首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
《植物生态学报》2018,42(6):609
导管作为多数被子植物木质部水分运输的主要通道, 了解其结构及功能对研究被子植物水力学特性及植物对环境的适应性有着重要的作用。导管长度作为导管解剖特征之一, 对水分运输的安全性及有效性有着重要的影响。该文概述了导管长度测量及计算的方法, 导管长度在种内及种间的分布, 导管长度与导管直径的关系, 导管长度与导水率的关系及导管长度对建立栓塞脆弱曲线的影响, 并对未来导管长度的研究工作重点提出了建议: 1)改进灌注物质, 使灌注更加充分且更利于观察、提高计算精度、发展活体动态测量技术; 2)建立导管在植物不同器官及整体的分布网络以及不同生活型、不同地区的导管长度数据库; 3)对导管直径在导管方向的变化, 导管长度与其他导管特性之间的关系进行研究; 4)光学测量建立栓塞脆弱曲线技术的兴起, 可为解决离心机法建立栓塞脆弱曲线的真实与准确与否的争议提供新的方向。更深入地了解导管长度在植物水力功能中担负的角色, 可以为耐旱、抗旱品种选育提供理论基础。  相似文献   

2.
木本植物木质部栓塞脆弱性研究新进展   总被引:3,自引:0,他引:3       下载免费PDF全文
木质部空穴化和栓塞是木本植物在干旱等条件下遭受水分胁迫时产生的木质部输水功能障碍, 在全球气候变化的大背景下, 栓塞脆弱性对干旱响应的研究已成为热点和重要内容。近年来有关木质部栓塞脆弱性与植物输水结构和耐旱性的关系已有大量研究并取得一定成果, 但是, 不同学者在不同地区对不同材料的研究结果存在很大不同。该文就近年来这一研究领域取得的成果及争议问题进行了概括和总结, 主要涉及木质部栓塞脆弱性(P50)及脆弱曲线的建立方法、木质部栓塞脆弱性与木质部结构(导管直径、导管长度、纹孔膜、木质部密度、纤维及纤维管胞)间的关系和木质部栓塞脆弱性与耐旱性的关系, 并对未来工作进行展望, 提出在未来的工作中应对同一树种使用Cochard Cavitron离心机法、Sperry离心机技术与传统方法建立的脆弱曲线进行比较验证、计算P50值、分析植物个体器官水平差异(根、茎、叶)、测定树种生理生态指标, 探索植物栓塞脆弱性与输水结构和耐旱性的关系, 从而评估不同类型植物在未来气候变化下的耐旱能力。  相似文献   

3.
6个耐旱树种木质部结构与栓塞脆弱性的关系   总被引:3,自引:0,他引:3       下载免费PDF全文
木质部栓塞脆弱性对干旱响应的研究已成为全球气候变化背景下的热点和重要内容。该文以6个耐旱树种刺槐(Robinia pseudoacacia)、沙棘(Hippophae rhamnoides)、榆树(Ulmus pumila)、元宝枫(Acer truncatum)、旱柳(Salix matsudana)、榛(Corylus heterophylla)为研究对象, 采用Cochard Cavitron离心机技术建立木质部栓塞脆弱曲线, 计算木质部栓塞脆弱性, 利用染色法、硅胶注射法等测定木质部导管直径、导管内径跨度、导管连接度、导管密度、导管长度和木质部密度, 探究木质部结构与栓塞脆弱性的关系, 区分6个耐旱树种木质部结构在抗栓塞性上的差异, 以期建立6个耐旱树种在木质部结构方面的抗栓塞性指标。结果表明: 6个耐旱树种木质部栓塞脆弱性大小为刺槐>榆树>沙棘>旱柳>元宝枫>榛, 其中, 刺槐、沙棘和榆树的栓塞脆弱曲线为“r”形, 而元宝枫、旱柳和榛的栓塞脆弱曲线为“s”形, 脆弱曲线为“r”形的树种与脆弱曲线为“s”形的树种栓塞脆弱性差异极显著(p < 0.01)。线性分析表明: 木质部结构影响各树种的栓塞脆弱性, 其中, 木质部密度影响最大(t = 0.702), 导管直径次之(t = 0.532), 导管长度影响最小(t = 0.010)。  相似文献   

4.
三种锦鸡儿属植物水力结构特征及其干旱适应策略   总被引:1,自引:0,他引:1  
龚容  徐霞  田晓宇  江红蕾  李霞  关梦茜 《生态学报》2018,38(14):4984-4993
水分胁迫是干旱半干旱区限制植物生长的主要因素。以干旱半干旱区的3种锦鸡儿属植物为研究对象,从生态适应策略角度来分析3种锦鸡儿植物产生生态分离的原因。对三种锦鸡儿属植物茎干叶片的显微结构、生理功能(导水率、光合速率以及水分利用效率)进行测定,并统计了3种锦鸡儿植株的形态特征,如一、二级枝的直径、长度、末端叶面积。结果表明:三种锦鸡儿属植物都能形成较小的导管直径来适应旱生环境,但是在导水结构上又表现出一定的差异性。中间锦鸡儿的导管直径最小,次脉密度和最大净光合速率最大;柠条锦鸡儿的导管直径、叶片厚度和比叶重(LMA)最大。小叶锦鸡儿在导水率下降50%时的水势(P_(50))最大,水分胁迫时极易发生栓塞,但正是由于导管的栓塞降低了水分运输效率,使其在旱生环境中能够通过减少水分的供应来降低水分的丧失,从而保证自身生长的水分需求;而中间锦鸡儿则主要通过减小导管直径来适应旱生环境;柠条锦鸡儿的水分利用效率最高,抗栓塞能力最强,抗旱性最好,同时柠条锦鸡儿可以通过减少蒸腾面积来减少水分的丧失。植物的导管直径大小、叶片厚度、LMA、叶脉密度对植物导水速率、光合速率等生理功能都有一定的影响。  相似文献   

5.
安瑞  孟凤  尹鹏先  杜光源 《植物生态学报》2018,42(11):1113-1119
在全球变暖的背景下, 植物木质部栓塞脆弱性是林木死亡率升高的重要生理学因素。然而不同方法在长导管树种上建立的栓塞脆弱性曲线存在较大差异。该研究以长导管树种刺槐(Robinia pseudoacacia)为研究对象, 利用自然干燥法、Cochard Cavitron离心机法以及Sperry离心机法建立了栓塞脆弱性曲线, 旨在探讨不同检测方法的合理性。在Sperry离心法中, 使用了两种规格的转子, 从而对“开口导管假象”学说进行了检验。研究结果表明: 自然干燥法建立的栓塞脆弱性曲线为“s”形, 而Cochard Cavitron离心机法和Sperry离心机法建立的栓塞脆弱性曲线为“r”形; 自然干燥法与离心机法建立的曲线存在显著性差异, 且两种离心机法建立的曲线也具有显著性差异。尽管刺槐枝条的导管长度分布表明14.4 cm长的刺槐枝条具有更高比例的开放导管, 但用Sperry离心机法在27.4 cm和14.4 cm长茎段上建立的栓塞脆弱性曲线相似, 表明Sperry离心机法检测刺槐脆弱性曲线时未产生“开口导管假象”, 具有更为可靠的检测结果。  相似文献   

6.
《植物生态学报》2018,42(11):1113
在全球变暖的背景下, 植物木质部栓塞脆弱性是林木死亡率升高的重要生理学因素。然而不同方法在长导管树种上建立的栓塞脆弱性曲线存在较大差异。该研究以长导管树种刺槐(Robinia pseudoacacia)为研究对象, 利用自然干燥法、Cochard Cavitron离心机法以及Sperry离心机法建立了栓塞脆弱性曲线, 旨在探讨不同检测方法的合理性。在Sperry离心法中, 使用了两种规格的转子, 从而对“开口导管假象”学说进行了检验。研究结果表明: 自然干燥法建立的栓塞脆弱性曲线为“s”形, 而Cochard Cavitron离心机法和Sperry离心机法建立的栓塞脆弱性曲线为“r”形; 自然干燥法与离心机法建立的曲线存在显著性差异, 且两种离心机法建立的曲线也具有显著性差异。尽管刺槐枝条的导管长度分布表明14.4 cm长的刺槐枝条具有更高比例的开放导管, 但用Sperry离心机法在27.4 cm和14.4 cm长茎段上建立的栓塞脆弱性曲线相似, 表明Sperry离心机法检测刺槐脆弱性曲线时未产生“开口导管假象”, 具有更为可靠的检测结果。  相似文献   

7.
对温室中培养在不同盐度下一年生木榄[Bruginera gyninorrhiza(L.)Poil]植株上成熟叶的叶柄离析研究的结果表明:1)木榄叶柄导管分子以梯纹导管为主,其次为螺纹导管及它们之间的过渡类型;随着盐度的升高,螺纹导管及它们之间的过渡类型有增多的趋势;2)而叶柄长度,梯纹导管分子的直径、长度及两端梯状穿孔板的横隔条数都与盐度呈抛物线关系,而它们的最大位出现在20‰-30‰,范围内;3)培养于盐度10‰的海水中的木榄叶柄中导管分子一端有出现两个朝向不同的梯状穿孔板现象;4)在低盐条件下,随着基质盐度的提高,导管分子的形态朝着有利于加快水分运输的方向发展,而在高盐环境下,导管分子的形态朝着增加水分运输的安全性方向发展。讨论了叶柄导管分子解剖学特征的适应意义。  相似文献   

8.
植物木质部导管栓塞   总被引:3,自引:0,他引:3  
植物木质部栓塞直接影响植物体内的水分传输,文章对近年来植物木质部导管栓塞的时空分布规律、栓塞修复的微观过程,以及根压与作物木质部导管栓塞的关系研究进展作了概述。  相似文献   

9.
木本植物木质部栓塞修复机制:研究进展与问题   总被引:1,自引:0,他引:1       下载免费PDF全文
维持木本植物体内长距离的水分运输对于植物生存、生长和发育非常重要,但因水分在木质部张力状态下处于亚稳定状态而易发生空穴化和栓塞,导致水力导度降低、生产力下降、甚至植物死亡。面对水分胁迫诱导的空穴化,植物可通过形成抵抗空穴化的解剖结构降低栓塞发生频率,或(和)通过活跃的代谢修复栓塞,其中对木质部栓塞及其修复的发生频率、条件、机制等的认识仍有很大分歧。为此,该文首先综述了木质部栓塞修复过程及时间动态、木质部栓塞形成及修复的发生频率。然后,总结了木质部导管"新的再充水"栓塞修复过程中的4种主要假说:(1)渗透调节假说;(2)反渗透调节假说;(3)韧皮部驱动再充水假说;(4)韧皮部卸载假说。在此基础上,比较了针叶树种和木本被子植物木质部栓塞形成与修复的差异,并分析了木质部栓塞阻力与修复能力之间的权衡关系。最后,提出了木本植物木质部栓塞与修复研究的4个优先研究问题:(1)改进木质部栓塞测定技术;(2)验证"新的再充水"栓塞修复机制假说及引发木质部再充水的信号;(3)阐明木质部栓塞与修复特性的树种间差异及其可能的权衡关系;(4)加强碳代谢和水通道蛋白表达与木质部栓塞及其修复关系的生理生化研究。  相似文献   

10.
导管是被子植物运输水分和无机盐的管道,它由一串导管分子以穿孔端壁相互衔接而成。关于它在输水过程中的作用,常用的比较方法是通过离析来测定导管分子的长度和直径,或者是通过三切面来观察某一导管分子与邻近细胞的相互关系。由于上述方法所展示的仅仅是某一局部区域中木质部各种组成分子的平面关系或者是某一组成分子的变化模式,所  相似文献   

11.
For decades, botanists have considered Winteraceae as the least modified descendents of the first angiosperms primarily because this group lacks xylem vessels. Because of a presumed high resistance of a tracheid‐based vascular system to water transport, Winteraceae have been viewed as disadvantaged relative to vessel‐bearing angiosperms. Here we show that in a Costa Rican cloud forest, stem hydraulic properties, sapwood area‐ and leaf area‐specific hydraulic conductivities of Drimys granadensis L. (Winteraceae) are similar to several co‐occurring angiosperm tree species with vessels. In addition, D. granadensis had realized midday transpiration rates comparable to most vessel‐bearing trees. Surprisingly, we found that D. granadensis transpired more water at night than during the day, with actual water loss being correlated with wind speed. The failure of stomata to shut at night may be related to the occlusion of stomatal pores by cutin and wax. Our measurements do not support the view that absence of xylem vessels imposes limitations on water transport above those for other vesselled plants in the same environment. This, in turn, suggests that a putative return to a tracheid‐based xylem in Winteraceae may not have required a significant loss of hydraulic performance.  相似文献   

12.

Premise of the Study

Dimensions and spatial distribution of vessels are critically important features of woody stems, allowing for adaptation to different environments through their effects on hydraulic efficiency and vulnerability to embolism. Although our understanding of vessel development is poor, basipetal transport of auxin through the cambial zone may play an important role.

Methods

Stems of Populus tremula ×alba were treated with the auxin transport inhibitor N‐1‐naphthylphthalamic acid (NPA) in a longitudinal strip along the length of the lower stem. Vessel lumen diameter, circularity, and length; xylem growth; tension wood area; and hydraulic conductivity before and after a high pressure flush were determined on both NPA‐treated and control plants.

Key Results

NPA‐treated stems formed aberrant vessels that were short, small in diameter, highly clustered, and angular in cross section, whereas xylem formed on the untreated side of the stem contained typical vessels that were similar to those of controls. NPA‐treated stems had reduced specific conductivity relative to controls, but this difference was eliminated by the high‐pressure flush. The control treatment (lanolin + dimethyl sulfoxide) reduced xylem growth and increased tension wood formation, but never produced the aberrant vessel patterning seen in NPA‐treated stems.

Conclusions

These results are consistent with a model of vessel development in which basipetal polar auxin transport through the xylem‐side cambial derivatives is required for proper expansion and patterning of vessels and demonstrate that reduced auxin transport can produce stems with altered stem hydraulic properties.  相似文献   

13.
In the developing xylem bundles of young stems, the presence of immature living vessel elements can strongly restrict or even block axial hydraulic conductance, especially in newly matured vessels. Lateral connections between vessels may provide an alternative pathway for water movement to bypass these closed, living elements. Using the grapevine as a model system, the present study aimed to demonstrate the effects of living vessel elements on water movement patterns, and the importance of lateral flow for effective water conductivity in the developing bundles. Living vessel elements were detected using dye staining and the pattern of vessel development and maturation was then monitored. The importance of lateral flow was confirmed using several approaches: (1) capacity for lateral flow, (2) effect of increasing the distance of water transport, and (3) effect of ion concentrations. Living vessel elements were found along the developing bundles, they occupied a significant proportion of the distal and peripheral parts of the flow path, forming a substantial barrier to apoplastic water flow. Water in the developing xylem bundles could move easily from vessel to vessel and between secondary and primary xylem. Furthermore, data from increasing the transport length and altering the ion concentrations supported the critical contribution of the lateral flow to the total hydraulic conductance within the developing bundles. The hydraulic architecture of the developing xylem bundles is described. The results are discussed in terms of reliability and efficiency of water transport during shoot growth and development.  相似文献   

14.
We assessed the effects of irradiance received during growth on the vulnerability of Fagus sylvatica L. xylem vessels to water-stress-induced embolism. The measurements were conducted on (1) potted saplings acclimated for 2 years under 100% and 12% incident global radiation and (2) branches collected from sun-exposed and shaded sides of adult trees. Both experiments yielded similar results. Light-acclimated shoots were less vulnerable to embolism. Xylem water potential levels producing 50% loss of hydraulic conductivity were lower in sun-exposed branches and seedlings than in shade-grown ones (–3·0 versus –2·3 MPa on average). The differences in vulnerability were not correlated with differences in xylem hydraulic conductivity nor vessel diameter. Resistance to cavitation was correlated with transpiration rates, midday xylem and leaf water potentials in adult trees. We concluded that vulnerability to cavitation in Fagus sylvatica may acclimate to contrasting ambient light conditions.  相似文献   

15.
The relation between xylem vessel age and vulnerability to cavitation of sugar maple (Acer saccharum Marsh.) was quantified by measuring the pressure required to force air across bordered pit membranes separating individual xylem vessels. We found that the bordered pit membranes of vessels located in current year xylem could withstand greater applied gas pressures (3.8 MPa) compared with bordered pit membranes in vessels located in older annular rings (2.0 MPa). A longitudinal transect along 6-year-old branches indicated that the pressure required to push gas across bordered pit membranes of current year xylem did not vary with distance from the growing tip. To understand the contribution of age-related changes in vulnerability to the overall resistance to cavitation, we combined data on the pressure thresholds of individual xylem vessels with measurements of the relative flow rate through each annual ring. The annual ring of the current year contributed only 16% of the total flow measured on 10-cm-long segments cut from 6-year-old branches, but it contributed more than 70% of the total flow when measured through 6-year-old branches to the point of leaf attachment. The vulnerability curve calculated using relative flow rates measured on branch segments were similar to vulnerability curves measured on 6-year-old branches (pressure that reduces hydraulic conductance by 50% = 1.6-2.4 MPa), whereas the vulnerability curve calculated using relative flow rates measured on 6-year-old branches were similar to ones measured on the extension growth of the current year (pressure that reduces hydraulic conductance by 50% = 3.8 MPa). These data suggest that, in sugar maple, the xylem of the current year can withstand larger xylem tensions than older wood and dominates water delivery to leaves.  相似文献   

16.
Lipids have been observed attached to lumen-facing surfaces of mature xylem conduits of several plant species, but there has been little research on their functions or effects on water transport, and only one lipidomic study of the xylem apoplast. Therefore, we conducted lipidomic analyses of xylem sap from woody stems of seven plants representing six major angiosperm clades, including basal magnoliids, monocots and eudicots, to characterize and quantify phospholipids, galactolipids and sulfolipids in sap using mass spectrometry. Locations of lipids in vessels of Laurus nobilis were imaged using transmission electron microscopy and confocal microscopy. Xylem sap contained the galactolipids di- and monogalactosyldiacylglycerol, as well as all common plant phospholipids, but only traces of sulfolipids, with total lipid concentrations in extracted sap ranging from 0.18 to 0.63 nmol ml−1 across all seven species. Contamination of extracted sap from lipids in cut living cells was found to be negligible. Lipid composition of sap was compared with wood in two species and was largely similar, suggesting that sap lipids, including galactolipids, originate from cell content of living vessels. Seasonal changes in lipid composition of sap were observed for one species. Lipid layers coated all lumen-facing vessel surfaces of L. nobilis, and lipids were highly concentrated in inter-vessel pits. The findings suggest that apoplastic, amphiphilic xylem lipids are a universal feature of angiosperms. The findings require a reinterpretation of the cohesion-tension theory of water transport to account for the effects of apoplastic lipids on dynamic surface tension and hydraulic conductance in xylem.  相似文献   

17.
Cambial injury has been reported to alter wood structure in broad-leaved trees. However, the duration and extension of associated anatomical changes have rarely been analysed thoroughly. A total of 18 young European ash (Fraxinus excelsior L.) trees injured on the stem by a spring flood were sampled with the aim of comparing earlywood vessels and rays formed prior to and after the scarring event. Anatomical and hydraulic parameters were measured in five successive rings over one-quarter of the stem circumference. The results demonstrate that mechanical damage induces a decrease in vessel lumen size (up to 77%) and an increase in vessel number (up to 475%) and ray number (up to 115%). The presence of more earlywood vessels and rays was observed over at least three years after stem scarring. By contrast, abnormally narrow earlywood vessels mainly developed in the first ring formed after the event, increasing the thickness-to-span ratio of vessels by 94% and reducing both xylem relative conductivity and the index for xylem vulnerability to cavitation by 54% and 32%, respectively. These vessels accumulated in radial groups in a 30° sector immediately adjacent to the wound, raising the vessel grouping index by 28%. The wound-induced anatomical changes in wood structure express the functional need of trees to improve xylem hydraulic safety and mechanical strength at the expense of water transport. Xylem hydraulic efficiency was restored in one year, while xylem mechanical reinforcement and resistance to cavitation and decay lasted over several years.  相似文献   

18.
Bordered pits are cavities in the lignified cell walls of xylem conduits (vessels and tracheids) that are essential components in the water-transport system of higher plants. The pit membrane, which lies in the center of each pit, allows water to pass between xylem conduits but limits the spread of embolism and vascular pathogens in the xylem. Averaged across a wide range of species, pits account for > 50% of total xylem hydraulic resistance, indicating that they are an important factor in the overall hydraulic efficiency of plants. The structure of pits varies dramatically across species, with large differences evident in the porosity and thickness of pit membranes. Because greater porosity reduces hydraulic resistance but increases vulnerability to embolism, differences in pit structure are expected to correlate with trade-offs between efficiency and safety of water transport. However, trade-offs in hydraulic function are influenced both by pit-level differences in structure (e.g. average porosity of pit membranes) and by tissue-level changes in conduit allometry (average length, diameter) and the total surface area of pit membranes that connects vessels. In this review we address the impact of variation in pit structure on water transport in plants from the level of individual pits to the whole plant.  相似文献   

19.
The Winteraceae are traditionally regarded as the least-specialized descendents of the first flowering plants, based largely on their lack of xylem vessels. Since vessels have been viewed as a key innovation for angiosperm diversification, Winteraceae have been portrayed as declining relicts, limited to wet forest habitats where their tracheid-based wood does not impose a significant hydraulic constraints. In contrast, phylogenetic analyses place Winteraceae among angiosperm clades with vessels, indicating that their vesselless wood is derived rather than primitive, whereas extension of the Winteraceae fossil record into the Early Cretaceous suggests a more complex ecological history than has been deduced from their current distribution. However, the selective regime and ecological events underlying the possible loss of vessels in Winteraceae have remained enigmatic. Here we examine the hypothesis that vessels were lost as an adaptation to freezing-prone environments in Winteraceae by measuring the responses of xylem water transport to freezing for a diverse group of Winteraceae taxa as compared to Canella winterana (Canellaceae, a close relative with vessels) and sympatric conifer taxa. We found that mean percent loss of xylem water transport capacity following freeze-thaw varied from 0% to 6% for Winteraceae species from freezing-prone temperate climates and approximately 20% in those taxa from tropical (nonfreezing) climates. Similarly, conifers exhibit almost no decrease in xylem hydraulic conductivity following freezing. In contrast, water transport in Canella stems is nearly 85% blocked after freeze-thaw. Although vessel-bearing wood of Canella possesses considerably greaterhydraulic capacity than Winteraceae, nearly 20% of xylem hydraulic conductance remains, a value that is comparable to the hydraulic capacity of vesselless Winteraceae xylem, if the proportion of hydraulic flow through vessels (modeled as ideal capillaries) is removed. Thus, the evolutionary removal of vessels may not necessarily require a deleterious shift to an ineffective vascular system. By integrating Winteraceae's phylogenetic relationships and fossil history with physiological and ecological observations, we suggest that, as ancestors of modern Winteraceae passed through temperate conditions present in Southern Gondwana during the Early Cretaceous, they were exposed to selective pressures against vessel-possession and returned to a vascular system relying on tracheids. These results suggest that the vesselless condition is advantageous in freezing-prone areas, which is supported by the strong bias in the ecological abundance of Winteraceae to wet temperate and tropical alpine habitats, rather than a retained feature from the first vesselless angiosperms. We believe that vesselless wood plays an important role in the ecological abundance of Winteraceae in Southern Hemisphere temperate environments by enabling the retention of leaves and photosynthesis in the face of frequent freeze-thaw events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号