首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A+T content, phylogenetic relationships, codon usage, evolutionary rates, and ratio of synonymous versus non-synonymous substitutions have been studied in partial sequences of the atpD and aroQ/pheA genes of primary (Buchnera) and secondary symbionts of aphids and a set of selected non-symbiotic bacteria, belonging to the five subdivisions of the Proteobacteria. Compared to the homologous genes of the last group, both genes belonging to Buchnera behave in a similar way, showing a higher A+T content, forming a monophyletic group, a loss in codon bias, especially in third base position, an evolutionary acceleration and an increase in the number of non-synonymous substitutions, confirming previous results reported elsewhere for other genes. When available, these properties have been partly observed with the secondary symbionts, but with values that are intermediate between Buchnera and free living Proteobacteria. They show high A+T content, but not as high as Buchnera, a non-solved phylogenetic position between Buchnera, and the other γ-Proteobacteria, a loss in codon bias, again not as high as in Buchnera and a significant evolutionary acceleration in the case of the three atpD genes, but not when considering aroQ/pheA genes. These results give support to the hypothesis that they are symbionts at different stages of the symbiotic accommodation to the host.  相似文献   

2.
Although Buchnera, the endosymbiotic bacteria of aphids, are close relatives of Escherichia coli, their genome size is only a seventh that of E. coli. In this study, we estimated the genomic copy number of Buchnera by dot-blot hybridization and fluorimetry using a video-intensified microscope photon-counting system and obtained convincing evidence that each cell of these bacteria contains an average of 120 genomic copies. Thus, the Buchnera symbiont, with many copies of a small-sized genome, is reminiscent of cell organelles such as mitochondria and chloroplasts. Received: 25 November 1998 / Accepted: 25 December 1998  相似文献   

3.
The prokaryotic endosymbionts (Buchnera) of aphids are known to provision their hosts with amino acids that are limiting in the aphid diet. Buchnera from the aphids Schizaphis graminum and Diuraphis noxia have plasmids containing leuABCD, genes that encode enzymes of the leucine biosynthetic pathway, as well as genes encoding proteins probably involved in plasmid replication (repA1 and repA2) and an open reading frame (ORF1) of unknown function. The newly reported plasmids closely resemble a plasmid previously described in Buchnera of the aphid Rhopalosiphum padi [Bracho AM, Martínez-Torres D, Moya A, Latorre A (1995) J Mol Evol 41:67–73]. Nucleotide sequence comparisons indicate conserved regions which may correspond to an origin of replication and two promoters, as well as inverted repeats, one of which resembles a rho-independent terminator. Phylogenetic analyses based on amino acid sequences of leu gene products and ORF1 resulted in trees identical to those obtained from endosymbiont chromosomal genes and the plasmid-borne trpEG. These results are consistent with a single evolutionary origin of the leuABCD-containing plasmid in a common ancestor of Aphididae and the lack of plasmid exchange between endosymbionts of different aphid species. Trees for ORF1 and repA (based on both nucleotides and amino acids) are used to examine the basis for leu plasmid differences between Buchnera of Thelaxes suberi and Aphididae. The most plausible explanation is that a single transfer of the leu genes to an ancestral replicon was followed by rearrangements. The related replicon in Buchnera of Pemphigidae, which lacks leuABCD, appears to represent the ancestral condition, implying that the plasmid location of the leu genes arose after the Pemphigidae diverged from other aphid families. This conclusion parallels previously published observations for the unrelated trpEG plasmid, which is present in Aphididae and absent in Pemphigidae. Recruitment of amino acid biosynthetic genes to plasmids has been ongoing in Buchnera lineages after the infection of aphid hosts. Received: 9 March 1998 / Accepted: 18 May 1998.  相似文献   

4.
The Drosophila fat body protein 2 gene (Fbp2) is an ancient duplication of the alcohol dehydrogenase gene (Adh) which encodes a protein that differs substantially from ADH in its methionine content. In D. melanogaster, there is one methionine in ADH, while there are 51 (20% of all amino acids) in FBP2. Methionine is involved in 46% of amino acid replacements when Fbp2 DNA sequences are compared between D. melanogaster and D. pseudoobscura. Methionine accumulation does not affect conserved residues of the ADH-ADHr-FBP2 multigene family. The multigene family has evolved by replacement of mildly hydrophobic amino acids by methionine with no apparent reversion. Its short-term evolution was compared between two Drosophila species, while its long-term evolution was compared between two genera belonging respectively to acalyptrate and calyptrate Diptera, Drosophila and Sarcophaga. The pattern of nucleotide substitution was consistent with an independent accumulation of methionines at the Fbp2 locus in each lineage. Under a steady-state model, the rate of methionine accumulation was constant in the lineage leading to Drosophila, and was twice as fast as that in the calyptrate lineage. Substitution rates were consistent with a slight positive selective advantage for each methionine change in about one-half of amino acid sites in Drosophila. This shows that selection can potentially account for a large proportion of amino acid replacements in the molecular evolution of proteins. Received: 12 December 1994 / Accepted: 15 April 1996  相似文献   

5.
Aphids belonging to the three genera Tuberaphis, Glyphinaphis, and Cerataphis contain extracellular fungal symbionts that resemble endocellular yeast-like symbionts of planthoppers. Whereas the symbiont of planthoppers has a uricase (urate oxidase; EC 1.7.3.3) and recycles uric acid that the host stores, no uric acid was found in Tuberaphis styraci, and its fungal symbiont did not exhibit the uricase activity. However, the fungal symbionts of these aphids, including that of T. styraci, were shown to have putative uricase genes, or pseudogenes, for the uricase. Sequence analysis of these genes revealed that deleterious mutations occurred independently on each lineage of Glyphinaphis and Tuberaphis, while no such mutation was found in the lineage of Cerataphis. These genes were almost identical to those cloned from the symbionts of planthoppers, though the host aphids and planthoppers are phylogenetically distant. To estimate the phylogenetic relationship in detail between the fungal symbionts of aphids and those of planthoppers, a gene tree was constructed based on the sequences of the uricase genes including their flanking regions. As a result, the symbionts of planthoppers and Tuberaphis aphids formed a sister group against those of Glyphinaphis and Cerataphis aphids with high bootstrap confidence levels, which strongly suggests that symbionts have been horizontally transferred from the aphids' lineage to the planthoppers'. Received: 29 March 2000 / Accepted: 31 May 2000  相似文献   

6.
We have studied the evolution of Gpdh in 18 fruitfly species by sequencing 1,077 nucleotides per species on average. The region sequenced includes four exons coding for 277 amino acids and three variable-length introns. Phylogenies derived by a variety of methods confirm that the nominal genus Zaprionus belongs within the genus Drosophila, whereas Scaptodrosophila and Chymomyza are outside. The rate of GPDH evolution is erratic. The rate of amino acid replacements in a lineage appears to be 1.0 × 10−10/site/year when Drosophila species are considered (diverged up to 55 million years ago), but becomes 2.3 × 10−10 when they are compared to Chymomyza species (divergence around 60 My ago), and 4.6 × 10−10 when species of those two genera are compared with the medfly Ceratitis capitata (divergence around 100 My ago). In order to account for these observations, the rate of amino acid replacement must have been 15 or more times greater in some lineages and at some times than in others. At the nucleotide level, however, Gpdh evolves in a fairly clockwise fashion. Received: 13 June 1996 / Accepted: 16 August 1996  相似文献   

7.
Tertiary structures of proteins are conserved better than their primary structures during evolution. Quaternary structures or subunit organizations, however, are not always conserved. A typical case is found in hemoglobin family. Although human, Scapharca, and Urechis have tetrameric hemoglobins, their subunit contacts are completely different from each other. We report here that only one or two amino acid replacements are enough to create a new contact between subunits. Such a small number of chance replacements is expected during the evolution of hemoglobins. This result explains why different modes of subunit interaction evolved in animal hemoglobins. In contrast, certain interactions between subunits are necessary for cooperative oxygen binding. Cooperative oxygen binding is observed often in dimeric and tetrameric hemoglobins. Conformational change of a subunit induced by the first oxygen binding to the heme group is transmitted through the subunit contacts and increases the affinity of the second oxygen. The tetrameric hemoglobins from humans and Scapharca have cooperativity in spite of their different modes of subunit contact, but the one from Urechis does not. The relationship between cooperativity and the mode of subunit contacts is not clear. We compared the atomic interactions at the subunit contact surface of cooperative and non-cooperative tetrameric hemoglobins. We show that heme-contact modules M3–M6 play a key role in the subunit contacts responsible for cooperativity. A module was defined as a contiguous peptide segment having compact conformation and its average length is about 15 amino acid residues. We show that the cooperative hemoglobins have interactins involving at least two pairs of modules among the four heme-contact modules at subunit contact. Received: 12 January 2001 / Accepted: 3 April 2001  相似文献   

8.
Cytochrome c oxidase (COX) is a multi-subunit enzyme complex that catalyzes the final step of electron transfer through the respiratory chain on the mitochondrial inner membrane. Up to 13 subunits encoded by both the mitochondrial (subunits I, II, and III) and nuclear genomes occur in eukaryotic organisms ranging from yeast to human. Previously, we observed a high number of amino acid replacements in the human COX IV subunit compared to mouse, rat, and cow orthologues. Here we examined COX IV evolution in the two groups of anthropoid primates, the catarrhines (hominoids, cercopithecoids) and platyrrhines (ceboids), as well as one prosimian primate (lorisiform), by sequencing PCR-amplified portions of functional COX4 genes from genomic DNAs. Phylogenetic analysis of the COX4 sequence data revealed that accelerated nonsynonymous substitution rates were evident in the early evolution of both catarrhines and, to a lesser extent, platyrrhines. These accelerated rates were followed later by decelerated rates, suggesting that positive selection for adaptive amino acid replacement became purifying selection, preserving replacements that had occurred. The evidence for positive selection was especially pronounced along the catarrhine lineage to hominoids in which the nonsynonymous rate was first faster than the synonymous rate, then later much slower. The rates of three types of ``neutral DNA' nucleotide substitutions (synonymous substitutions, pseudogene nucleotide substitutions, and intron nucleotide substitutions) are similar and are consistent with previous observations of a slower rate of such substitutions in the nuclear genomes of hominoids than in the nuclear genomes of other primate and mammalian lineages. Received: 22 May 1996 / Accepted: 24 November 1996  相似文献   

9.
A higher rate of molecular evolution in rodents than in primates at synonymous sites and, to a lesser extent, at amino acid replacement sites has been reported previously for most nuclear genes examined. Thus in these genes the average ratio of amino acid replacement to synonymous substitution rates in rodents is lower than in primates, an observation at odds with the neutral model of molecular evolution. Under Ohta's mildly deleterious model of molecular evolution, these observations are seen as the consequence of the combined effects of a shorter generation time (driving a higher mutation rate) and a larger effective population size (resulting in more effective selection against mildly deleterious mutations) in rodents. The present study reports the results of a maximum-likelihood analysis of the ratio of amino acid replacements to synonymous substitutions for genes encoded in mitochondrial DNA (mtDNA) in these two lineages. A similar pattern is observed: in rodents this ratio is significantly lower than in primates, again consistent only with the mildly deleterious model. Interestingly the lineage-specific difference is much more pronounced in mtDNA-encoded than in nuclear-encoded proteins, an observation which is shown to run counter to expectation under Ohta's model. Finally, accepting certain fossil divergence dates, the lineage-specific difference in amino acid replacement-to-synonymous substitution ratio in mtDNA can be partitioned and is found to be entirely the consequence of a higher mutation rate in rodents. This conclusion is consistent with a replication-dependent model of mutation in mtDNA. Received: 24 September 1999 / Accepted: 18 September 2000  相似文献   

10.
The bacterial endosymbionts (Buchnera) from the aphids Rhopalosiphum padi, R. maidis, Schizaphis graminum, and Acyrthosiphon pisum contain the genes for anthranilate synthase (trpEG) on plasmids made up of one or more 3.6-kb units. Anthranilate synthase is the first as well as the rate-limiting enzyme in the tryptophan biosynthetic pathway. The amplification of trpEG on plasmids may result in an increase of enzyme protein and overproduction of this essential amino acid, which is required by the aphid host. The nucleotide sequence of trpEG from endosymbionts of different species of aphids is highly conserved, as is an approximately 500-bp upstream DNA segment which has the characteristics of an origin of replication. Phylogenetic analyses were performed using trpE and trpG from the endosymbionts of these four aphids as well as from the endosymbiont of Schlechtendalia chinensis, in which trpEG occurs on the chromosome. The resulting phylogeny was congruent with trees derived from sequences of two chromosome-located bacterial genes (part of trpB and 16S ribosomal DNA). In turn, trees obtained from plasmid-borne and bacterial chromosome-borne sequences were congruent with the tree resulting from phylogenetic analysis of three aphid mitochondrial regions (portions of the small and large ribosomal DNA subunits, as well as cytochrome oxidase II). Congruence of trees based on genes from host mitochondria and from bacteria adds to previous support for exclusively vertical transmission of the endosymbionts within aphid lineages. Congruence with trees based on plasmid-borne genes supports the origin of the plasmid-borne trpEG from the chromosomal genes of the same lineage and the absence of subsequent plasmid exchange among endosymbionts of different species of aphids. Received: 22 August 1995 / Accepted: 6 September 1995  相似文献   

11.
Members of the transketolase group of thiamine-diphosphate-dependent enzymes from 17 different organisms including mammals, yeast, bacteria, and plants have been used for phylogenetic reconstruction. Alignment of the amino acid and DNA sequences for 21 transketolase enzymes and one putative transketolase reveals a number of highly conserved regions and invariant residues that are of predicted importance for enzyme activity, based on the crystal structure of yeast transketolase. One particular sequence of 36 residues has some similarities to the nucleotide-binding motif and we designate it as the transketolase motif. We report further evidence that the recP protein from Streptococcus pneumoniae might be a transketolase and we list a number of invariant residues which might be involved in substrate binding. Phylogenies derived from the nucleotide and the amino acid sequences by various methods show a conventional clustering for mammalian, plant, and gram-negative bacterial transketolases. The branching order of the gram-positive bacteria could not be inferred reliably. The formaldehyde transketolase (sometimes known as dihydroxyacetone synthase) of the yeast Hansenula polymorpha appears to be orthologous to the mammalian enzymes but paralogous to the other yeast transketolases. The occurrence of more than one transketolase gene in some organisms is consistent with several gene duplications. The high degree of similarity in functionally important residues and the fact that the same kinetic mechanism is applicable to all characterized transketolase enzymes is consistent with the proposition that they are all derived from one common ancestral gene. Transketolase appears to be an ancient enzyme that has evolved slowly and might serve as a model for a molecular clock, at least within the mammalian clade. Received: 13 September 1995 / Accepted: 14 November 1996  相似文献   

12.
Abstract The genome of Buchnera, an endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum, was characterized by pulse-field gel electrophoresis (PFGE) as a circular DNA molecule of 657 kb. The enzymes I-CeuI, CpoI, ApaI, SmaI, NaeI, SacII, MluI, FspI, and NruI were used to cleave the DNA of Buchnera into fragments of suitable size for PFGE analysis. A physical map of the Buchnera genome, including restriction fragments from seven of these enzymes, was constructed using double cutting, partial digestion, and hybridization with linking fragments, and 29 genes and operons were localized on the map. In addition, the genomic map of Buchnera was compared with those of Escherichia coli and Haemophilus influenzae. The gene order in Buchnera is more similar to that of E. coli than to H. influenzae. The dramatic shrinkage of the Buchnera genome compared with those of other members of the closely related Enterobacteriaceae family is discussed in terms of evolution under the influence of the intracellular symbiotic association. Received: 20 May 1998 / Accepted: 1 July 1998  相似文献   

13.
14-3-3 proteins constitute a family of eukaryotic proteins that are key regulators of a large number of processes ranging from mitosis to apoptosis. 14-3-3s function as dimers and bind to particular motifs in their target proteins. To date, 14-3-3s have been implicated in regulation or stabilization of more than 35 different proteins. This number is probably only a fraction of the number of proteins that 14-3-3s bind to, as reports of new target proteins have become more frequent. An examination of 14-3-3 entries in the public databases reveals 153 isoforms, including alleloforms, reported in 48 different species. The number of isoforms range from 2, in the unicellular organism Saccharomyces cerevisiae, to 12 in the multicellular organism Arabidopsis thaliana. A phylogenetic analysis reveals that there are four major evolutionary lineages: Viridiplantae (plants), Fungi, Alveolata, and Metazoa (animals). A close examination of the aligned amino acid sequences identifies conserved amino acid residues and regions of importance for monomer stabilization, dimer formation, target protein binding, and the nuclear export function. Given the fact that 53% of the protein is conserved, including all amino acid residues in the target binding groove of the 14-3-3 monomer, one might expect little to no isoform specificity for target protein binding. However, using surface plasmon resonance we show that there are large differences in affinity between nine 14-3-3 isoforms of A. thaliana and a target peptide representing a novel binding motif present in the C terminus of the plant plasma membrane H+ATPase. Thus, our data suggest that one reason for the large number of isoforms found in multicellular organisms is isoform-specific functions. Received: 19 April 2000 / Accepted: 24 July 2000  相似文献   

14.
We previously found that proteinaceous protease inhibitors homologous to Streptomyces subtilisin inhibitor (SSI) are widely produced by various Streptomyces species, and we designated them ``SSI-like proteins' (Taguchi S, Kikuchi H, Suzuki M, Kojima S, Terabe M, Miura K, Nakase T, Momose H [1993] Appl Environ Microbiol 59:4338–4341). In this study, SSI-like proteins from five strains of the genus Streptoverticillium were purified and sequenced, and molecular phylogenetic trees were constructed on the basis of the determined amino acid sequences together with those determined previously for Streptomyces species. The phylogenetic trees showed that SSI-like proteins from Streptoverticillium species are phylogenetically included in Streptomyces SSI-like proteins but form a monophyletic group as a distinct lineage within the Streptomyces proteins. This provides an alternative phylogenetic framework to the previous one based on partial small ribosomal RNA sequences, and it may indicate that the phylogenetic affiliation of the genus Streptoverticillium should be revised. The phylogenetic trees also suggested that SSI-like proteins possessing arginine or methionine at the P1 site, the major reactive center site toward target proteases, arose multiple times on independent lineages from ancestral proteins possessing lysine at the P1 site. Most of the codon changes at the P1 site inferred to have occurred during the evolution of SSI-like proteins are consistent with those inferred from the extremely high G + C content of Streptomyces genomes. The inferred minimum number of amino acid replacements at the P1 site was nearly equal to the average number for all the variable sites. It thus appears that positive Darwinian selection, which has been postulated to account for accelerated rates of amino acid replacement at the major reaction center site of mammalian protease inhibitors, may not have dictated the evolution of the bacterial SSI-like proteins. Received: 23 August 1996 / Accepted: 20 November 1996  相似文献   

15.
In the search for the essential functional domains of the large mechanosensitive ion channel (MscL) of E. coli, we have cloned several mutants of the mscL gene into a glutathione S-transferase fusion protein expression system. The resulting mutated MscL proteins had either amino acid additions, substitutions or deletions in the amphipathic N-terminal region, and/or deletions in the amphipathic central or hydrophilic C-terminal regions. Proteolytic digestion of the isolated fusion proteins by thrombin yielded virtually pure recombinant MscL proteins that were reconstituted into artificial liposomes and examined for function by the patch-clamp technique. The addition of amino acid residues to the N-terminus of the MscL did not affect channel activity, whereas N-terminal deletions or changes to the N-terminal amino acid sequence were poorly tolerated and resulted in channels exhibiting altered pressure sensitivity and gating. Deletion of 27 amino acids from the C-terminus resulted in MscL protein that formed channels similar to the wild-type, while deletion of 33 C-terminal amino acids extinguished channel activity. Similarly, deletion of the internal amphipathic region of the MscL abolished activity. In accordance with a recently proposed spatial model of the MscL, our results suggest that (i) the N-terminal portion participates in the channel activation by pressure, and (ii) the essential channel functions are associated with both, the putative central amphipathic α-helical portion of the protein and the six C-terminal residues RKKEEP forming a charge cluster following the putative M2 membrane spanning α-helix. Received: 25 September 1996/Revised: 21 November 1996  相似文献   

16.
The aminoacyl-tRNA synthetases are ubiquitous enzymes which catalyze a crucial step of the cell life, the specific attachment of amino acids to their cognate tRNA. The amino acid sequences of three archaeal seryl-tRNA synthetases (SerRS) from Haloarcula marismortui and Methanococcus jannaschii, both belonging to the group of Euryarchaeota, and from Sulfolobus solfataricus, of the group of Crenarchaeota, were aligned with other eubacterial and eukaryal available SerRS sequences. In an attempt to identify some features of adaptation to extreme environments of these organisms, amino acid composition and amino acid substitutions between mesophilic and thermophilic SerRS were analyzed. In addition, universal phylogenetic trees of SerRS including the three known archaeal sequences, rooted by the threonyl-tRNA synthetases were inferred. Amino acid analyses of the SerRS revealed two ways of adaptation to thermophilic environments between the Eubacteria and the Archaea; most of the usually described amino acid substitutions were nonsignificant in the case of archaeal thermophilic SerRS and most amino acid composition biases seemed to be linked to the genome G+C content pressure. The phylogenetic analysis of the SerRS showed the Archaea to be paraphyletic, H. marismortui emerging with the Gram-positive Bacteria, M. jannaschii being near the root of the tree, and S. solfataricus branching with Eucarya. Received: 30 March 1998 / Accepted: 14 July 1998  相似文献   

17.
Sequences from the tuf gene coding for the elongation factor EF-Tu were amplified and sequenced from the genomic DNA of Pirellula marina and Isosphaera pallida, two species of bacteria within the order Planctomycetales. A near-complete (1140-bp) sequence was obtained from Pi. marina and a partial (759-bp) sequence was obtained for I. pallida. Alignment of the deduced Pi. marina EF-Tu amino acid sequence against reference sequences demonstrated the presence of a unique 11-amino acid sequence motif not present in any other division of the domain Bacteria. Pi. marina shared the highest percentage amino acid sequence identity with I. pallida but showed only a low percentage identity with other members of the domain Bacteria. This is consistent with the concept of the planctomycetes as a unique division of the Bacteria. Neither primary sequence comparison of EF-Tu nor phylogenetic analysis supports any close relationship between planctomycetes and the chlamydiae, which has previously been postulated on the basis of 16S rRNA. Phylogenetic analysis of aligned EF-Tu amino acid sequences performed using distance, maximum-parsimony, and maximum-likelihood approaches yielded contradictory results with respect to the position of planctomycetes relative to other bacteria. It is hypothesized that long-branch attraction effects due to unequal evolutionary rates and mutational saturation effects may account for some of the contradictions. Received: 21 August 2000 / Accepted: 8 January 2001  相似文献   

18.
This study describes the results of an analysis using Southern blotting, the polymerase chain reaction, and sequencing which shows that the African grey parrot (Psittacus erithacus) lacks the W-chromosomal gene for the alpha subunit of mitochondrial ATP synthase (ATP5A1W). Additional evidence shows that in other psittacines a fragment of the ATP5A1W gene contains five times as many nonsynonymous nucleotide replacements as the homologous fragment of the Z gene. Therefore, whereas in these other psittacines the corresponding ATP5A1Z protein fragment is highly conserved and varies by only a few, moderately conservative amino acid substitutions, the homologous ATP5A1W fragments contain a considerable number of, sometimes highly nonconservative, amino acid replacements. In one of these species, the ringneck parakeet (Psittacula krameri), the ATP5A1W gene is present in an inactive form because of the presence of a nonsense codon. Other changes, possibly leading to an inactive ATP5A1W gene product, involve the substitution of arginine residues by cysteine in the ATP5A1W protein of the mitred conure (Aratinga mitrata) and the blue and gold macaw (Ara ararauna). The data suggest also that although the divergence of the psittacine ATP5A1W and ATP5A1Z genes preceeded the origin of the psittacidae, this divergence occurred independently of a similar process in the myna (Gracula religiosa), the outgroup used in this study. Received: 6 September 2000 / Accepted: 7 March 2001  相似文献   

19.
To investigate the causes and functional significance of rapid sex-determining protein evolution we compared three Caenorhabditis elegans genes encoding members of the protein phosphatase 2C (PP2C) family with their orthologs from another Caenorhabditis species (strain CB5161). One of the genes encodes FEM-2, a sex-determining protein, while the others have no known sex-determining role. FEM-2's PP2C domain was found to be more diverged than the other PP2C domains, supporting the notion that sex-determining proteins are subjected to selective pressures that allow for or cause rapid divergence. Comparison of the positions of amino acid substitutions in FEM-2 with a solved three-dimensional structure suggests that the catalytic face of the protein is highly conserved among C. elegans, CB5161, and another closely related species C. briggsae. However, the non-conserved regions of FEM-2 cannot be said to lack functional importance, since fem-2 transgenes from the other species were unable to rescue the germ-line defect caused by a C. elegans fem-2 mutation. To test whether fem-2 functions as a sex-determining gene in the other Caenorhabditis species we used RNA-mediated interference (RNAi). fem-2 (RNAi) in C. elegans and C. briggsae caused germ-line feminization, but had no noticeable effect in CB5161. Thus the function of fem-2 in CB5161 remains uncertain. Received: 11 April 2001 / Accepted: 6 August 2001  相似文献   

20.
Lactose and melibiose are actively accumulated by the wild-type Escherichia coli lactose carrier, which is an integral membrane protein energized by the proton motive force. Mutants of the E. coli lactose carrier were isolated by their ability to grow on minimal plates with succinate plus IPTG in the presence of the toxic lactose analog β-thio-o-nitrophenylgalactoside (TONPG). TONPG-resistant mutants were streaked on melibiose MacConkey indicator plates, and red clones were picked. These melibiose positive mutants were then streaked on lactose MacConkey plates, and white clones were picked. Transport assays indicated that the mutants had altered sugar recognition and a defect in sugar accumulation. The mutants had a poor apparent K m for both lactose and melibiose in transport. One mutant had almost no ability to take up lactose, but melibiose downhill transport was 58% (V max ) of normal. All of the mutants accumulated methyl-α-d-galactopyranoside (TMG) to only 8% or less of normal, and two failed to accumulate. Immunoblot analysis of the mutant lactose carrier proteins indicated that loss of sugar transport activity was not due to loss of expression in the membrane. Nucleotide sequencing of the lacY gene from the mutants revealed changes in the following amino acids of the lactose carrier: M23I, W151L, G257D, A295D and G377V. Two of the mutants (G257D and G377V) are novel in that they represent the first amino acids in periplasmic loops to be implicated with changes in sugar recognition. We conclude that the amino acids M23, W151, G257, A295 and G377 of the E. coli lactose carrier play either a direct or an indirect role in sugar recognition and accumulation. Received: 12 October 1999/Revised: 21 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号