首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims of this investigation were to prepare and characterize cabergoline intranasal microemulsion formulations, determine brain drug delivery through biodistribution using technetium-99m (99mTc) as a tracer, and assess its performance pharmacodynamically in weight control. Cabergoline microemulsions of different compositions were prepared by water titration method and characterized for globule size and zeta potential. Microemulsion with maximum drug solubilization and stability was considered optimal and taken for further studies with or without addition of mucoadhesive agent. Pharmacokinetics of optimized 99mTc-labeled cabergoline formulations and 99mTc-labeled drug solution were studied by estimating radioactivity in brain and blood of albino rats post intranasal, intravenous, and oral administrations. To confirm localization of drug in brain following intranasal, intravenous, and oral administrations, gamma scintigraphy imaging was also performed. To assess weight control performance of formulations, body weight, white adipose tissue mass, serum lipids, leptin, and prolactin were determined before and after 40 days of intranasal administrations of these formulations to Wistar rats. Microemulsions were found to be stable both physically and chemically when stored at various stress conditions. Brain/blood uptake ratios, drug targeting efficiency, and direct drug transport were found to be highest for drug mucoadhesive microemulsion followed by drug microemulsion and drug solution post-intranasal administration compared to intravenous drug microemulsion. Significant (p < 0.05) reduction in assessed pharmacodynamic parameters was observed after intranasal administration of mucoadhesive microemulsion against control group. The results of the studies conclusively demonstrate that intranasal microemulsion formulations developed in this investigation are stable and can deliver cabergoline selectively and in higher amounts to the brain compared to both drug administrations as a solution intranasally or microemulsion intravenously. The results also demonstrate reduction in weight, adipose tissue mass, serum lipids, and serum prolactin after intranasal administration of drug microemulsion. Hence, long-term studies in at least two more animal models followed by extensive clinical evaluation can safely result into a product for clinical use.  相似文献   

2.
Thermoreversible-mucoadhesive Gel for nasal delivery of sumatriptan   总被引:1,自引:0,他引:1  
The purpose of the present study was to develop intranasal delivery systems of sumatriptan using thermoreversible polymer Pluronic F127 (PF 127) and mucoadhesive polymer Carbopol 934P (C934P). Formulations were modulated so as to have gelation temperature below 34°C to ensure gelation at physiological temperature after intranasal administration. Gelation temperature was determined by physical appearance as well as by rheological measurement. The gelation temperatures of the formulations decreased by addition of increasing concentrations of Carbopol (ie, from 29°C for 18% PF127 to 23.9°C for 18% PF127, 0.5% Carbopol). The mucoadhesive force in terms of detachment stress, determined using sheep nasal mucosal membrane, increased with increasing concentration of Carbopol. The results of in vitro drug permeation studies across sheep nasal mucosa indicate that effective permeation coefficient could be significantly increased by using in situ gelling formulation with Carbopol concentration 0.3% or greater. Finally, histopathological examination did not detect any damage during in vitro permeation studies. In conclusion, the PF 127 gel formulation of sumatriptan, with in situ gelling and mucoadhesive properties with increased permeation rate is promising for prolonging nasal residence time and thereby nasal absorption. Published: August 4, 2006  相似文献   

3.
The objective of this investigation was to develop lorazepam (LZM) microemulsions as an alternative to the conventional cosolvent based formulation. Solubility of LZM in various oils and Tween 80 was determined. The ternary diagram was plotted to identify area of microemulsion existence and a suitable composition was identified to achieve desired LZM concentration. The LZM microemulsions were evaluated for compatibility with parenteral fluids, globule size, in vitro hemolysis and stability of LZM. Capmul MCM demonstrated highest solubilizing potential for LZM and was used as an oily phase. LZM microemulsions were compatible with parenteral dilution fluids and exhibited mean globule size less than 200 nm. The in vitro hemolysis studies indicated that microemulsions were well tolerated by erythrocytes. The LZM microemulsions containing amino acids exhibited good physical and chemical stability when subjected to refrigeration for 6 months.  相似文献   

4.
The objective of present investigation was to formulate self-microemulsifying drug delivery systems (SMEDDS) of tacrolimus (FK 506), a poorly water soluble immunosuppressant that exhibits low and erratic bioavailability. Solubility of FK 506 in various oils, surfactants cosurfactants and buffers was determined. Phase diagrams were constructed at different ratios of surfactant/cosurfactant (K m ) to determine microemulsion existence region. The effect of oil content, pH of aqueous phase, dilution, and incorporation of drug on mean globule size of resulting microemulsions was studied. The optimized SMEDDS formulation was evaluated for in vitro dissolution profile in comparison to pure drug and marketed formulation (Pangraf capsules). The in vivo immunosuppressant activity of FK 506 SMEDDS was evaluated in comparison to Pangraf capsules. Area of o/w microemulsion region in phase diagram was increased with increase in K m . The SMEDDS yielded microemulsion with globule size less than 25 nm which was not affected by the pH of dilution medium. The SMEDDS was robust to dilution and did not show any phase separation and drug precipitation even after 24 h. Optimized SMEDDS exhibited superior in vitro dissolution profile as compared to pure drug and Pangraf capsules. Furthermore, FK 506 SMEDDS exhibited significantly higher immunosuppressant activity in mice as compared to Pangraf capsules.  相似文献   

5.
The purpose of this study was to develop and optimize formulations of mucoadhesive bilayered buccal patches of sumatriptan succinate using chitosan as the base matrix. The patches were prepared by the solvent casting method. Gelatin and polyvinyl pyrrolidone (PVP) K30 were incorporated into the patches, to improve the film properties of the patches. The patches were found to be smooth in appearance, uniform in thickness, weight, and drug content; showed good mucoadhesive strength; and good folding endurance. A 32 full factorial design was employed to study the effect of independent variables viz. levels of chitosan and PVP K30, which significantly influenced characteristics like swelling index, in-vitro mucoadhesive strength, in vitro drug release, and in-vitro residence time. Different penetration enhancers were tried to improve the permeation of sumatriptan succinate through buccal mucosa. Formulation containing 3% dimethyl sulfoxide showed good permeation of sumatriptan succinate through mucosa. Histopathological studies revealed no buccal mucosal damage. It can be concluded that buccal route can be one of the alternatives available for administration of sumatriptan succinate.  相似文献   

6.
Abstract

The purpose of this research was to develop cubosomal mucoadhesive in situ nasal gel to enhance the donepezil HCl delivery to the brain. Glycerol mono-oleate (GMO) and surfactant poloxamer 407 were used to prepare cubosomes. The developed formulations were characterized for particle size (PS), poly dispersity index (PDI), zeta potential (ZP), entrapment efficiency (EE), transmission electron microscopy (TEM), in vitro drug release and in vivo bio-distribution study in blood and brain tissue. Central composite design was used for the optimization purpose and the selected formulation (containing GMO 2?g and poloxamer 1.5%) was prepared in presence of gellan gum and konjac gum as gelling agent and mucoadhesive agent respectively. The optimal cubosomal dispersion and optimal cubosomal mucoadhesive in situ nasal gel were subjected to in vivo bio-distribution studies in rat model. It showed significantly higher transnasal permeation and better distribution to the brain, when compared to the drug solution. Thus, the formulated cubosomal mucoadhesive in situ gel could be considered as a promising carrier for brain targeting of CNS acting drugs through the transnasal route.  相似文献   

7.
Zolmitriptan is the drug of choice for migraine, but low oral bioavailability (<50%) and recurrence of migraine lead to frequent dosing and increase in associated side effects. Increase in the residence time of drug at the site of drug absorption along with direct nose to brain targeting of zolmitriptan can be a solution to the existing problems. Hence, in the present investigation, thermoreversible intranasal gel of zolmitriptan-loaded nanoethosomes was formulated by using mucoadhesive polymers to increase the residence of the drug into the nasal cavity. The preparation of ethosomes was optimized by using 32 factorial design for percent drug entrapment efficiency, vesicle size, zeta potential, and polydispersity index. Optimized formulation E6 showed the vesicle size (171.67?nm) and entrapment efficiency (66%) when compared with the other formulations. Thermoreversible gels prepared by using poloxamer 407 showed the phase transition temperature at 32–33?°C which was in line with the nasal physiological temperature. The optimized ethosomes were loaded into the thermoreversible mucoadhesive gel optimized by varying concentrations of poloxamer 407, carbopol 934, HPMC K100, and evaluated for gel strength, gelation temperature, mucoadhesive strength, in vitro drug release, and ex vivo drug permeation, where G3 and G6 were found to be optimized formulations. In vitro drug release was studied by different kinetic models suggested that G3 (n?=?0.582) and G6 (n?=?0.648) showed Korsemeyer–Peppas (KKP) model indicating non-Fickian release profiles. A permeation coefficient of 5.92 and 5.9?µg/cm2 for G3 and G6, respectively, revealed very little difference in release rate after 24?h between both the formulations. Non-toxic nature of the gels on columnar epithelial cells was confirmed by histopathological evaluation.  相似文献   

8.
After exposure of bacteria to equal concentrations of cis-diamminedichloroplatinum(II) (DDP) and cis-diamminetetrachloroplatinum(IV) (DTP), the intracellular concentration of DTP was an order of magnitude greater than DDP. However, at identical intracellular drug concentrations, the Pt(IV) compound formed only half as many platinum-DNA lesions. For equal numbers of DNA lesions, the toxicity of both agents was identical whereas the mutagenicity of DTP was 7 times less than for DDP and its capacity to induce recA protein was less than DDP by a factor of 3.5. Bioreduction of Pt(IV) compounds to their corresponding Pt(II) analogues has been proposed as a mechanism for the reaction of Pt(IV) compounds with cellular DNA. According to this hypothesis, DTP would be reduced to DDP in the cell prior to its reaction with DNA and the platinum-DNA lesions of the two compounds should be identical. Our results suggest that reductive elimination can not entirely account for DNA damage caused by PT(IV) compounds in bacteria.  相似文献   

9.
Aims: Food-grade microemulsions have been of increasing interest to researchers as potential delivery systems for bioactive compounds. However, food-grade microemulsions are difficult to formulate and no microemulsion has been documented for antifungal purpose. The physicochemical characterization of a food-grade glycerol monolaurate (GML)/ethanol (EtOH)/Tween 80/potassium sorbate (PS)/water microemulsion system and the antifungal activities against Aspergillus niger and Penicillium italicum have been studied in this paper. Methods and Results: The influence of EtOH and PS on oil solubilization capability was clearly reflected in the phase behaviour of U-type microemulsion systems. One dilution-stable formulation ME (GML/EtOH/Tween 80/PS/water = 3 : 3 : 3·5 : 10·5 : 16) was selected. After 4 days of incubation, ME showed 80%A. niger growth inhibition at 0·2% and 72%P. italicum growth inhibition at 0·1%, respectively, and a delay of conidiation of 2 days compared with the control. In the antifungal activities of the microemulsion, GML and PS made major contributions with similar antifungal activities at a GML/PS weight ratio of 1: 3·5. Conclusions: Food-grade dilution-stable microemulsions prepared with GML as oil phase for antifungal purpose are feasible and solubilization of a hydrotrope contributes to the formation of microemulsions and enhanced antifungal activities. Significance and Impact of the Study: The present report represents the first to develop a food-grade microemulsion system for antifugal purpose.  相似文献   

10.
The aim of the present study was to investigate the potential of a phospholipid-based microemulsion formulation for parenteral delivery of anticancer drug, etoposide. The microemulsion area was identified by constructing pseudoternary phase diagrams. The prepared microemulsions were subjected to different thermodynamic stability tests. The microemulsion formulations that passed thermodynamic stability tests were characterized for optical birefringence, droplet size, viscosity measurement, and pH measurements. To assess the safety of the formulations for parenteral delivery, the formulation was subjected to compatibility studies with various intravenous infusions and in vitro erythrocyte toxicity study. The developed formulation was found to be robust and safe for parenteral delivery.  相似文献   

11.
Celecoxib (CXB) is a poorly aqueous solubility sulfonamide non-steroidal anti-inflammatory drug (NSAID). Hence, the formulation of CXB was selected for solubilization and bioavailability. To find out suitable formulation for microemulsion, the solubility of CXB in triacetin (oil phase), Tween 80 (surfactant), and Transcutol-P (co-surfactant) was screened respectively and optimized by using orthogonal experimental design. The Km value and concentration of oil, Smix, and water were confirmed by pseudo-ternary phase diagram studies and central composite design. One percent carbopol 934 was added to form CXB microemulsion-based gel. The final formulation was evaluated for its appearance, pH, viscosity, stability, drug content determination, globule size, and zeta potential. Its ex vivo drug permeation and the in vivo pharmacokinetic was investigated. Further research was performed to ensure the safety and validity by skin irritation study and in vivo anti-inflammatory activity study. Ex vivo permeation study in mice was designed to compare permeation and transdermal ability between microemulsion formulation and conventional gel. The results revealed that optimized microemulsion-based gel gained higher permeation based on smaller globule size and high drug loading of microemulsion. Transdermal ability was also greatly improved. Bioavailability was compared to market Celebrex® by the in vivo pharmacokinetic study in rabbits. The results indicated that CXB microemulsion-based gel had better bioavailability than Celebrex®.  相似文献   

12.
The objective of the present investigation was to develop and evaluate self-microemulsifying drug delivery system (SMEDDS) for improving the delivery of a BCS class II antidiabetic agent, glyburide (GLY). The solubility of GLY in oils, cosurfactants, and surfactants was evaluated to identify the components of the microemulsion. The ternary diagram was plotted to identify the area of microemulsion existence. The in vitro dissolution profile of GLY SMEDDS was evaluated in comparison to the marketed GLY tablet and pure drug in pH 1.2 and pH 7.4 buffers. The chemical stability of GLY in SMEDDS was determined as per the International Conference on Harmonisation guidelines. The area of microemulsion existence increased with the increase in the cosurfactant (Transcutol P) concentration. The GLY microemulsion exhibited globule size of 133.5 nm and polydispersity index of 0.94. The stability studies indicated that GLY undergoes significant degradation in the developed SMEDDS. This observation was totally unexpected and has been noticed for the first time. Further investigations indicated that the rate of GLY degradation was highest in Transcutol P.  相似文献   

13.
The objective of this investigation was to evaluate the potential of the microemulsions to improve the parenteral delivery of propofol. Pseudo-ternary phase diagrams were plotted to identify microemulsification region of propofol. The propofol microemulsions were evaluated for globule size, physical and chemical stability, osmolarity, in vitro hemolysis, pain caused by injection using rat paw-lick test and in vivo anesthetic activity. The microemulsions exhibited globule size less than 25 nm and demonstrated good physical and chemical stability. Propofol microemulsions were slightly hypertonic and resulted in less than 1% hemolysis after 2 h of storage with human blood at 37 °C. Rat paw-lick test indicated that propofol microemulsions were significantly less painful as compared to the marketed propofol formulation. The anesthetic activity of the microemulsions was similar to the marketed propofol formulation indicating that they do not compromise the pharmacological action of propofol. The stability studies indicated that the microemulsions were stable for 3 months when stored at 5 ± 3 °C. Thus, microemulsions appeared to be an interesting alternative to the current propofol formulations. Indian patent application number of 742/Mum/2006.  相似文献   

14.
Shi Z  Zhang Q  Jiang X 《Life sciences》2005,77(20):2574-2583
The aim of this paper is to investigate the pharmacokinetic behavior of hydrochloride meptazinol (MEP) in plasma, cerebrospinal fluid (CSF) and cerebral cortex after intranasal administration (8 mg/kg) in male Sprague-Dawley rats. The pharmacokinetic study of intravenous administration (8 mg/kg) was also performed in rats. CSF and cerebral cortex samples were collected by serial CSF sampling and intracerebral microdialysis, respectively. The concentration of MEP in the biological samples was measured by high performance liquid chromatography (HPLC). It was determined that the absorption of MEP from the nasal cavity to systemic circulation was rapid and complete. The concentration-time profile showed a prolonged duration of MEP concentration in CSF and cortex following intranasal administration. The ratios of AUC values of intranasal to intravenous administrations were 0.96, 1.07 and 1.81 in plasma, CSF and cortex dialysate, respectively. In conclusion, intranasal administration of MEP is a promising alternative to traditional administration modes. Olfactory mucosa did not present intranasal MEP another pathway, in addition to systemic absorption, for transport to the brain.  相似文献   

15.
In recent times mucoadhesive drug delivery systems are gaining popularity in oral cancer. It is a malignancy with high global prevalence. Despite significant advances in cancer therapeutics, improving the prognosis of late-stage oral cancer remains challenging. Targeted therapy using mucoadhesive polymers can improve oral cancer patients' overall outcome by offering enhanced oral mucosa bioavailability, better drug distribution and tissue targeting, and minimizing systemic side effects. Mucoadhesive polymers can also be delivered via different formulations such as tablets, films, patches, gels, and nanoparticles. These polymers can deliver an array of medicines, making them an adaptable drug delivery approach. Drug delivery techniques based on these mucoadhesive polymers are gaining traction and have immense potential as a prospective treatment for late-stage oral cancer. This review examines leading research in mucoadhesive polymers and discusses their potential applications in treating oral cancer.  相似文献   

16.
The aim of the present investigation was to develop and evaluate microemulsion-loaded hydrogels (MEHs) for the topical delivery of fluconazole (FZ). The solubility of FZ in oils, surfactants and cosurfactants was evaluated to identify the components of the microemulsion. The pseudo-ternary phase diagrams were constructed using the novel phase diagram by micro-plate dilution method. Carbopol EDT 2020 was used to convert FZ-loaded microemulsions into gel form without affecting their structure. The selected microemulsions were assessed for globule size, zeta potential and polidispersity index. Besides this, the microemulsion-loaded hydrogel (MEH) formulations were evaluated for drug content, pH, rheological properties and in vitro drug release through synthetic membrane and excised pig ear skin in comparison with a conventional hydrogel. The optimised MEH FZ formulations consisting of FZ 2%, Transcutol P 11.5% and 11%, respectively, as oil phase, Lansurf SML 20-propyleneglycol 52% and 50%, respectively, as surfactant–cosurfactant (2:1), Carbopol EDT 2020 1.5% as gelling agent and water 34.5% and 37%, respectively, showed highest flux values and high release rate values, and furthermore, they had low surfactant content. The in vitro FZ permeation through synthetic membrane and excised pig ear skin from the studied MEHs was best described by the zero-order and first-order models. Finally, the optimised MEH FZ formulations showed similar or slightly higher antifungal activity as compared to that of conventional hydrogel and Nizoral® cream, respectively. The results suggest the potential use of developed MEHs as vehicles for topical delivery of FZ, encouraging further in vitro and in vivo evaluation.KEY WORDS: fluconazole, in vitro skin permeation, microemulsion, microemulsion-loaded hydrogel, topical  相似文献   

17.
The aim of this work was the design of sustained-release mucoadhesive bilayered tablets, using mixtures of mucoadhesive polymers and an inorganic matrix (hydrotalcite), for the topical administration of flurbiprofen in the oral cavity. The first layer, responsible for the tablet retention on the mucosa, was prepared by compression of a cellulose derivative and polyacrylic derivative blend. The second layer, responsible for buccal drug delivery, was obtained by compression of a mixture of the same (first layer) mucoadhesive polymers and hydrotalcite containing flurbiprofen. Nonmedicated tablets were evaluated in terms of swelling, mucosal adhesion, and organoleptic characteristics; in vitro and in vivo release studies of flurbiprofen-loaded tablets were performed as well. The best results were obtained from the tablets containing 20 mg of flurbiprofen, which allowed a good anti-inflammatory sustained release in the buccal cavity for 12 hours, ensuring efficacious salivary concentrations, and led to no irritation. This mucoadhesive formulation offers many advantages over buccal lozenges because it allows for reduction in daily administrations and daily drug dosage and is suitable for the treatment of irritation, pain, and discomfort associated with gingivitis, sore throats, laryngopharyngitis, cold, and periodontal surgery. Moreover, it adheres well to the gum and is simple to apply, which means that patient compliance is improved. Published: July 13, 2007  相似文献   

18.
The aim of the present investigation was to evaluate microemulsion as a vehicle for dermal drug delivery and to develop microemulsion-based gel of terbinafine for the treatment of onychomycosis. D-optimal mixture experimental design was adopted to optimize the amount of oil (X 1), Smix (mixture of surfactant and cosurfactant; X 2) and water (X 3) in the microemulsion. The formulations were assessed for globule size (in nanometers; Y 1) and solubility of drug in microemulsion (in milligrams per milliliter; Y 2). The microemulsion containing 5.75% oil, 53.75% surfactant–cosurfactant mixture and 40.5% water was selected as the optimized batch. The globule size and solubility of the optimized batch were 18.14 nm and 43.71 mg/ml, respectively. Transmission electron microscopy showed that globules were spherical in shape. Drug containing microemulsion was converted into gel employing 0.75% w/w carbopol 934P. The optimized gel showed better penetration and retention in the human cadaver skin as compared to the commercial cream. The cumulative amount of terbinafine permeated after 12 h was 244.65 ± 18.43 μg cm−2 which was three times more than the selected commercial cream. Terbinafine microemulsion in the gel form showed better activity against Candida albicans and Trichophyton rubrum than the commercial cream. It was concluded that drug-loaded gel could be a promising formulation for effective treatment of onychomycosis.  相似文献   

19.
The purpose of this study was to evaluate the effect of formulation components on the in vitro skin permeation of microemulsion drug delivery system containing fluconazole (FLZ). Lauryl alcohol (LA) was screened as the oil phase of microemulsions. The pseudo-ternary phase diagrams for microemulsion regions were constructed using LA as the oil, Labrasol (Lab) as the surfactant and ethanol (EtOH) as the cosurfactant. The formulation which showed a highest permeation rate of 47.15 ± 1.12 μg cm−2 h−1 and appropriate physicochemical properties was optimized as containing 2% FLZ, 10% LA, 20% Lab/EtOH (1:1), and 68% double-distilled water (w/w). The efficiency of microemulsion formulation in the topical delivery of FLZ was dependent upon the contents of water and LA as well as Lab/EtOH mixing ratio. It was concluded that the percutaneous absorption of FLZ from microemulsions was enhanced with increasing the LA and water contents, and with decreasing the Lab/EtOH ratio in the formulation. Candida albicans was used as a model fungus to evaluate the antifungal activity of the best formula achieved, which showed the widest zone of inhibition as compared to FLZ reference. The studied microemulsion formulation showed a good stability for a period of 3 months. These results indicate that the studied microemulsion formulation might be a promising vehicle for topical delivery of FLZ.  相似文献   

20.
Silymarin is a standardized extract from Silybum marianum seeds, known for its many skin benefits such as antioxidant, anti-inflammatory, and immunomodulatory properties. In this study, the potential of several microemulsion formulations for dermal delivery of silymarin was evaluated. The pseudo-ternary phase diagrams were constructed for the various microemulsion formulations which were prepared using glyceryl monooleate, oleic acid, ethyl oleate, or isopropyl myristate as the oily phase; a mixture of Tween 20®, Labrasol®, or Span 20® with HCO-40® (1:1 ratio) as surfactants; and Transcutol® as a cosurfactant. Oil-in-water microemulsions were selected to incorporate 2% w/w silymarin. After six heating–cooling cycles, physical appearances of all microemulsions were unchanged and no drug precipitation occurred. Chemical stability studies showed that microemulsion containing Labrasol® and isopropyl myristate stored at 40°C for 6 months showed the highest silybin remaining among others. The silybin remainings depended on the type of surfactant and were sequenced in the order of: Labrasol® > Tween 20® > Span 20®. In vitro release studies showed prolonged release for microemulsions when compared to silymarin solution. All release profiles showed the best fits with Higuchi kinetics. Non-occlusive in vitro skin permeation studies showed absence of transdermal delivery of silybin. The percentages of silybin in skin extracts were not significantly different among the different formulations (p > 0.05). Nevertheless, some silybin was detected in the receiver fluid when performing occlusive experiments. Microemulsions containing Labrasol® also were found to enhance silymarin solubility. Other drug delivery systems with occlusive effect could be further developed for dermal delivery of silymarin.Key words: dermal delivery, microemulsion, silybin, silymarin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号