcohol and aldehyde metabolism. These strains were characterized for both the ability to utilize alcohols and aldehydes as carbon sources as well as the capacity to detoxify such substrates. The results of the above analyses demonstrate the importance of both alcohol dehydrogenase and aldehyde dehydrogenase in the in vivo metabolism of alcohols and aldehydes.  相似文献   

17.
Spermine oxidase is a FAD-dependent enzyme that specifically oxidizes spermine, and plays a central role in the highly regulated catabolism of polyamines in vertebrates. The spermine oxidase substrate is specifically spermine, a tetramine that plays mandatory roles in several cell functions, such as DNA synthesis, cellular proliferation, modulation of ion channels function, cellular signalling, nitric oxide synthesis and inhibition of immune responses. The oxidative products of spermine oxidase activity are spermidine, H2O2 and the aldehyde 3-aminopropanal that spontaneously turns into acrolein. In this study the reconstruction of the phylogenetic relationships among spermine oxidase proteins from different vertebrate taxa allowed to infer their molecular evolutionary history, and assisted in elucidating the conservation of structural and functional properties of this enzyme family. The amino acid residues, which have been hypothesized or demonstrated to play a pivotal role in the enzymatic activity, and substrate specificity are here analysed to obtain a comprehensive and updated view of the structure–function relationships in the evolution of spermine oxidase.  相似文献   

18.
类胡萝卜素结合蛋白(CBP)是唯一已被确认与家蚕黄色茧形成儡切相关的主要蛋白质。文章选择12个有色茧和白茧蚕品种, 调查了cbp基因结构、转录产物mRNA类型和丝腺类胡萝卜素紫外可见光吸收特征与其茧色的关系。结果表明: 黄色茧蚕品种含有2种或3种cbp基因结构, 同时转录具有CBP功能性的完整 mRNA和缺少第2外显子的mRNA; 绿茧品种间cbp基因结构存在差异, 转录缺少第2外显子的mRNA; 白茧蚕品种cbp基因只有1种结构, 转录缺少第2外显子的mRNA。文章在黄茧品种中新发现的cbp基因第1内含子序列可能具有茧色品种特异性, 家蚕黄茧品种丝腺的紫外可见吸收光谱特征显著区别于绿茧和白茧品种, cbp基因的结构和表达特征与家蚕茧色密切相关。  相似文献   

19.
Gross aldehyde oxidase activity from the egg-stage through 10-day-old adults and distribution of the enzyme in eye-antennal imaginal discs in third instar larvae were determined for the tumorous-head strain of Drosophila melanogaster. Aldehyde oxidase activity of several laboratory strains was measured for comparative purposes. Aldehyde oxidase activity was 100% higher during embryogenesis in tuh(ASU) eggs than in Oregon-R-C eggs. A second period of elevated aldehyde oxidase activity was observed during metamorphosis where tuh(ASU) pupae averaged 65% more enzyme activity than Oregon-R-C. Therefore, during determination and differentiation of the eye-antennal imaginal disc, the tuh(ASU) strain possesses a high aldehyde oxidase activity. Wild-type Drosophila melanogaster antennal imaginal discs are aldehyde oxidase positive, whereas attached eye imaginal discs are apparently aldehyde oxidase negative. A sample of eye-antennal imaginal discs from tuh(ASU) third instar larvae revealed that either one or both eye discs of 64% of the larvae were aldehyde oxidase positive. Aldehyde oxidase activity may be correlated with the homoeotic transformation in parts of the eye disc.  相似文献   

20.
Galactose oxidase is a fungal enzyme which is known to oxidize the C-6 hydroxymethyl of galactose and galactosamine to an aldehyde group. It has been widely used in glycoconjugate research, for example in the labeling of asialoglycoproteins. We have developed a simple affinity purification for galactose oxidase using melibiose-polyacrylamide. This affinity procedure was used to purify the enzyme from ammonium sulfate precipitates of culture filtrates of Dactylium dendroides. The material containing proteases and other contaminants is eluted in the buffer wash. The galactose oxidase is then specifically eluted from the column with buffer containing 0.1 M D-fucose or D-galactose. Using this procedure, the enzyme was also purified from commercial samples of galactose oxidase which contain high proteolytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号