首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Each amino acid is attached to its cognate tRNA by a distinct aminoacyl-tRNA synthetase (aaRS). The conventional evolutionary view is that the modern complement of synthetases existed prior to the divergence of eubacteria and eukaryotes. Thus comparisons of prokaryotic and eukaryotic aminoacyl-tRNA synthetases of the same type (charging specificity) should show greater sequence similarities than comparisons between synthetases of different types—and this is almost always so. However, a recent study [Ribas de Pouplana L, Furgier M, Quinn CL, Schimmel P (1996) Proc Natl Acad Sci USA 93:166–170] suggested that tryptophanyl- (TrpRS) and tyrosyl-tRNA (TyrRS) synthetases of the Eucarya (eukaryotes) are more similar to each other than either is to counterparts in the Bacteria (eubacteria). Here, we reexamine the evolutionary relationships of TyrRS and TrpRS using a broader range of taxa, including new sequence data from the Archaea (archaebacteria) as well as species of Eucarya and Bacteria. Our results differ from those of Ribas de Pouplana et al.: All phylogenetic methods support the separate monophyly of TrpRS and TyrRS. We attribute this result to the inclusion of the archaeal data which might serve to reduce long branch effects possibly associated with eukaryotic TrpRS and TyrRS sequences. Furthermore, reciprocally rooted phylogenies of TrpRS and TyrRS sequences confirm the closer evolutionary relationship of Archaea to eukaryotes by placing the root of the universal tree in the Bacteria. Received: 7 December 1996 / Accepted: 11 February 1997  相似文献   

2.
In this work, we present the sequences and a comparison of the glycosomal GAPDHs from a number of Kinetoplastida. The complete gene sequences have been determined for some species (Crithidia fasciculata, Herpetomonas samuelpessoai, Leptomonas seymouri, and Phytomonas sp), whereas for other species (Trypanosoma brucei gambiense, Trypanosoma congolense, Trypanosoma vivax, and Leishmania major), only partial sequences have been obtained by PCR amplification. The structure of all available glycosomal GAPDH genes was analyzed in detail. Considerable variations were observed in both their nucleotide composition and their codon usage. The GC content varies between 64.4% in L. seymouri and 49.5% in the previously sequenced GAPDH gene from Trypanoplasma borreli. A highly biased codon usage was found in C. fasciculata, with only 34 triplets used, whereas in T. borreli 57 codons were employed. No obvious correlation could be observed between the codon usage and either the nucleotide composition or the level of gene expression. The glycosomal GAPDH is a very well-conserved enzyme. The maximal overall difference observed in the amino acid sequences is only 25%. Specific insertions and extensions are retained in all sequences. The residues involved in catalysis, substrate, and inorganic phosphate binding are fully conserved, whereas some variability is observed in the cofactor-binding pocket. The implications of these data for the design of new trypanocidal drugs targeted against GAPDH are discussed. All available gene and amino acid sequences of glycosomal GAPDHs were used for a phylogenetic analysis. The division of the Kinetoplastida into two suborders, Bodonina and Trypanosomatina, was well supported. Within the letter group, the Trypanosoma species appeared to be monophyletic, whereas the other trypanosomatids form a second clade. Received: 23 February 1998/Accepted: 26 March 1998  相似文献   

3.
Multiple phospholipase A2 (PLA2) isoenzymes found in a single snake venom induce a variety of pharmacological effects. These multiple forms are formed by gene duplication and accelerated evolution of exons. We examined the amino acid sequences of 127 snake venom PLA2 enzymes and their homologues to study in which location most natural substitutions occur. Our data show that hot spots of amino acid substitutions in this group of proteins occur mostly on the surface. A logistic model correlating the substitution rates of each amino acid residue with their surface accessibility indicates that the probability of natural substitutions occurring in the fully exposed residue is 2.6–3.5 times greater than that of substitutions occurring in buried residues. These surface substitutions play a significant role in the evolution of new PLA2 isoenzymes by altering the specificity of targeting to various tissues or cells, resulting in distinct pharmacological effects. Thus natural substitutions in PLA2 enzymes, in contrast to popular belief, are not random substitutions but appear to be directed toward modifying the molecular surface. Received: 11 May 1998 / Accepted: 29 June 1998  相似文献   

4.
Protein sequences with similarities to Escherichia coli RecA were compared across the major kingdoms of eubacteria, archaebacteria, and eukaryotes. The archaeal sequences branch monophyletically and are most closely related to the eukaryotic paralogous Rad51 and Dmc1 groups. A multiple alignment of the sequences suggests a modular structure of RecA-like proteins consisting of distinct segments, some of which are conserved only within subgroups of sequences. The eukaryotic and archaeal sequences share an N-terminal domain which may play a role in interactions with other factors and nucleic acids. Several positions in the alignment blocks are highly conserved within the eubacteria as one group and within the eukaryotes and archaebacteria as a second group, but compared between the groups these positions display nonconservative amino acid substitutions. Conservation within the RecA-like core domain identifies possible key residues involved in ATP-induced conformational changes. We propose that RecA-like proteins derive evolutionarily from an assortment of independent domains and that the functional homologs of RecA in noneubacteria comprise an array of RecA-like proteins acting in series or cooperatively. Received: 25 October 1996 / Accepted: 31 December 1996  相似文献   

5.
The amino acid sequences of 22 α-amylases from family 13 of glycosyl hydrolases were analyzed with the aim of revealing the evolutionary relationships between the archaeal α-amylases and their eubacterial and eukaryotic counterparts. Two evolutionary distance trees were constructed: (i) the first one based on the alignment of extracted best-conserved sequence regions (58 residues) comprising β2, β3, β4, β5, β7, and β8 strand segments of the catalytic (α/β)8-barrel and a short conserved stretch in domain B protruding out of the barrel in the β3 →α3 loop, and (ii) the second one based on the alignment of the substantial continuous part of the (α/β)8-barrel involving the entire domain B (consensus length: 386 residues). With regard to archaeal α-amylases, both trees compared brought, in fact, the same results; i.e., all family 13 α-amylases from domain Archaea were clustered with barley pI isozymes, which represent all plant α-amylases. The enzymes from Bacillus licheniformis and Escherichia coli, representing liquefying and cytoplasmic α-amylases, respectively, seem to be the further closest relatives to archaeal α-amylases. This evolutionary relatedness clearly reflects the discussed similarities in the amino acid sequences of these α-amylases, especially in the best-conserved sequence regions. Since the results for α-amylases belonging to all three domains (Eucarya, Eubacteria, Archaea) offered by both evolutionary trees are very similar, it is proposed that the investigated conserved sequence regions may indeed constitute the ``sequence fingerprints' of a given α-amylase. Received: 3 June 1998 / Accepted: 20 August 1998  相似文献   

6.
Complete sequences of seven protein coding genes from Penaeus notialis mitochondrial DNA were compared in base composition and codon usage with homologous genes from Artemia franciscana and four insects. The crustacean genes are significantly less A + T-rich than their counterpart in insects and the pattern of codon usage (ratio of G + C-rich versus A + T-rich codon) is less biased. A phylogenetic analysis using amino acid sequences of the seven corresponding polypeptides supports a sister-taxon status for mollusks–annelid and arthropods. Furthermore, a distance matrix-based tree and two most-parsimonious trees both suggest that crustaceans are paraphyletic with respect to insects. This is also supported by the inclusion of Panulirus argus COII (complete) and COI and COIII (partial) sequence data. From analysis of single and combined genes to infer phylogenies, it is observed that obtained from single genes are not well supported in most topologies cases and notably differ from that of the tree based on all seven genes. Received: 25 August 1998 / Accepted: 8 March 1999  相似文献   

7.
DNA repair in the Archaea is relevant to the consideration of genome maintenance and replication fidelity in the last universal common ancestor (LUCA) from two perspectives. First, these prokaryotes embody a mix of bacterial and eukaryal molecular features. Second, DNA repair proteins would have been essential in LUCA to maintain genome integrity, regardless of the environmental temperature. Yet we know very little of the basic molecular mechanisms of DNA damage and repair in the Archaea in general. Many studies on DNA repair in archaea have been conducted with hyperthermophiles because of the additional stress imposed on their macromolecules by high temperatures. In addition, of the six complete archaeal genome sequences published so far, five are thermophilic archaea. We have recently shown that the hyperthermophile Pyrococcus furiosus has an extraordinarily high capacity for repair of radiation-induced double-strand breaks and we have identified and sequenced several genes involved in DNA repair in P. furiosus. At the sequence level, only a few genes share homology with known bacterial repair genes. For instance, our phylogenetic analysis indicates that archaeal recombinases occur in two paralogous gene families, one of which is very deeply branched, and both recombinases are more closely related to the eukaryotic RAD51 and Dmc1 gene families than to the Escherichia coli recA gene. We have also identified a gene encoding a repair endo/exonuclease in the genomes of several Archaea. The archaeal sequences are highly homologous to those of the eukaryotic Rad2 family and they cluster with genes of the FEN-1 subfamily, which are known to be involved in DNA replication and repair in eukaryotes. We argue that there is a commonality of mechanisms and protein sequences, shared between prokaryotes and eukaryotes for several modes of DNA repair, reflecting diversification from a minimal set of genes thought to represent the genome of the LUCA.  相似文献   

8.
The complete mitochondrial genome sequence of the pig, Sus scrofa, was determined. The length of the sequence presented is 16,679 nucleotides. This figure is not absolute, however, due to pronounced heteroplasmy caused by variable numbers of the motif GTACACGTGC in the control region of different molecules. A phylogenetic study was performed on the concatenated amino acid and nucleotide sequences of 12 protein-coding genes of the mitochondrial genome. The analysis identified the pig (Suiformes) as a sister group of a cow/whale clade, making Artiodactyla paraphyletic. The split between pig and cow/whale was molecularly dated at 65 million years before present. Received: 2 December 1997 / Accepted: 20 February 1998  相似文献   

9.
We present a novel hypothesis for the origin of the eukaryotic cell, or eukaryogenesis, based on a metabolic symbiosis (syntrophy) between a methanogenic archaeon (methanobacterial-like) and a δ-proteobacterium (an ancestral sulfate-reducing myxobacterium). This syntrophic symbiosis was originally mediated by interspecies H2 transfer in anaerobic, possibly moderately thermophilic, environments. During eukaryogenesis, progressive cellular and genomic cointegration of both types of prokaryotic partners occurred. Initially, the establishment of permanent consortia, accompanied by extensive membrane development and close cell–cell interactions, led to a highly evolved symbiotic structure already endowed with some primitive eukaryotic features, such as a complex membrane system defining a protonuclear space (corresponding to the archaeal cytoplasm), and a protoplasmic region (derived from fusion of the surrounding bacterial cells). Simultaneously, bacterial-to-archaeal preferential gene transfer and eventual replacement took place. Bacterial genome extinction was thus accomplished by gradual transfer to the archaeal host, where genes adapted to a new genetic environment. Emerging eukaryotes would have inherited archaeal genome organization and dynamics and, consequently, most DNA-processing information systems. Conversely, primordial genes for social and developmental behavior would have been provided by the ancient myxobacterial symbiont. Metabolism would have been issued mainly from the versatile bacterial organotrophy, and progressively, methanogenesis was lost. Received: 5 January 1998 / Accepted: 18 March 1998  相似文献   

10.
We show that in animal mitochondria homologous genes that differ in guanine plus cytosine (G + C) content code for proteins differing in amino acid content in a manner that relates to the G + C content of the codons. DNA sequences were analyzed using square plots, a new method that combines graphical visualization and statistical analysis of compositional differences in both DNA and protein. Square plots divide codons into four groups based on first and second position A + T (adenine plus thymine) and G + C content and indicate differences in amino acid content when comparing sequences that differ in G + C content. When sequences are compared using these plots, the amino acid content is shown to correlate with the nucleotide bias of the genes. This amino acid effect is shown in all protein-coding genes in the mitochondrial genome, including cox I, cox II, and cyt b, mitochondrial genes which are commonly used for phylogenetic studies. Furthermore, nucleotide content differences are shown to affect the content of all amino acids with A + T- and G + C-rich codons. We speculate that phylogenetic analysis of genes so affected may tend erroneously to indicate relatedness (or lack thereof) based only on amino acid content. Received: 3 July 1996 / Accepted: 6 November 1996  相似文献   

11.
Phylogenetic relationships among reptiles were examined using previously published and newly determined hemoglobin sequences. Trees reconstructed from these sequences using maximum-parsimony, neighbor-joining, and maximum-likelihood algorithms were compared with a phylogenetic tree of Amniota, which was assembled on the basis of published morphological data. All analyses differentiated α chains into αA and αD types, which are present in all reptiles except crocodiles, where only αA chains are expressed. The occurrence of the αD chain in squamates (lizards and snakes only in this study) appears to be a general characteristic of these species. Lizards and snakes also express two types of β chains (βI and βII), while only one type of β chain is present in birds and crocodiles. Reconstructed hemoglobin trees for both α and β sequences did not yield the monophyletic Archosauria (i.e., crocodilians + birds) and Lepidosauria (i.e., Sphenodon+ squamates) groups defined by the morphology tree. This discrepancy, as well as some other poorly resolved nodes, might be due to substantial heterogeneity in evolutionary rates among single hemoglobin lineages. Estimation of branch lengths based on uncorrected amino acid substitutions and on distances corrected for multiple substitutions (PAM distances) revealed that relative rates for squamate αA and αD chains and crocodilian β chains are at least twice as high as those of the rest of the chains considered. In contrast to these rate inequalities between reptilian orders, little variation was found within squamates, which allowed determination of absolute evolutionary rates for this subset of hemoglobins. Rate estimates for hemoglobins of lizards and snakes yielded 1.7 (αA) and 3.3 (β) million years/PAM when calibrated with published divergence time vs. PAM distance correlates for several speciation events within snakes and for the squamate ↔ sphenodontid split. This suggests that hemoglobin chains of squamate reptiles evolved ∼3.5 (αA) or ∼1.7 times (β) faster than their mammalian equivalents. These data also were used to obtain a first estimate of some intrasquamate divergence times. Received: 15 September 1997 / Accepted: 4 February 1998  相似文献   

12.
Planktonic foraminifera are marine protists, whose calcareous shells form oceanic sediments and are widely used for stratigraphic and paleoenvironmental analyses. The fossil record of planktonic foraminifera is compared here to their molecular phylogeny inferred from ribosomal DNA sequences. Eighteen partial SSU rDNA sequences from species representing all modern planktonic families (Globigerinidae, Hastigerinidae, Globorotaliidae, Candeinidae) were obtained and compared to seven sequences representing the major groups of benthic foraminifera. The phylogenetic analyses indicate a polyphyletic origin for the planktonic foraminifera. The Candeinidae, the Globorotaliidae, and the clade Globigerinidae + Hastigerinidae seem to have originated independently, at different epochs in the evolution of foraminifera. Inference of their relationships, however, is limited by substitution rates of heterogeneity. Rates of SSU rDNA evolution vary from 4.0 × 10−9 substitutions/site/year in the Globigerinidae to less than 1.0 × 10−9 substitutions/site/year in the Globorotaliidae. These variations may be related to different levels of adaptation to the planktonic mode of life. A clock-like evolution is observed among the Globigerinidae, for which molecular and paleontological data are congruent. Phylogeny of the Globorotaliidae is clearly biased by rapid rates of substitution in two species (G. truncatulinoides and G. menardii). Our study reveals differences in absolute rates of evolution at all taxonomic levels in planktonic foraminifera and demonstrates their effect on phylogenetic reconstructions. Received: 21 January 1997 / Accepted: 17 April 1997  相似文献   

13.
Changes in the primary and quarternary structure of vacuolar and archaeal type ATPases that accompany the prokaryote-to-eukaryote transition are analyzed. The gene encoding the vacuolar-type proteolipid of the V-ATPase from Giardia lamblia is reported. Giardia has a typical vacuolar ATPase as observed from the common motifs shared between its proteolipid subunit and other eukaryotic vacuolar ATPases, suggesting that the former enzyme works as a hydrolase in this primitive eukaryote. The phylogenetic analyses of the V-ATPase catalytic subunit and the front and back halves of the proteolipid subunit placed Giardia as the deepest branch within the eukaryotes. Our phylogenetic analysis indicated that at least two independent duplication and fusion events gave rise to the larger proteolipid type found in eukaryotes and in Methanococcus. The spatial distribution of the conserved residues among the vacuolar-type proteolipids suggest a zipper-type interaction among the transmembrane helices and surrounding subunits of the V-ATPase complex. Important residues involved in the function of the F-ATP synthase proteolipid have been replaced during evolution in the V-proteolipid, but in some cases retained in the archaeal A-ATPase. Their possible implication in the evolution of V/F/A-ATPases is discussed. Received: 27 August 1997 / Accepted: 14 January 1998  相似文献   

14.
We have examined the evolution of a gene, SM50, encoding a component of the spicule matrix, which plays an integral role in the formation of the echinoderm skeleton. This gene was originally characterized in Strongylocentrotus purpuratus and encodes an imperfect tandem repeat of six or seven amino acids. We have analyzed the sequence of this repeat in a number of sea urchin species and have determined that the repeat regions have undergone concerted evolution. There are differences in the repeat region between species, but the overall repeat structure is conserved, suggesting the repeat forms a structural domain important in biomineralization. The inherent conserved amino acid repeat structure promotes concerted evolution due to the high probability of misreplication and unequal crossing-over in the repeated segment of the gene. While there are constraints on the amino acids allowed in the repeat region, there are also variations, so that the sequences observed illustrate the balance between amino acid substitutions and concerted evolution. We have evidence that substitutions can alter the mechanisms of unequal crossing-over, altering the way concerted evolution occurs. The way in which concerted evolution occurred appears to be determined by the degree of sequence similarity between the repeats in a given gene, which influences how unequal crossing over may occur. We have mapped the differences in repeat regions on existing phylogenetic trees and indicate where concerted evolution has taken place. We also confirm an earlier report that Hemicentrotus pulcherrimus fits into the Strongylocentrotus genus and examine the evolution of the H. pulcherrimus SM50 repeat relative to other members of this genus. Received: 31 October 2000 / Accepted: 20 March 2001  相似文献   

15.
We previously found that proteinaceous protease inhibitors homologous to Streptomyces subtilisin inhibitor (SSI) are widely produced by various Streptomyces species, and we designated them ``SSI-like proteins' (Taguchi S, Kikuchi H, Suzuki M, Kojima S, Terabe M, Miura K, Nakase T, Momose H [1993] Appl Environ Microbiol 59:4338–4341). In this study, SSI-like proteins from five strains of the genus Streptoverticillium were purified and sequenced, and molecular phylogenetic trees were constructed on the basis of the determined amino acid sequences together with those determined previously for Streptomyces species. The phylogenetic trees showed that SSI-like proteins from Streptoverticillium species are phylogenetically included in Streptomyces SSI-like proteins but form a monophyletic group as a distinct lineage within the Streptomyces proteins. This provides an alternative phylogenetic framework to the previous one based on partial small ribosomal RNA sequences, and it may indicate that the phylogenetic affiliation of the genus Streptoverticillium should be revised. The phylogenetic trees also suggested that SSI-like proteins possessing arginine or methionine at the P1 site, the major reactive center site toward target proteases, arose multiple times on independent lineages from ancestral proteins possessing lysine at the P1 site. Most of the codon changes at the P1 site inferred to have occurred during the evolution of SSI-like proteins are consistent with those inferred from the extremely high G + C content of Streptomyces genomes. The inferred minimum number of amino acid replacements at the P1 site was nearly equal to the average number for all the variable sites. It thus appears that positive Darwinian selection, which has been postulated to account for accelerated rates of amino acid replacement at the major reaction center site of mammalian protease inhibitors, may not have dictated the evolution of the bacterial SSI-like proteins. Received: 23 August 1996 / Accepted: 20 November 1996  相似文献   

16.
The Artemia hemoglobin is a dimer comprising two nine-domain covalent polymers in quaternary association. Each polymer is encoded by a gene representing nine successive globin domains which have different sequences and are presumed to have been copied originally from a single-domain gene. Two different polymers exist as the result of a complete duplication of the nine-domain gene, allowing the formation of either homodimers or the heterodimer. The total population size of 18 domains comprising nine corresponding pairs, coupled with the probability that they reflect several hundred million years of evolution in the same lineage, provides a unique model in which the process of gene multiplication can be analyzed. The outcome has important implications for the reliability of local molecular clocks. The two polymers differ from each other at 11.7% of amino acid sites; however when corresponding individual domains are compared between polymers, amino acid substitution fluctuates by a factor of 2.7-fold from lowest to highest. This variation is not obvious at the DNA level: Domain pair identity values fluctuate by 1.3-fold. Identity values are, however, uncorrected for multiple substitutions, and both silent and nonsilent changes are pooled. Therefore, to determine the variability in relative substitution rates at the DNA level, we have used the method of Li (1993, J Mol Evol 36:96–99) to determine estimates of nonsynonymous (K A ) and synonymous (K S ) substitutions per site for the nine pairs of domains. As expected, the overall level of silent substitutions (K S of 56.9%) far exceeded nonsilent substitutions (K A of 6.7%); however, for corresponding domain pairs, K A fluctuates by 2.3-fold and K S by 1.7-fold. The large discrepancies reflected in the expressed protein have accrued within a single lineage and the implication is that divergence dates of different genera based on amino acid sequences, even with well-studied proteins of reasonable size, can be wrong by a factor well in excess of 2. Received: 4 June 1997 / Accepted: 17 December 1997  相似文献   

17.
The heat shock protein 70 kDa sequences (HSP70) are of great importance as molecular chaperones in protein folding and transport. They are abundant under conditions of cellular stress. They are highly conserved in all domains of life: Archaea, eubacteria, eukaryotes, and organelles (mitochondria, chloroplasts). A multiple alignment of a large collection of these sequences was obtained employing our symmetric-iterative ITERALIGN program (Brocchieri and Karlin 1998). Assessments of conservation are interpreted in evolutionary terms and with respect to functional implications. Many archaeal sequences (methanogens and halophiles) tend to align best with the Gram-positive sequences. These two groups also miss a signature segment [about 25 amino acids (aa) long] present in all other HSP70 species (Gupta and Golding 1993). We observed a second signature sequence of about 4 aa absent from all eukaryotic homologues, significantly aligned in all prokaryotic sequences. Consensus sequences were developed for eight groups [Archaea, Gram-positive, proteobacterial Gram-negative, singular bacteria, mitochondria, plastids, eukaryotic endoplasmic reticulum (ER) isoforms, eukaryotic cytoplasmic isoforms]. All group consensus comparisons tend to summarize better the alignments than do the individual sequence comparisons. The global individual consensus ``matches' 87% with the consensus of consensuses sequence. A functional analysis of the global consensus identifies a (new) highly significant mixed charge cluster proximal to the carboxyl terminus of the sequence highlighting the hypercharge run EEDKKRRER (one-letter aa code used). The individual Archaea and Gram-positive sequences contain a corresponding significant mixed charge cluster in the location of the charge cluster of the consensus sequence. In contrast, the four Gram-negative proteobacterial sequences of the alignment do not have a charge cluster (even at the 5% significance level). All eukaryotic HSP70 sequences have the analogous charge cluster. Strikingly, several of the eukaryotic isoforms show multiple mixed charged clusters. These clusters were interpreted with supporting data related to HSP70 activity in facilitating chaperone, transport, and secretion function. We observed that the consensus contains only a single tryptophan residue and a single conserved cysteine. This is interpreted with respect to the target rule for disaggregating misfolded proteins. The mitochondrial HSP70 connections to bacterial HSP70 are analyzed, suggesting a polyphyletic split of Trypanosoma and Leishmania protist mitochondrial (Mt) homologues separated from Mt-animal/fungal/plant homologues. Moreover, the HSP70 sequences from the amitochondrial Entamoeba histolytica and Trichomonas vaginalis species were analyzed. The E. histolytica HSP70 is most similar to the higher eukaryotic cytoplasmic sequences, with significantly weaker alignments to ER sequences and much diminished matching to all eubacterial, mitochondrial, and chloroplast sequences. This appears to be at variance with the hypothesis that E. histolytica rather recently lost its mitochondrial organelle. T. vaginalis contains two HSP70 sequences, one Mt-like and the second similar to eukaryotic cytoplasmic sequences suggesting two diverse origins. Received: 29 January 1998 / Accepted: 14 May 1998  相似文献   

18.
Sequence analysis of 27 alleles of each of the three Ras-related genes in Drosophila melanogaster indicates that they all have low levels of polymorphism but may experience slightly different evolutionary pressures. No amino acid replacement substitutions were indicated in any of the sequences, or in the sibling species D. simulans and D. mauritiana. The Dras1 gene, which is the major ras homologue in Drosophila, has less within-species variation in D. melanogaster relative to the amount of divergence from the sibling species than does Dras2, although the contrast was not significant by the HKA test. Dras2 appears to be maintaining two classes of haplotype in D. melanogaster, one of which is closer to the alleles observed in the sibling species, suggesting that this is not likely to be a pseudogene despite the absence of a mutant phenotype. Although differences in level of expression may affect the function of the genes, it is concluded that genetic variation in the Ras signal transduction pathways cannot be attributed to catalytic variation in the Ras proteins. Received: 5 November 1998 / Accepted: 26 March 1999  相似文献   

19.
We studied 10 protein-coding mitochondrial genes from 19 mammalian species to evaluate the effects of 10 amino acid properties on the evolution of the genetic code, the amino acid composition of proteins, and the pattern of nonsynonymous substitutions. The 10 amino acid properties studied are the chemical composition of the side chain, two polarity measures, hydropathy, isoelectric point, volume, aromaticity, aliphaticity, hydrogenation, and hydroxythiolation. The genetic code appears to have evolved toward minimizing polarity and hydropathy but not the other seven properties. This can be explained by our finding that the presumably primitive amino acids differed much only in polarity and hydropathy, but little in the other properties. Only the chemical composition (C) and isoelectric point (IE) appear to have affected the amino acid composition of the proteins studied, that is, these proteins tend to have more amino acids with typical C and IE values, so that nonsynonymous mutations tend to result in small differences in C and IE. All properties, except for hydroxythiolation, affect the rate of nonsynonymous substitution, with the observed amino acid changes having only small differences in these properties, relative to the spectrum of all possible nonsynonymous mutations. Received: 2 January 1998 / Accepted: 25 April 1998  相似文献   

20.
During the past few years Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages and, more recently, the presence of novel archaeal phylogenetic lineages has been reported in coastal marine benthic environments. We investigated the relative abundance, vertical distribution, phylogenetic composition, and spatial variability of Archaea in deep-sea sediments collected from several stations in the Atlantic Ocean. Quantitative oligonucleotide hybridization experiments indicated that the relative abundance of archaeal 16S rRNA in deep-sea sediments (1500 m deep) ranged from about 2.5 to 8% of the total prokaryotic rRNA. Clone libraries of PCR-amplified archaeal rRNA genes (rDNA) were constructed from 10 depth intervals obtained from sediment cores collected at depths of 1,500, 2,600, and 4,500 m. Phylogenetic analysis of rDNA sequences revealed the presence of a complex archaeal population structure, whose members could be grouped into discrete phylogenetic lineages within the two kingdoms, Crenarchaeota and Euryarchaeota. Comparative denaturing gradient gel electrophoresis profile analysis of archaeal 16S rDNA V3 fragments revealed a significant depth-related variability in the composition of the archaeal population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号